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0.1 LieneCopyright 1998-2000 Tommi Syrj�anen tommi.syrjanen�hut.�This program is free software; you an redistribute it and/or modify it underthe terms of the GNU General Publi Liense as published by the Free SoftwareFoundation; either version 2 of the Liense, or (at your option) any later version.This program is distributed in the hope that it will be useful, but WITHOUTANY WARRANTY; without even the implied warranty of MERCHANTABIL-ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GeneralPubli Liense for more details.You should have reeived a opy of the GNU General Publi Liense alongwith this program; if not, write to the Free Software Foundation, In., 59 TemplePlae - Suite 330, Boston, MA 02111-1307, USA.
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0.2 Reent ChangesThis setion gives quik overview on reent hanges that are made in the a-epted language. The more detailed version notes are ontained in �le NEWSin the distribution diretory.Lparse-1.0.3ontains several hanges. The most important is that the de�nition ofdomain prediates extended to over strati�ed rules. See Setion 4.4 fordetails. Seond, there's now an alternative syntax for delarations wherethe keywords are preeded by the harater #. Two new delarations,#option and #domain were added (see Setion 5.5).Lparse-1.0.1added a new internal funtion. The all `weight(a(X))' returns the weightof the literal a(X).Lparse-0.99.61adjusted the weight delarations a little bit so that now negative liter-als are defaulted to positive ones if there are no expliit delarations forthem. This behavior an be turned o� with the ommand line argument`--separate-weight-definitions'.Lparse-0.99.60hanged the behavior of weight delarations so that now positive andnegative literals are di�erentiated. For example,weight a = 5.weight not a = 10.assigns di�erent weights for a and not a.The default behavior of quoted strings also hanged and now quotes arealways retained and a and "a" are di�erent atoms. The old behavior anbe aessed with the `--drop-quotes' ommand line argument.Lparse-0.99.58allows expressions to be used in a more intuitive way inside onstraint andweight literals. For example, in a rulea(X,Y) :- 1 X + Y == 0, Y < X 1,foo(X,Y).the atom a(X,Y) is true when exatly one of the expressions evaluate totrue.Additionally, an empty onditional literal is now treated as an unsatis�edliteral in all ases.
2



0.3 NotationThe parts of this manual that are hanged in the urrent manual version aredenoted by putting a ontinous blak line in the left margin, as in this paragraph.Similarily, hanges that have happened reently are denoted by a dashed linein the left margin.Similarily, hanges that have happened reently are denotedby a dashed line in the left margin.
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Chapter 1IntrodutionSmodels is a system for answer set programming. It onsists of smodels, an ef-�ient implementation of the stable model semantis for normal logi programs,and lparse, a front-end that transforms user programs into form that smodelsunderstands.Answer set programming [6, 10℄ is a programming paradigm ompletely dif-ferent from traditional proedural programming. Instead of writing algorithmsto solve a problem in hand, the programmer desribes the problem using aformal language and an underlying engine �nds a solution to the problem.Smodels programs are written using standard (though extended) logi pro-gramming notation. That is, the programs are omposed of atoms and inferenerules. An atom represents a laim about the problem universe and it may betrue or false. Inferene rules are used to enode relationships between atoms.An answer to a problem is a set of atoms, alled a stable model, that tell whihatoms are true.A Smodels program may have one, none, or many stable models. Thestable models of a program may be seen as a set of rational beliefs about theprogram. That is, if we think that a program is a knowledge base enodingthe relationships between objets and a stable model is a set of those thingsin our universe that we believe to be true, then our beliefs are onsistent andwell-founded. Consisteny means that we don't believe in two ontraditionarythings and well-foundedness means that we have some reason for our belief. Wedon't want to believe that the Moon is made of green heese unless somebodygives a oherent theory that explains why Moon is atually a big dairy produt.For formal de�nition of the stable model semantis see Setion 4.2.Smodels has two parts, smodels and lparse1. The �rst part, smodels, isthe atual logi programming engine doing all the hard work and lparse justadds a layer of syntati sugar on top of it. The smodels has been developedin the Laboratory for Theoretial Computer Siene in Helsinki University ofTehnology by Patrik Simons [13, 8, 11, 14, 12, 15, 9, 10℄ and the lparse has1Atually, in Setion 1.4 we see that there are also other front-ends in addition to lparse.4



been developed by Tommi Syrj�anen [19℄.The newest versions of smodels, lparse, and this doument are availableat http://www.ts.hut.fi/Software/smodels.1.1 Short Primer on Logi ProgrammingThis setion has a really short primer on the subjet of logi programming ingeneral. It is aimed for readers who have no prior experiene on logi pro-gramming. For an extensive treatment on the traditional logi programmingtehniques, you should onsult The Art of Prolog by Sterling and Shapiro [18℄.There are basially four kinds of things in logi programming languages:atoms, onstants, variables, and rules. They are presented here rather infor-mally. For formal stu�, see Chapter 4.ConstantConstants are the individual things that exists in the universe of theproblem domain. Constants are either numbers or symboli onstants. Inmost logi programming languages the initial letter of a onstant is writtenin lower ase.Few examples of onstants: a, 10, foo, bar.VariableVariables are used to generalize things. Unlike traditional programminglanguage, you don't usually assign a value to a variable diretly. Instead,the underlying engine �nds the orret values (or substitutes onstants inplae of the variables) for them.Variables start with a apital letter, like in: X, Foo, Bar.AtomAn atom onsists of a prediate symbol that is followed by a parenthesizedlist of onstants or variables. Atoms are used to express relationshipsbetween onstants. For example, an atom parent(john; jill) might tell usthat John is Jill's parent. An atom has two possible truth values, true andfalse.Rule Rules allow us to make inferenes based on the prediates. For example,a rule: sibling(X,Y) :- parent(Z,X), parent(Z,Y).would tell us that if X and Y both have the same parent Z, then theyare siblings. Rules are omposed of two parts: the head (part to the leftof `:-') and the body (right to `:-').5



The idea here is that if every atom in the body (or tail as it is alsooften alled) is true, the head must also be true. So if there is someway to substitute onstants for the variables X , Y , and Z suh that bothparent(Z;X) and parent(Z; Y ) are true, we an infer that sibling(X;Y )is also true.In lassi logi programming languages (like Prolog), the inferenes are usu-ally made top-down. That is, we give some atom as a query string, and thesystem tries to �nd a way to make it true.For example, if we were interested in �nding out whether Jak is Jill's sibling,we would issue a query (alled a goal) sibling(jak; jill)? The system wouldthen san through the rules until it �nds some rule whih has the prediatesibling as its head. After �nding the rule presented above, the system wouldsubstitute jak for the variable X (denoted: X=jak) and jill for Y (Y=jill).Now the system has established that Jak and Jill are siblings if there existssome Z that is parent of both of them. Next, the system would issue a new query(alled a subgoal) parent(Z; jak) in order to �nd the parent of Jak. Supposethat Joan is Jak's mother. Then the subgoal sueeds and the systems �ndsthe substitution Z=joan.The system will then hek whether Joan is also Jill's mother by issuing thequery parent(joan; jill). If the query sueeds, the system answers yes to ouroriginal question (sibling(jak; jill)?). If Joan is not Jill's mother, the queryfails and the logi programming engine baktraks and tries to �nd anothersubstitution for Z. If no suh substitutions an be found, the systems answersno to our question. If there are more than one rule for a prediate, the rules aretried in order. If one fails, the next one is heked.Quite often the logi programs an be divided into two parts: a set of infer-ene rules and a database of fats for the rules to make inferenes with.For example, the following program enodes a simple family database.Program 1.1sibling(X,Y) :- parent(Z,X), parent(Z,Y).mother(X,Y) :- parent(X,Y), female(X).unle(X,Y) :- parent(Z, Y), sibling(Z,X), male(X).female(joan). female(jill). male(jak).parent(joan, jak). parent(joan, jill).1.2 Stable Model BasisTraditional logi programming systems are query-driven. That is, you enter aquestion and the system then tries to �nd an answer to it. At any point onlythose variables that are somehow involved in the query have values binded tothem.Smodels works in a di�erent way. In the �rst phase all variables are removedfrom the program by substituting all possible values for them in all rules. This6



phase is alled grounding (see Setion 4.3) and it's the lparse's job. In the nextphase smodels omputes the stable models of the program.A model is a set of atoms that satis�es every rule in the program. A rule issatis�ed if either its head is true in the model or some literal in the rule bodyis false. A model is stable when it meets some other requirements, that areformalized in Setion 4.2. Informally, a model is stable if every atom in it hassome \reason" to be there: for eah atom in the model there has to be somerule that has the atom as a head suh that the rule body is true in the model.As a simple example of what stable models are about, onsider the followingprogram segment that ould represent a part of a PC on�guration system:Program 1.2ide drive :- hard drive, not ssi drive.ssi drive :- hard drive, not ide drive.ssi ontroller :- ssi drive.hard drive.Here the �rst rule says that if we have a hard drive in our omputer and wedon't have a ssi drive, we must have an ide drive in it. The next rule says thesame thing about ssi drive: if we have a hard drive that is not an ide drive,it has to be a ssi drive. The third rule states that if we have a ssi drive inthe omputer, we must also inlude a ssi ontroller in it. The last rule is afat that tells that our omputer has a hard drive in it.This program has two stable models. The �rst one is:M1 = fhard drive; ide drivegand the seond one is:M2 = fhard drive; ssi drive; ssi ontrollerg:The �rst two rules of the program represent a hoie point: if we have a harddrive in the omputer, we must hoose between an ide-drive and a ssi-drive.If we add ssi ontroller to the �rst stable model the resulting set of atomsis still a model of the program in the propositional sense but it is no longer astable model. That is beause ssi ontroller is needed only when ssi drive ispresent, and when it is missing there is no reason to add ssi ontroller in themodel.The semantis of ordinary rules mathes that of logial impliation: if thebody is true, the head must also be true. In the program above, we used re-ursive not-atoms to model a hoie. The following program segment illustratesfurther this pratie:a :- not b.b :- not a.If b is not true, then amust be true and vie versa. However, this onstrutionis not exlusive or of the atoms, sine it is possible that some other part of theprogram fores both a and b to be true. To get XOR one should add a rule ofthe form: 7



UserProgram lparse
Answer smodels

a:-not b.b:-not a 1 1 1 1 21 2 1 1 101 b1 aAnswer: 1Stable model: aAnswer: 2Stable model: bFigure 1.1: The way of a logi program:- a, b.to the program. Rules without heads at as integrity onstraints; if a bodyof suh a rule is satis�ed, the model andidate is rejeted.1.3 A Pratial ExampleThe basi onepts are introdued here by using the node oloring problemas an example. In a node oloring instane we are given a set of nodes and aset of edges that onnet the nodes. The problem is to use some �xed numberof olors to olor eah node so that two adjaent nodes don't have same olor.In this example we use three olors: red, blue, and yellow.As this example uses only basi rules, it is quite long. In Chapter 6 we seehow the extended rules an be used to enode this problem using only two rules.The node oloring an be implemented with the following program.Program 1.3olor(red). olor(blue). olor(yellow).ol(X,red) :- node(X), not ol(X, blue), not ol(X,yellow).ol(X,blue) :- node(X), not ol(X, red), not ol(X,yellow).ol(X,yellow) :- node(X), not ol(X, blue), not ol(X,red).fail :- edge(X,Y), olor(C), ol(X,C), ol(Y,C).node(a). node(b).node(). node(d).edge(a,b). edge(b,).edge(,d). edge(d,a).ompute 1 f not fail g. 8



a bdFigure 1.2: The graph of Program 1.3The �rst line:olor(red). olor(blue). olor(yellow).de�nes the olors we are allowed to use. The prediate olor is de�ned insuh way that it an be used as a domain prediate (see Setion 4.4) later inthe program.The rule,ol(X,red) :- node(X), not ol(X, blue), not ol(X,yellow).states that if a node is not blue and it is not yellow, then the node has to bered. The next two rules are otherwise idential but they are for olors blue andyellow. Here the prediate node(X) ats as a domain prediate that enumeratesthe possible values of the variable X .The rulefail :- edge(X,Y), olor(C), ol(X,C), ol(Y,C).ensures that neighbouring nodes have di�erent olors. The atom fail is trueexatly when two onneted nodes have the same olor. Later we fore smodelsto searh for only models where fail is not true. Here the prediate node isnot needed to give domain for node variables X and Y beause edge is also adomain prediate.The next part of the program:node(a). node(b).node(). node(d).edge(a,b). edge(b,).edge(,d). edge(d,a).de�nes a simple graph with four nodes and four edges. This graph is shownin Figure 1.2. Usually, the graph is stored in another �le so that we don't haveto dupliate the inferene rules for eah graph.The last line of the program:ompute 1 f not fail g.tells smodels that we want only one model and that the atom fail may notbe in the model. This rules out all models where two adjaent nodes have thesame olor.The atom fail is used to signal that something is wrong with the model,namely that two adjaent nodes have the same olor. Later in the program wedemand that fail may not be true in any stable model of the program.The same e�et ould be ahieved by using onstrution:9



a bdyellow blue
blue redFigure 1.3: An answer of Program 1.3:- edge(X,Y), olor(C), ol(X,C), ol(Y,C).Rules with empty heads work as onstraints on the models of the program. Ifa variable binding makes the the body of the rule true, the binding is disardedas there's no way to satisfy its head.The ode of the node oloring example is stored in diretory examplesas olor1.lp of the lparse distriburion. The example graph is in the samediretory as graph1.The proess of running this program through smodels would look like:% lparse olor1.lp graph1 | smodelssmodels version 2.10. Reading...doneAnswer: 1Stable Model: edge(d,a) edge(,d) edge(a,b) edge(b,)node(a) node(d) node() node(b) ol(a,yellow) ol(,red)ol(d,blue) ol(b,blue) olor(yellow) olor(red) olor(blue)TrueDuration: 0.030Number of hoie points: 3Number of wrong hoies: 0Number of atoms: 24Number of rules: 35Number of piked atoms: 45Number of fored atoms: 0Number of truth assignments: 152Size of searhspae (removed): 12 (0)As the �rst line of output, smodels prints its version information. The nextlines give the �rst model found. In the model nodes d and b are olored blue,node a is yellow and node  is red. The answer is also shown in Figure 1.3.The word true below the model tells that there may be also other models,but smodels didn't ompute them2. If there are no models left, the line readsfalse. The same message is also displayed when the program has no models atall. The rest of the lines give some statistis about your program. The duration2It's possible that there are no more models, but smodels reports true always when thewhole searh spae is not explored. 10



tells how long the searh took in seonds.The number of hoie points tell how many times smodels had to guess atruth value for a ground atom. This time smodels guessed the orret valuefor eah atom (number of wrong hoies is zero) and thus it didn't have tobaktrak.The next lines tell that there were a total of 24 atoms and 35 rules in thegrounded program (the original had four non-ground rules, 11 fats, and 12atoms). In general, the number of hoie points is more important than thenumber of rules or atoms when we want to ompare omplexities of problems.The rest of the lines show how the smodels heuristis worked for this pro-gram. The number of piked atoms tell how many times smodels lookaheadheuristis managed to pik a truth value to an atom. The number of foredatoms tell how many atoms were added to the model beause their negationwould have aused a ontradition. The number of truth assignments tells howmany times smodels assigned a truth value to an atom.The size of searhspae tells the maximum number of hoies we may haveto do before we an be ertain whether a model exists or not. In this examplethe size of the searh spae is half the number of atoms, sine the eleven domainprediates are always true and the truth value of fail depends diretly on thevalues of the olor prediates.It is often useful to be able to see what exatly is output from lparse. Thisan be aomplished by using the -t ommand line argument:% lparse -t olor1.lp graph1edge(d,a).edge(,d).edge(a,b).edge(b,).node(a).node(d).node().node(b).fail :- ol(d,yellow), ol(a,yellow).fail :- ol(,yellow), ol(d,yellow).fail :- ol(a,yellow), ol(b,yellow).[24 further output lines snipped℄ompute 1 f not fail gAt the beginning of this program the domain prediates are output just likethey were entered in the input program. The next three lines de�ne three ofthe ases where the onstraints of the problem instane are broken beause twoneighboring nodes have the same olor.1.4 Di�erent Smodels Front-EndsCurrently, there is a host of di�erent front-ends to smodels:11



1. lparse is the most feature-rih of the di�erent parsers and front endsand it is the default one you should use when you are writing Smodelsprograms.2. smodels API is a library interfae that allows you to all the smodelsproedure from any C++ program. Currently, there is no single dou-ment that explains the API but the example diretory of the smodelsdistribution ontains four examples on using it.3. parse is the original parser of smodels. It produes only smodels 1.xoutput, and is now outdated.4. pparse (\primitive parser") is a simple parser that produes smodels 2.xoutput but it aepts only ground programs. Its syntax for extended rulesis di�erent from lparse's syntax.5. msmodels (\model heking smodels") is a deadlok and reahabilityheker that an be used to verify 1-safe Petri nets [4℄. It is writtenby Keijo Heljanko and it is available athttp://www.ts.hut.fi/ kepa/tools/6. dlsmodels is an older version of msmodels whih only detets deadloks.It is available at same plae as msmodels.
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Chapter 2InstallationLparse omes now with an installation sript onfigure that should make theinstallation easier. The proedure to follow is:1. d to the diretory ontaining lparse soure ode and type ./onfigureto on�gure lparse for your system.2. Type make to ompile the binaries.3. Type make install to install lparse.4. If you want to remove the objet �les from the soure ode diretory youmay type make lean to do it.By default, lparse is installed to the diretory /usr/loal/bin. You mayhange the diretory by giving onfigure the option --prefix=path .There is a suite of Smodels programs that an be used to hek that lparseis funtioning orretly. Currently, it is not yet omplete, but I'll expand itsfuntionality in forthoming lparse releases.The test programs are stored in diretory tests and the expeted resultsare in diretory tests/results. There is a perl sript test all that performsall tests and reports any errors. The tests an be also run with make hekommand.As a seurity issue, you should never run lparse with setuid bit set. Itis possible to all user-de�ned C/C++-funtions from Smodels programs (seeSetion 5.7.3) and if the setuid bit is on, a maliious adversary an run basiallyanything with the permissions of the owner of lparse.2.1 Installation on Windows systemsLparse has been suesfully ompiled on the Mirosoft Windows 95/98 systemswith Borland C++ version 5.5. It may ompile also with other ompilers andother Windows versions but that hasn't been tested. If you have the GNU13



programming tools installed on the system, you an follow the diretions in theprevious setion, otherwise ensure that your ompiler is orretly installed andon�gured and issue the following ommands to the ommand prompt:1. setup.bat2. d sr3. makeThe ommand setup.bat opies the Windows on�guration �le to the or-ret plae and reates the make�le. The ommand make reates the atualexeutable lparse.exe in the sr diretory of the distribution and it may thenbe opied to the desired plae. A preompiled Windows 98 binary is available atthe lparse homepage http://www.ts.hut.fi/Software/smodels/lparse.
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Chapter 3Invoking LparseThe ommand line synopsis of lparse is as follows:Usage: lparse [-1℄ [- onst=number℄[-d all | fats | positive | none℄[-D℄ [-g file℄ [-i℄ [-n number℄[-r [1 | 2 | 3℄℄ [-t℄ [-v℄ [-w n ℄[-W warning℄ [--dlp℄ [--atom-file file℄[--allow-inonsistent-answers℄[--drop-quotes℄ [--partial℄[--separate-weight-definitions℄[--true-negation℄ [--version℄�le1 �le2 : : :The meanings of the options will be detailed in Setion 3.1. Meanwhile, therest of this setion shows how lparse is most often used in pratise.Lparse is used as a front end to smodels. The usual way to do this is topipe the output of lparse diretly to smodels:% lparse input file1 input file2 | smodelsIt is also possible to output the ground program in plain text, using theoption -t:% lparse-t input fileIf the logi program has some varying integer parameter, its value an beentered from ommand line with the option -:% lparse - parameter=value input fileBy default the output �le format is for smodels 2.x, but it is also possibleto output smodels 1.x format by using the option -1. Note that there are onlyfew (if any) reasons to use smodels version 1.x as smodels 2.x an do anythingthat version 1.x an do and it's muh better doing it.
15



3.1 Lparse OptionsThe available options are:-1 Use smodels 1.x output format.- onst=nDe�ne the identi�er onst to be a numeri onstant with the value n. Thisde�nition overrides any onst statements for n in the program.-d all | fats | positive | noneControl whih domain prediates are emitted. The default is fats.� all: All domain literals are emitted. Rules with unsatis�able nega-tive literals in their bodies are not removed.� fats: All domain prediates in the rule bodies are dropped fromoutput.� none: All domain literals are dropped.� positive: Negative domain literals in the rule bodies are dropped.-D Debug lparse data strutures. With this option lparse reates reallysmall internal storage tables so that their behavior an be tested moreeasily. Not reommended for normal use.-g fileRead a previously grounded �le to memory before grounding the program.This is useful when you don't want to ground the full program eah time.See Setion 7.4 for more details.-i Disable the internal funtions.-n n Set the desired number of models to n. This overrides any ompute-statements in the program.-r [1|2|3℄Enable the regular model extension (see Setion 4.8.2 for details). Theoptional numeri parameter is used to ontrol what integrity onstraintsare emitted.-t Print output as text.-v Print lparse version information16



-w n Set the default weight of literals to n. If this option is not given, thedefault weight will be 1.-W warningControl the warnings emitted by lparse. Possible values are: all, arity,extended, library, unsat, weight, syntax, typo, and error. For adetailed explanation, see Setion 7.3.--atom-file fileOutput the symbol table of the grounded program to �le. See Setion 7.4.4for more details.--allow-inonsistent-answersEnables the lassial negation extension and additionally reports also in-onsistent answer sets. See Setion 4.7 for details.--dlpUse disjuntive logi programming semantis with hoie rules. For de-tails, see Setion 4.8.1.--drop-quotesRemove quotation marks from strings when possible. For example "a"beomes a but "123" doesn't hange.--partialEnables the partial model extension. This swith is idential in behaviorto -r 2.--separate-weight-definitionsDo not default the weight of a negative literal to the weight of a positiveone.--true-negationEnables the lassial negation extension. See Setion 4.7 for details.3.2 Smodels OptionsThese options are urrent for smodels version 2.25.Usage: smodels [number℄ [-w℄ [-nolookahead℄ [-bakjump℄[-randomize℄ [-internal℄ [-tries number℄[-onflits number℄ [-seed number℄The �rst number determines the number of stable models to be omputed.A zero indiates all.-bakjumpAllow baktrak to jump over several hoie points.17



-nolookaheadDo not use lookahead at all.-sloppy heuristiUse redued lookahead heuristis. This may speed smodels if the programhas an "easy" struture.-randomizeMake a randomized but omplete searh.-internalSimplify the program and print it out in an internal form.-w Compute only the well-founded model of the program.-tries numberDo a stohasti random searh for number times. This method is notomplete.-onflits numberWhen doing a stohasti searh, stop when number onits are found.-seed numberUse number as the seed for random parts of omputation.

18



Chapter 4Theoretial Stu�This hapter disusses the theoretial foundation of Smodels so it shouldn'tsurprise anybody that the material in this hapter is quite theoretial. The onlythings that are really neessary to know while using lparse are the informalparts of Setion 4.4 (pages 25{27).If the presentation seems to be too heavy on �rst reading, feel free to skipto the start of next hapter on page 381.4.1 Basi TerminologyAn atom is of the form p(a1; : : : ; an) where p is a n-ary prediate symbol anda1, : : : , an (n � 0) are terms. A term may be either a variable, a onstant, ora funtion f(t1; : : : ; tm) where t1, : : : , tm are terms. An atom (or a funtion)with no variables is alled a ground atom (funtion).A literal is either an atom a or its negation not a. Literals of the form not aare alled not-atoms or negative literals .A rule is of the form h l1; : : : ; ln : (4.1)where the rule head h is an atom and literals l1, : : : , ln (n � 0) form the rulebody2 If the rule body is empty (n = 0), the rule is alled a fat. A rule is alleda Horn rule if it doesn't have any negative literals. A normal logi program isa set of rules.The rules of the form (4.1) are alled basi rules . Lparse also supports anumber of extended rule types. However, for a while we onsider only basirules and the extensions are presented in Setion 4.6.The Herbrand universe of a logi program is the set of all ground terms thatan be onstruted using funtion symbols and onstants in that program. TheHerbrand base HB of a logi program is the set of all ground atoms that an1Of ourse, after reading the informal parts.2also alled the rule tail. 19



be onstruted using the prediates in the program and terms in the Herbranduniverse.For example, in a programProgram 4.1d(a). d(b).foo(X) :- not bar(X).bar(X) :- not foo(X).the Herbrand universe is fa; bg (these two onstants are the only ground termsof the program), and the Herbrand base is ffoo(a); foo(b); bar(a); bar(b)g.An instane of an atom, a literal, a rule, or a funtion is onstruted byreplaing all variables in it by ground terms. The Herbrand instantiation of aprogram is the set of all ground instanes of the rules of the program that maybe onstruted using terms in the Herbrand universe of the program.For example, the Herbrand instantiation of the Program 4.1 is:Program 4.2d(a). d(b).foo(a) :- not bar(a).foo(b) :- not bar(b).bar(a) :- not foo(a).bar(b) :- not foo(b).An interpretation I of a logi program is a subset of its Herbrand base. Aninterpretation assigns a truth valuation V(a) to eah element of the base. If anatom a is in the interpretation, its valuation V(a) = true in the interpretation,otherwise V(a) = false. An extension Ep of a prediate p is the setEp = fa j V(a) = true and the prediate symbol of a is pg : (4.2)An atom a is satis�ed by an interpretation if its valuation is true. A not-atom not a is satis�ed if the valuation of a is false. A basi rule is satis�ed ifeither at least one of its body literals is not satis�ed by the interpretation or ifits head is satis�ed.If an interpretation satis�es every rule in the Herbrand instantiation of aprogram, it is a (Herbrand) model of the program.Example 4.1An interpretation I = fd(a); d(b); foo(a); bar(b)g is a model of Program 4.1beause all rules of Program 4.2 are satis�ed:Rules d(a); d(b); foo(a) :- not bar(a); and bar(b) :- not foo(b)are satis�ed beause their heads are in the model. The rule foo(b) :-not bar(b) is satis�ed beause not bar(b) is not satis�ed. �A model is minimal if no proper subset of it is also a model. An old theoremby M.H. van Emden and R.A. Kowalski [20℄ states that a logi program without20



negative literals has a unique minimal Herbrand model that is alled themeaningof the program. The minimal model M of a program P an be found by usingthe Knaster-Tarski operator TP whereTP (M) = fh j h l1; : : : ; ln is a rule in theprogram and l1; : : : ; ln 2Mg (4.3)We an onstrut the minimal model by starting with an empty set and applyingthe TP operator until a �xed point is found.Example 4.2Suppose that the Herbrand instantiation of a program isa. b. :- a.d :- , b.e :- f.Then the minimal model is found in following steps:1. Initially, M = ;. Now , d, and e annot be added to the model sinetheir bodies are not in the partial model. However, sine the bodiesof �rst two rules are empty, they may be added to it to get a partialmodel M = fa; bg.2. Now the body of the rule for  is in the partial model, so  is addedto the partial model and the resulting partial model M = fa; b; g.3. Beause both  and b are in the partial model, d must be added toit also, and M = fa; b; ; dg.4. There are no more rules with true bodies that an be added to themodel, so the meaning of this program is M = fa; b; ; dg. �4.2 Stable Model SemantisThe onept of meaning that was de�ned above doesn't generalize niely tologi programs with negations and something else is needed. The stable modelsemantis [2℄ for a ground logi program P is de�ned in the following way:Let M be any set of atoms from P . The redut PM of the program withrespet to M is obtained by deleting from P1. eah rule that has a negative literal not a in its body when a belongs toM ; and2. all negative literals in the bodies of remaining rules.21



As PM is negation-free, it has a unique minimal Herbrand model. If thismodel oinides with M , then M is a stable model of the program P .The intuitive explanation of the redut is that if we believe that M is theset of all true ground atoms of the program, then any rule that depends on aliteral not b when b is true annot be used in dedution and may be disarded.Also, every literal not b is trivially satis�ed if b is false and an be disarded. IfM is the set of atoms that follow logially from PM , we an say that our beliefwas onsistent and \rational".Example 4.3Consider the program P :a :- not b.b :- not a.The program has two stable models, M1 = fag andM2 = fbg. We an seethat M1 is a stable model by �rst taking the redut to get the programPM : a.As the only remaining rule has an empty body, the minimal model of theprogram is fag that is the same set that we started with. The other stablemodel omes similarly.In propositional logi this program has also third model, fa; bg but thismodel is not stable, as its redut is empty so the minimal model of theredut is also empty, not fa; bg. �All stable models are justi�ed in the sense that every atom in a model has tohave some reason to be in there; if an atom is in a model, there has to be a rulesuh that the atom ours at the head of it and all body literals are satis�ed.The third model in the above example was not justi�ed beause both rules hadunsatis�ed bodies.The set of stable models for a non-ground logi program is de�ned to be theset of stable models of the Herbrand instantiation of the program.4.3 GroundingA grounding transforms a normal logi program into an equivalent ground logiprogramwhere the equivalene is de�ned as having the same set of stable models.A grounding is loal if it is possible to do the grounding one rule at a time. Avariable binding is a substitution that maps a subset of variables of a rule intoground terms.In the previous setion we de�ned the set of stable models of a generalprogram to be the set of stable models of its Herbrand instantiation. Why not22



use it diretly? The answer is that in pratie it is not possible to generate allHerbrand instanes of a given logi program beause the size of the Herbrandinstantiation is pratially always exponential with respet to the size of theoriginal problem.Usually most of the rules in the Herbrand instantiation have unsatis�ablebodies and they may be disarded without a�eting the set of stable models.Consider the following program:Program 4.3d(a). e(b). e().foo(X) :- d(X), not bar(X).bar(X) :- d(X), not foo(X).In the Herbrand instantiation of the program, the last two rules are both instan-tiated for eah of the three onstants of the program. The omplete instantiationis:Program 4.4d(a). e(b). e().foo(a) :- d(a), not bar(a).foo(b) :- d(b), not bar(b).foo() :- d(), not bar().bar(a) :- d(a), not foo(a).bar(b) :- d(b), not foo(b).bar() :- d(), not foo().It is not possible to dedue atoms d(b) and d() in the Program 4.4 and anyrule that depends on either of them annot have its body true. Those rulesan be disarded without a�eting stable models. In e�et, the program an beshortened to:Program 4.5d(a). e(b). e().foo(a) :- d(a), not bar(a).bar(a) :- d(a), not foo(a).The ruial question now is, how do we know whih rules an be droppedout? Lparse does the job by dividing the prediates into two lasses, domain andnon-domain prediates. The intuition is suh that the non-domain prediatesare the ones that we are interested in and domain prediates just give all possiblevariable bindings.Informally domain prediates are the prediates that are not de�ned usingnegative reursion.In Program 4.3 prediates d and e are domain prediates, while foo and barare not sine they depend reursively on eah other. The reursion is negativesine there are the two nots in the rules. There is a longer disussion on domainprediates in the next setion. 23



4.4 Domain PrediatesIn beginning of this setion the notion of domain prediates is introdued quiteinformally and the formal de�nitions are in Setion 4.4.4. There are also sometips on how to onstrut domains using relational algebra in Setion 4.4.3.4.4.1 What's New?NOTE THAT THEDEFINITION OF DOMAIN PREDICATES HASCHANGED IN LPARSE-1.0.3. I HAVEN'T HAD TIME TO DOCU-MENT THE NEW FORMAL DEFINITION BUT IT WILL COMESOON. MEANWHILE, HERE IS A BRIEF AND HIGHLY INFOR-MAL DESCRIPTION ABOUT THENEWDOMAIN PREDICATES.In lparse the grounding is done using domain prediates. Previously, aprediate was a domain prediate exatly when it didn't have reursion in itsde�nition. Now a domain prediate an be de�ned via positive reursion.The main idea is that a hierarhy is reated from the prediate symbolswhere a prediate P is on higher level than the prediate Q if P depends on Q.The atual de�nition is a little quirkier sine we want that two prediates thatdepend positively on eah other may be in the same level. If two prediatesdepend negatively on eah other, they will be assigned to the highest level ofthe hierarhy, as well as all prediates that depend on them.A prediate that is not on the highest layer (alled !-layer is a domainprediate). The extended domain restrition ondition states that all variablesthat our in a rule have to our in some positive literal that is on lower levelthan the rule head.For example, onsider the program:Program 4.6number(0..n).odd(X+1) :- number(X), even(X).even(X+1) :- number(X), odd(X).even(0).two divides(X) :- odd(X).interesting(X) :- number(X), not dull(X).dull(X) :- number(X), not interesting(X).interesting odd(X) :- odd(X), interesting(X).In this program all prediates exept dull, interesting, and interesting oddare domain prediates. The prediates dull and interesting depend on eahother negatively and interesting odd depends on interesting. The dependenygraph of the program is shown in Figure 4.1 and its strati�ation in Figure 4.2.The prediate hierarhy is onstruted using the following rules:1. If P depends on Q and Q doesn't depend on P , then P > Q;2. If P depends positively on Q and Q depends positively on P , then P = Q;24
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Figure 4.1: The dependeny graph of the program (4.6).numbereven oddtwo dividesinteresting dullinteresting odd
012!Figure 4.2: The prediate hierarhy of Program 4.63. If P and Q depend on eah other and there is a negative edge in theirdependeny yle, then P = Q = !.A more formal de�nition will ome in this manual pretty soon.4.4.2 Informal DomainsLparse divides the prediate symbols of a logi program into two lasses, domainand non-domain prediates. The domain prediates are used to �nd all possiblevariable bindings of rules during the grounding.For example, in the programProgram 4.7d(a,b). d(b,). d(,a).foo(X,Y,Z) :- d(X,Y), d(Y,Z), not bar(X,Y,Z).bar(X,Y,Z) :- d(X,Y), d(Y,Z), not foo(X,Y,Z).the prediate d=2 is the only domain prediate. When grounding the rules forfoo and bar, lparse gets the possible variable bindings from literals d(X;Y )and d(Y; Z). 25



In this program there are three possible variable bindings for the two non-ground rules:1. fX=a; Y=b; Z=g, from d(a; b) and d(b; ).2. fX=b; Y=; Z=ag, from d(b; ) and d(; a).3. fX=; Y=a; Z=bg, from d(; a) and d(a; b).Thus, the resulting ground program will be:Program 4.8d(a,b). d(b,). d(,a).foo(a,b,) :- d(a,b), d(b,), not bar(a,b,).foo(b,,a) :- d(b,), d(,a), not bar(b,,a).foo(b,,a) :- d(b,), d(,a), not bar(,a,b).bar(a,b,) :- d(a,b), d(b,), not foo(a,b,).bar(b,,a) :- d(b,), d(,a), not foo(b,,a).bar(b,,a) :- d(b,), d(,a), not foo(,a,b).In pratie, the non-domain prediates are the \interesting" prediates, and thedomain prediates are just programmer's way to tell preisely what instanes ofthe \interesting" prediates we want to onsider.After the grounding is done it is often possible to drop all domain literalsfrom the program. After all, we already know that they will be true in everystable model of the program. Lparse ommand-line argument -d none (seeSetion 3.1) drops all domain literals from the program.We an use as a domain prediate (nearly) any prediate that has a �xedextension in all stable models of the program. That is, if we know all trueground instanes of the prediate even before we ask smodels to ompute them,the prediate is a domain prediate.For example, in the program:Program 4.9p(X,Y) :- d1(X,Y), not q(X,Y).q(X,Y) :- d1(X,Y), not p(X,Y).d1(X,Y) :- d2(X), d3(Y), not d4(X).d2(a). d2(b). d3(). d4(a).prediates d1, d2, d3, and d4 are domain prediates. All rules with d2, d3, or d4as heads are fats so the extensions of those prediates are given diretly in theprogram (fd2(a); d2(b)g for d2 and fd3()g and fd4(a)g for d3 and d4).As the only rule for d1 has only domain literals in its body, we also anompute its extension with relational algebra by taking a natural join over theextensions of d2, d3, and d4. The resulting extension is simply fd1(b; )g (d1(a; )is not in the extension beause d4(a) is always true and thus the variable bindingdoesn't satisfy the literal not d4(X).The extensions of prediates p and q an't be omputed beforehand, sinethey depend on eah other reursively. The program has one hoie point where26



either p(b; ) is added to the model or q(b; ) is added to model, but not both.Thus the extension of p will be either fp(b; )g or it will be empty, dependingon whih atom got inluded in the model. Similarily for q.Here should be an example that details the transitive losure in domain pred-iates.There is one more ompliation about domain prediates: If a prediateours as a head in an extended rule (see Setion 5.4) it may not be a domainprediate. The reason why hoie rules are exluded is lear as they impliitlyadd a hoie point to the program. The reason why other rules are also exludedis implementation spei�, as extended rules are proessed after the domaingeneration. This will probably hange in a future release, but for the time beingyou annot use a prediate as a domain prediate if it ours as a head in anextended rule.4.4.3 Construting DomainsAll basi relational algebra operations an be done on the extensions of domainprediates and the result will still be a domain prediate. The operations are:1. Union P [ R of the extensions of P and R:U(X) :- P(X).U(X) :- R(X).2. Intersetion P \ R of the extensions:I(X) :- P(X), R(X).3. Set di�erene P nR of the extensions:D(X) :- P(X), not R(X).4. Cartesian produt P �R:C(X,Y) :- P(X), R(Y).5. Natural join P ./ R:J(X,Y,Z) :- P(X,Y), R(Y,Z).6. Symmetri di�erene P M R:S(X) :- P(X), not R(X).S(X) :- R(X), not P(X).4.4.4 Formal DomainsThe dependeny graph GP = (VP ; EP ) of a logi program P is onstruted asfollows:1. VP = fp j p is a prediate symbol in Pg.27



male femaleparentson daughteranestorFigure 4.3: The dependeny graph of family relationships2. (a; b) 2 EP if and only if there exists a rule in P where a is the prediatesymbol in the head and b is a prediate symbol in the rule body.A prediate a depends on a prediate b if and only if there exists a pathfrom a to b in the dependeny graph. A prediate p of a logi program P is adomain prediate if and only if it holds that every path starting from node p inthe dependeny graph is yle free.Example 4.4Consider the following program:Program 4.10anestor(X,Y) :- anestor(X,Z), parent(Z,Y).anestor(X,Y) :- parent(X,Y).son(X,Y) :- parent(Y,X), male(X).daughter(X,Y) :- parent(Y,X), female(X).The dependeny graph of this program is shown in Figure 4.3. We an seefrom the graph that anestor depends on itself and on parent. Likewise,daughter depends on parent and female. Here all prediates but anestorare domain prediates. �4.5 Domain-Restrited ProgramsA rule is domain-restrited if it holds that if a variable appears in the rule italso appears in a positive domain literal in the body.A logi program is domain-restrited program if and only if every rule in itis domain-restrited.Example 4.5Suppose that d is a domain prediate and there are two rules:p(X,Y) :- d(X,Y), not q(X,Y).q(X,Y) :- not d(X,Y), not q(X,Y).Now the �rst rule is domain-restrited sine both X and Y our in thedomain literal d(X;Y ). The seond rule is not domain-restrited, sinethe domain literal is negative, and not positive. �28



The reason for having domain restrition is that during grounding we haveto know exatly what ground instanes of rules are needed.For example, if we tried to use rules of the following form:a(X) :- not b(X,Y).we would have to generate a ground instane for eah imaginable binding ofY . In e�et, we would have to use every single onstant that appears somewherein the program as a possible binding for Y and there may be thousands of them.So the domain prediates are used to \restrit the domain" of variables.Example 4.6The Program 4.10 is otherwise domain-restrited but the variableX in the�rst rule doesn't our in a domain prediate. We an �x the situation byde�ning a new prediate, person, and rulesanestor(X,Y) :- anestor(X,Z), parent(Z,Y), person(X).person(X) :- female(X).person(X) :- male(X). �The earlier smodels front-end, parse, allowed rules of the form:p(X,Y) :- q(X,Y), not r(X,Y).where q was any prediate symbol. Parse omputed the needed ground in-stanes by dropping all negative literals and then omputing a dedutive losureof the rules. This method had the weakness that the whole program had to bekept in memory during grounding, whih severely a�eted the performane ofthe system.4.6 Weight ConstraintsThe Smodels versions 2.0 and later have three extended rule types in additionto basi rules that were de�ned in Setion 4.2: hoie, onstraint, and weightrules. The formal semantis of all three an be de�ned through use of weightonstraints and weight onstraint rules . In lparse the weight onstraints areimplemented as speial literal types.Basially, a weight onstraint is something of the formL � fa1 = w1; : : : ; an = wn; not b1 = wn+1; : : : ; not bm = wm+ng � U (4.4)where a1; : : : ; an; b1; : : : ; bm are atoms, L and U are the integral lower and upperbounds, and w1, : : : , wm+n are weights of the literals. Later on, we denote theweight of a literal l with w(l). Here we onsider only positive weights as thenegative weights an be removed from a program as by negating the weight andinverting the literal.The intuitional semantis of a weight onstraint is that it is satis�ed exatlywhen the sum of weights of satis�ed literals l1, : : : , ln is between L and U , in-lusive. The stable model semantis for weight onstraint rules was �rst de�nedin [12℄. 29



Example 4.7Let M = fa; bg andC1 = 2 � fa = 1; not b = 1; not  = 1g � 3C2 = 1 � fa = 1; b = 1;  = 1g � 1Now M satis�es C1 beause literals a and not  are satis�ed and theirtotal weight is greater than the lower bound and lower than the upperbound. However, C2 is not satis�ed as the sum of the weights of a and bis greater than the upper bound. �A weight onstraint rule is of the formC0  C1; : : : Cn (4.5)where C0, : : : , Cn are weight onstraints. We also have to restrit C0 so thatmay not have any negative literals in it.A weight onstraint rule is satis�ed if C0 is satis�ed whenever C1, : : : , Cnare satis�ed.. Analogously to the de�nition of normal logi programs, a weightonstraint program is a set of weight rules.A redut CM of a weight onstraint C with respet to a set M of atomsis obtained by removing the upper bound and all negative literals from it, andsubtrating the weights of satis�ed not-atoms from the lower bound:CM = L0 � fai = wi j ai 2Mg (4.6)where L0 = L� Xbi =2M w(bi) (4.7)The redut of a weight rule RM of a weight rule R with respet to a set Mof atoms is the set of rulesRM = 8<:; ; if 9Ci�1 :M 2 Cifh CM1 ; : : : CMn jh 2 M and h is an atom in C0g ; otherwise (4.8)where M 2 C denotes that M doesn't satisfy the weight onstraint C. Theabove de�nition looks quite ugly but basially it just says that a rule withan unsatis�ed body is dropped out of the redut and the negative literals aredropped from the remaining rules.I guess that most of the readers an guess by now how the redut is de�nedfor weight onstraint programs. It is formed by taking union over reduts ofindividual rules. PM = fRM j R 2 Pg (4.9)30



The rules in the redut have all same form: they have a single atom as headand there are no negative literals in the weight onstraints of the rule body. Weall these rules Horn weight rules analogously to the de�nition for basi rules.We an de�ne the Knaster-Tarski operator TP for Horn weight rules in asimilar way that it was de�ned for basi Horn rules.TP (M) = fh j h C1; : : : Cn is a rule in the programand C1; : : : ; Cn are all satis�ed by Mg (4.10)Example 4.8Consider the following program3 P :Program 4.11a :- 1 [ a = 1 ℄.b :- 0 [ b = 100 ℄. :- 6 [ b = 5, d = 1℄, 2 [ b = 2, a = 2℄.d :- 1 [ a = 1, b = 1,  = 1 ℄.We start iterating the TP from the empty set.1. TP (;) = fbg, beause the empty set satis�es the body of the seondrule.2. TP (fbg) = fb; dg, beause b = 1 is enough to satisfy the onstraint ofthe last rule.3. TP (fb; dg) = fb; ; dg, as w(fb; dg) = 6 � 6 in the �rst onstraint ofthe rule for  and w(fbg) = 2 � 2 in the seond onstraint.4. TP (fb; ; dg) = fb; ; dg and the �xed point is found. �Unfortunately we an't de�ne the stable models of a weight rule programusing only reduts. The problem is that we threw out all upper bounds of weightonstraints while omputing the redut and we have to ensure that the modelsatis�es also the upper bounds.A set M of atoms is a stable model of a weight onstraint program P if andonly if the following two onditions are met:1. M satis�es all rules in P ; and2. M is the least �xpoint of TPM (;).Example 4.9Let a program P be simply:3Here we use the lparse syntax. Namely, the � symbol is left out and the square braketsdenote weight onstraints. 31



Program 4.121 [ a = 1, b = 1 ℄ 1.Now M1 = fag is a stable model of P as M1 satis�es the only rule andthe redut PM of the program isa.Similarily for M2 = fbg. On the other hand, fa; bg is not a stable modeleven though the redut of the program isa.b.sine the ombined weights of a and b are more than the upper bound ofthe rule. �Example 4.10Let's now look at a slightly more omplex example program P :Program 4.131 [ a=1, b=1, =1 ℄ 2 :- 2 [ d=1, not b=1, not e=3 ℄ 4.1 [ d=3, e=2 ℄ 5.Now M1 = fa; d; eg is one stable model of the program. The redut PM1is nowa :- 1 [ d =1 ℄.d.e.and the least �xpoint of TPM1 = M1 and the model satis�es all rules.However, M2 = fd; ag is not a stable model beause the onstraint in the�rst rule body is not satis�ed (w(M) = 5 � 4) so it is dropped out fromthe redut and there is no longer any way to dedue a. �In the beginning of this setion I laimed that negative weights an be re-moved. This is proven in [12℄ and I only present here the translation. A weightonstraint L � fa = �wa; not b = �wbg � U (4.11)an be transformed to an equal formL+ wa + wb � fnot a = wa; b = wbg � U + wa + wb (4.12)The idea here is that instead of subtrating wa from the total weight when a istrue, we add wa if a is not true and we raise the bounds with the same amount,the net result being the same. 32



4.7 Classial NegationThe basi version of the stable model semantis has only negation as failure.That is, we onlude not a if we an't prove that a is true. Sometimes this isnot desirable. For example, suppose that we want to hek whether it is safe toross railroad traks. This ould be expressed with a rule:safe not train :The problem here is that we onsider the rossing to be safe if we an't provethat a train is oming. A more safe approah would be to delare the rossingsafe only if we an prove that train is, indeed, not oming:safe :train :This stronger negation is alled the lassial negation and programs utilizingit are usually alled extended logi programs . The extended logi programs wereproposed in [3℄.The semantis of the extended logi programs di�ers a bit from the stablemodel semantis of oridinary programs. The answer set S of an extended pro-gram P is a minimal subset of the Herbrand base HB(P ) of the program suhthat:1. for any rule lo  l1; : : : ; ln in P , if l1, : : : , ln 2 S, then lo 2 S; and2. if S ontains a pair of omplementary literals, then S = HB(P ).There are two di�erent ways how an extended program an fail to havean useful answer set. Either there is no answer at all or the only answer isinonsistent.Example 4.11Consider the following program P :a not b b not ad not   not d:e not a e not f  not f; b; dThis program has three answer sets:S1 = fa; d;:egS2 = fb; ; egS3 = fa; b; ; d; e;:e; fgThe �rst two answer sets, S1 and S2 are onsistent and S3 is inonsistent.It is not possible to have an answer set where both b and d are true beauseit will ause the last rule to �re ausing a ontradition. �33



Lparse handles extended programs by transforming the programs into nor-mal logi programs. The rules are otherwise una�eted but for eah negativeatom :a that ours in the program, the rule: a;:a (4.13)is added. Note that this approah di�ers from the semantis desribed above inthat the inonsistent answer sets are automatially rejeted. As this informationis sometimes useful, lparse has a variant behavior that an be initialized withthe ommand line option --allow-inonsistent-answers. With it, a speialatom INCONSISTENT is added to the program that is true whenever the stablemodel ontains omplementary literals:INCONSISTENT a;:a : (4.14)4.8 Partial Models and Disjuntive ProgramsSmodels and lparse now inlude failities to ompute stable and partial mod-els for disjuntive logi programs. However, this funtionality is still quite prim-itive. Disjuntive logi programs are disussed in detail in [1℄ and the theoretialbasis for the partial model expansion is introdued in [5℄.The disjuntive model semantis is enabled by seleting the ommand lineoption --dlp and the partial model expansion by the option --partial. Theexat output of the partial model expansion an be altered with the -r ommandline option.4.8.1 Disjuntive ProgramsA disjuntive rule is of the forma1 j a2 j � � � j an  body (4.15)If the body of a disjuntive rule is true, at least one of the head atomsa1, : : : , an has to be true. A disjuntive logi program is a set of disjuntiverules.The redut PMD of a disjuntive program PD is obtained using the proedurethat was used with normal logi programs. That is, all rules with unsatis�ablenegative literals in the body are dropped as well as all remaining negative lit-erals. A set M of atoms is a disjuntive stable model of PD i� M is a minimalmodel of PMD . Note that PMD may have more than one minimal model.It was easy to �nd the minimal model of the redut of a normal logi program.However, this is not the ase with disjuntive programs. In fat, after we havefound a model for the redut it is still a NP-omplete problem to �nd outwhether it is minimal or not.Beause of this omplexity, pure smodels doesn't handle disjuntive pro-grams orretly. However, you an still solve disjuntive queries by using twointerleaved smodels proesses. The �le example4. in the smodels/examplesdiretory shows how it is done. 34



Example 4.12Consider a disjuntive program PD:Program 4.14a | b :- . :- not d.d :- not .This program has three disjuntive stable models. Either  or d has to bein a model and if  is hosen, we have to add a or b in the model. Thus,the models are: M1 = fdg, M2 = f; ag, and M3 = fb; g. The fourthpossibility, M 0 = f; a; bg is not a disjuntive model sine M2 is a modeland M2 �M 0 so that M 0 is not minimal. �A disjuntive rule of the form (4.15) is very similar to a weight onstraintrule of the form 1 � fa1; a2; : : : ; ang  body (4.16)but there is one subtle di�erene: disjuntive stable models are always minimalwhile there may be non-minimal stable models of weight onstraint programs.For example, if we replae the �rst rule of Program 4.14 with1 f a, b g :- .then fa; b; g is a stable model of the program.4.8.2 Partial ModelsAs we saw in Setion 4.1, an interpretation of a logi program assigns a truthvalue to atoms in the Herbrand base of the program. Eah atom is either trueor false in the interpretation. A partial interpretation is an interpretation thatassigns a de�nite truth value only to some atoms of the base and the rest of theatoms are said to have unknown truth value. Formally, a partial interpretationI of a program P is a pair hT; F i of subsets of the Herbrand base HB(P ) ofthe program suh that T \ F = ;. The atoms in sets It = T , If = F , andIu = HB(P ) � (T [ F ) are onsidered to be true, false, and unknown in theinterpretation.A partial model is a partial interpretation that satis�es all rules of the pro-gram. However, the onept of satisfation has to be re�ned to take into aordthe fat that there are now three di�erent truth values. We impose an order <on truth values so that false < unknown < trueThe truth value I(B) of the body of a rule is obtained by taking minimumof the truth values of the literals in the body and the truth value I(H) of thehead is the maximum of the truth values of the head atoms. A rule is satis�edwhen I(H) � I(B). 35



Example 4.13Suppose that we have a partial interpretationI(H) = hfbg; fdgiSuppose further that we have two rules:a | d :- b, not .d :- a.Now the �rst rule is satis�ed sine I(a) = unknown � I() = unknown.The seond rule is not satis�ed as I(d) = false < I(a) = unknown. �A partial model I that assigns a de�nite truth value to all atoms (Iu = ;)is alled a total model or alternatively a regular model . A total stable model Mof P is a total model that is additionally a minimal model of the redut PM . Apartial stable model M of P is a minimal partial model of PM .We an ompute the partial stable models of a disjuntive or normal logiprogram P by using a translation that maps it into another program Tr(P ) thathas the property that M is a stable model model of Tr(P ) if and only if M is apartial stable model of P .We start the translation by adding a new atom a0 for eah atom a 2 HB(P ).The intuitive meaning of a0 is that it is potentially true. A rule of the form:a1 j � � � j an  b1; : : : ; bm; not 1; : : : ; not l (4.17)is replaed with the rules:a1 j � � � j an  b1; : : : ; bm; not 01; : : : ; not 0la01 j � � � j a0n  b01; : : : ; b0m; not 1; : : : ; not l : (4.18)Additionally, Tr(P ) inludes the rule:a0  a (4.19)for all a 2 HB(P ) so an atom is always potentially true if we know that it istrue.Let M be a stable model of Tr(P ). Then, there exists a partial stableinterpretation N of P that orresponds to M . The truth value of an atom a inN is obtained by the following three rules:1. If both a; a0 2M , then I(a) = true;2. If a0 2M and a =2M , then I(a) = unknown; and3. Otherwise, I(a) = false.The formal proof that this translation works is presented in [5℄.Example 4.14 36



Consider a disjuntive program P :a | b :- not .b :- not b. :- not .The translated program Tr(P ) is:a | b :- not '.a' | b' :- not .b :- not b'.b' :- not b. :- not '.' :- not .a' :- a.b' :- b.' :- .The only stable model of Tr(P ) is fb0; 0g and it orrespond to the partialinterpretation of P where b and  are both unknown and a is false. �Beause the partial model translation introdues a dependeny loop for eahprediate, it is not done for domain prediates. Instead, the ruled'(X) :- d(X).is added for eah domain prediate d.The behavior of the partial model translation an be altered with the -r om-mand line swith. In the �rst alternative (-r 1) the rules of the form (4.19) areleft out. This option is useful when one wants to �nd all possible �xpoints ofthe program.The seond alternative (-r 3) adds onstraints of the forma a0 (4.20)for all a 2 HB(P ) to the program. These ensure that an atom is true alwayswhen it is possibly true.4.9 Computational ComplexityThis setion will appear here when I have time to write it.
37



Chapter 5LanguageThis hapter desribes the Smodels language. Eah di�erent language featurehas its own setion here.5.1 CommentsYou an have omments in Smodels programs. The omment harater is `%'.A omment then lasts util the end of the row.5.2 TermsThere are four di�erent types of terms: onstants, variables, funtions, andranges.ConstantA onstant is either a symboli onstant or a numeri onstant. A sym-boli onstant is a string of letters and numbers whih may also ontainundersores ( ) starting with a lower ase letter, or a sequene of haratersthat is enlosed within double quotes (").The quote haraters are retained in the quoted strings by default, evenif unneessary, and a is di�erent from "a". This behavior an be alteredwith the --drop-quotes ommand line argument.A numeri onstant is an integer. Currently the allowed range for numbersgoes only from�230 to 230. This is due to seriously limited implementationof onstants and will be removed in some later release (see Setion 8).Sample onstants: 0, 1020, ons tant, "quoted onstant".It is also possible to de�ne a symboli onstant to at as an numeri on-stant by adding a onstant delaration (see Setion 5.5). If you add the38



line onst foo = number to your program, from that point on every o-urrene of the onstant foo will be substituted by number . Alternatively,you an use the - ommand line option.In general, you may use an expression that evaluates to a onstant valueeverywhere where you an use onstants, that is, it is legal to use on-struts like:onst double = 2 * foo.VariableA variable is a string of letters and numbers that may also ontain un-dersores starting with an upper ase letterSample variables: X, Time 1.FuntionA funtion is either a funtion symbol followed by a parenthesised argu-ment list or an builtin arithmetial expression. A funtion may be eithera numerial funtion that is atually used to ompute something or it is asymboli funtion of the form foo(a), whih basially just de�nes a newonstant that gets the name foo(a).A numerial funtion may be either built-in internal funtion or a userspei�ed C or C++ funtion that is linked to lparse dynamially (seeSetion 5.7.3).The internal omparison funtions (eq, neq, lt, le, gt, and ge) an beused with both numeri and symboli onstants but the rest of internalfuntions allow only numeri arguments.The use of funtions is explained more fully in Setion 5.7.Sample funtions: X+1, times(X, 5, plus(Y, 1)).RangeA range is of the form:start .. endwhere start and end are onstant valued arithmeti expressions. A rangeis a notational shortut that is mainly used to de�ne numerial domains ina ompat way. A range is expanded by de�ning a new domain prediateand adding all elements of the range to its extension. The range is thenreplaed by a variable that gets its domain from the new domain prediate.For example, a fat a(1..3). is a shortut fora(X) :- int1(X).int1(1).int1(2).int1(3).Ranges an also be used in rule bodies with the same semantis.39



b :- a(1..3).expands tob :- a(X), int1(X).int1(1).int1(2).int1(3).Now b is true if any of a(1), a(2), or a(3) is true.5.3 Atoms and LiteralsStarting from version 2.0 smodels has o�ered support for three extended ruletypes: hoie, onstraint, and weight. Lparse further enhanes this by allowinga rule have an arbitary number of onstraint and weight literals in a rule body.Constraint and weight literals are both alled extended literals. In additionto basi and extended literals, lparse has one further literal type, namely,onditional literal.AtomAn atom is a prediate symbol that is optionally followed by a parenthe-sized list of terms.Sample atoms: foo(X), a, foo.It is possible to give multiple argument lists to an atom. These onstrutsare of the form:a(arguments1; arguments2; � � � ; argumentsn)When multiple argument lists appear in a rule body or in a hoie rulehead (see Setion 5.4 on page 43), a new literal is onstruted for eah list.That is, a rulef a(X;Y+1) g :- d(X;Y).is expanded tof a(X), a(Y+1) g :- d(X), d(Y).In a basi rule head a new rule is onstruted for eah argument list sothat foo(a ; b; ).beomesfoo(a).foo(b).foo().Basi literalA basi literal is either an atom a or its negation not a.40



Beginning with lparse-0.99.57 you have been able to use lassial nega-tions in your programs. The lassial negation :a of an atom a is de-noted by a minus sign that is immedietely before the atom name: -a.The lassial negation extension is enabled by the ommand line option--true-negation.Sample literals: a(X), not b(X).Constraint literalA onstraint literal is of the formlower f l 1, l 2, : : : , l n g upperwhere lower and upper are arithmeti expressions and l1, : : : , ln are basior onditional literals.A onstraint literal is satis�ed if the number of satis�ed literals in thebody of the onstraint is between lower and upper (inlusive). If thelower bound is missing, zero is substituted in its plae and if the upperbound is missing, any number of literals may be true.It is possible to have variables in the rule bounds. For example, thefollowing rule ould be used to ount the length of a path in a graph:length(N) :- N f in path(X,Y) : edge(X,Y) g N,possible length(I).During grounding a onstraint literal is replaed by two basi literals andtwo new rules are added to the program. For example, a rule:h(a) :- 2 f d 1(a), d 2(a), d 3(a), d 4(a) g 3is transformed toh(a) :- int1(a), not int2(a).int1(a) :- 2 f d1(a), d2(a), d3(a), d4(a) g.int2(a) :- 4 f d1(a), d2(a), d3(a), d4(a) g.Here int1 and int2 are new internal prediates. The transformation isdone beause smodels allows only one onstraint per rule and only lowerbounds are examined.Weight literalA weight literal is of the formlower [ l 1=w 1, : : : , l n=w n ℄ upperA weight literal behaves otherwise just like a onstraint literal but eahliteral may be given a di�erent integral weight.The weight literal is satis�ed if the sum of the weights of satis�ed literals inthe rule body is between lower and upper (inlusive). If the lower boundis missing, �1 is substituted.The weights w1, : : : , wn may be any expressions. If there are variables inweight expressions, they must be domain restrited.41



The weights may be given in the weight literal body, or they may bede�ned earlier by global weight delarations. The loal values overridethe global values. If there is neither a global or a loal value, the defaultvalue is used. The default is normally 1 but you an hange it with theommand line argument -w (see Setion 3.1).Negative weights are handled by inverting the literal (a beomes not aand not a beomes a), hanging the sign of the weight, and adding theabsolute value of the weight to the bounds.For example,lower [ a 1=-w 1, not a 2=-w 2 ℄beomeslower+w 1+w 2 [ not a 1=w 1, a 2=w 2 ℄.Conditional literalA onditional literal is of the form:p(X) : q(X)where p(X) is any basi literal and q(X) is a domain prediate. If the ex-tension of q is fq(a1); q(a2); : : : ; q(an)g, the above ondition is semantiallyequivalent to writing p(a1), p(a2), : : : , p(an) in the plae of ondition.For example,q(1..2).a :- 1 f p(X):q(X) g.will be grounded to giveq(1). q(2).a :- 1 f p(1), p(2) g.Semantially the expansion of onditions takes plae after the variablesthat our also in another part of the rule are instantiated. For examplein the programd(1..2).a(X) :- 1 f p(X,Y) : d(Y) g, d(X).the variable X will be �rst instantiated to give the programd(1). d(2).a(1) :- 1 f p(1, Y) : d(Y) g, d(1).a(2) :- 1 f p(2, Y) : d(Y) g, d(2).In the next step the onditions are expanded to gived(1). d(2).a(1) :- 1 f p(1, 1), p(1, 2) g, d(1).a(2) :- 1 f p(2, 1), p(2, 2) g, d(2).42



In pratie, the onditions are expanded as early as possible and if noneof the variables in a ondition our in other parts of a rule, the onditionwill be expanded before anything else is done.It is also possible add many onditions to one literal. For example in theonditional literal:p(X,Y) : q 1(X) : q 2(Y)domain prediate q1 gives values to X and q2 gives values to Y .5.4 Rule TypesThe version 2.0 of smodels added support for three new rule types: hoie,onstraint, and weight rules. In lparse the onstraint and weight rules arehandled by more general onstraint and weight literals that were introdued inthe setion above.Basi ruleA basi rule is of the form:h(X) :- a 1(X), : : : , a n(X), not b 1(X), : : : , not b m(X).If a1(X), : : : , an(X) are in a stable model and b1(X), : : : , bn(X) are not,the head atom h(X) is put also in the model.If the rule has no head, all model andidates that satisfy the rule bodyare disarded.Choie ruleA hoie rule has one of the following two forms:lower f h 1, : : :, h n g upper :- body.lower [ h 1=w 1, : : : , h n=w n ℄ upper :- body.If the body of a hoie rule is satis�ed, the number (or total weight) ofh1, : : : , hn that are true in the model will be between lower and upper ,inlusive.If both bounds are missing, any number of head literals may be inludedin a model. It is then said that the body gives the head atoms a reason tobe in a model, but it doesn't fore them to be in it.For example, the program1 f a, b g .has three stable models, M1 = fag, M2 = fbg, and M3 = fa; bg.It is also possible to use a weight literal as a head. In that ase, the totalweight of the satis�ed literals in it has to be between the bounds.There exists also a speial notation43



h 1 | : : : | h n :- body.that is a shorthand for1 f h 1, : : : , h n g 1 :- body.That is, using |-notation you ge an exlusive or of the head atoms. Also,the notation is used with disjuntive semantis that are explained in Se-tion 4.8.1.Internally, a hoie rule with non-zero bounds will be translated into threerules:f h 1, : : :, h n g :- body.:- upper + 1 f h 1, : : : , h n g, body.:- n � lower + 1 f not h 1, : : : , not h n g, body.This transformation is done beause smodels doesn't allow bounds inhoie rules.5.5 DelarationsThere are eight kinds of delarations in the language: onstant, domain, ex-ternal, hide, funtion, option, show and weight delarations. The delarationsmay our anywhere in the soure ode. The only restrition is that you haveto delare a onstant or a funtion before you use it.All delarations start with a `#' symbol. The old pratie of writing themwithout it is still supported but it is reommended to exlusively use the newonvention sine some future version will drop the support.Constant delarationA onstant delaration is of the form#onst bar = expr.This delares the identi�er bar as being a numeri onstant with the valueexpr that may be any onstant valued expression. It is also possible tode�ne onstants from the ommand line by using the option -. Thereare more about numeri onstants in Setion 5.2.Domain delarationA domain delaration is of the form#domain a(X).The domain delaration above asserts that the variable X should alwaysget its domain from the literal a(X). In pratie, this is implemented byadding a(X) into the tails of all rules where X ours. The literal is addedto all suh rules, no matter whether X would be otherwise restrited ornot. 44



Example 5.1Consider the following program:#domain a(X, Y), b(Z).foo(X, Y) :- not bar(X, Y).bar(X, Z) :- not foo(X, Z).Before the grounding atually takes plae, this program is trans-formed in the form:foo(X, Y) :- a(X,Y), not bar(X, Y).bar(X, Z) :- a(X,Y), b(Z), not foo(X, Z).Note that both a(X,Y) and b(Z) are added to the body of the seondrule. �External delarationAn external delaration has the form#external p(X).where p is a domain prediate. External prediates are used duringgrounding to �nd out possible instantiations of rules depending on thembut they are left out of the atual output.Example 5.2The program P :#external a(X).a(1..2).b(X) :- a(X).is grounded to the following program:b(1) :- a(1).b(2) :- a(2). �External prediates are useful when the program is large and it has to begrounded many times with slightly di�erent extensions for domain pred-iates. The solution is to ground the program one with all possible val-ues for the domain prediates using external delarations and reading thegrounded program in with -g ommand line argument when the orretextension is known.Example 5.3Suppose that the program in Example 5.2 is stored in foo.lp andbar.lp ontains only the fat:a(1).Then, you ould ompute the stable models of foo.lp using bar.lpas the soure for extension of a with the following ommand lines:45



% lparse foo.lp > full grounding% lparse -g full grounding bar.lp | smodelsAnswer: 1Stable Model: b(1) a(1)True �For a more thorough explanation on external and its possible uses, seeSetion 7.4 on page 68.Funtion delarationA funtion delaration is of the form:#funtion foo.This delares the identi�er foo to be used as a numeri funtion throughoutthe program. The user de�ned funtions are desribed in more detail inSetion 5.7.3.Hide delarationA hide delaration has two possible forms:#hide.#hide p(X,Y).The smodels 2.x o�ers a feature where some atoms may be hidden fromthe output. The atoms still a�et the omputation in the usual way butthey are not printed. The internal prediates generated by lparse areautomatially hidden. A hide delaration without arguments marks allprediates as hidden by default and the show delaration an then beused to tell what atoms are inluded in the output.The seond hide delaration above marks all ground instanes of the 2-aryprediate p to be hidden. The arguments of p are used only to distintprediates with di�erent arities from eah other.For example, if the program#hide p(X).p(1..2).p(X,Y) :- p(X), p(Y).is given to smodels as input, the output will be:smodels version 2.16. Reading...doneAnswer: 1Stable Model: p(1,1) p(2,1) p(1,2) p(2,2)TrueOption delaration 46



An option delaration is of the form#option ommand-line-option.This delaration an be used to set lparse ommand line arguments inthe soure ode. This is mainly useful if your program uses some of thesupported translations, for example --true-negation or --partial.Show delarationA show delaration has the form#show p(X,Y).This delaration is the opposite of a hide delaration. It tells lparse thatthe 2-ary prediate p should be shown in the model. This is only usefulwhen all prediates are hidden using an empty hide delaration.Weight delarationA weight delaration has two possible forms:#weight literal = expr.#weight literal1 = literal2.The �rst one delares the default weight of a literal literal to be expr .Any variables ouring in expr must also our in literal . The weights willbe instantiated during grounding. The seond one delares the weight ofliteral1 to be the same as the weight of literal2 that may be de�ned inother part of the program.When a weight is needed for a literal a that doesn't have an expliit weightassigned to it, lparse starts looking for weight de�nitions that it has seenbefore the line in question. Lparse tries to unify a with eah de�nitionand when a math is found, it uses that weight. If no weight de�nitionmathes a, the global default weight (1, if not set with the -w option) isused.For example, in a program#weight p(X,Y) = 1.#weight p(a,Y) = 2.#weight p(a,b) = 3.a :- 2 [ p(a,b)=1, p(a,a), p(b,b) ℄.the weight of p(a; b) is 1 beause the expliit de�nition overrides all globalde�nitions. Lparse then starts looking for weight of p(a; a). It �rst triesto unify p(a; a) and p(a; b), but fails beause a 6= b. Unifying with p(a; Y )sueeds when the variable Y is binded to the value a. Thus, the weightof p(a; a) is 2. Using a similar proess, lparse determines that the weightof p(b; b) is 1.If the weight of a literal is de�ned more than one, only the latest de�nitionis used. For example: 47



#weight p(X) = X.#weight p(2) = 10.a :- 2 [ p(1), p(2) ℄. % weights: p(1) = 1, p(2) = 10#weight p(Y) = Y+5.b :- 2 [ p(1), p(2) ℄. % weights: p(1) = 6, p(2) = 7The weights may be de�ned separately for positive and negative literals. Ifa negative literal doesn't have a mathing negative weight delaration, ituses a orresponding positive one by default. This behavior an be hangedwith the option `--separate-weight-definitions'. For example, after:#weight a = 2.#weight not a = 3.#weight b = 5the weight of a is 2, of not a is 3, and both b and not b have weights 5.However, with the above ommand line argument the weight of not b isthe default 1.5.6 StatementsThe statements are used to speify desired properties of the models. There aretwo kinds of statements, ompute and optimize statements.Compute statementA ompute statement is of the form:ompute number f a 1, : : : , a n, not b 1, : : :, not b m g.Only stable models ontaining a1, : : : , an and not ontaining b1, : : : , 1bmare omputed. The number of generated models is ontrolled by number .If number is 0 or the identi�er all, all models are omputed. The defaultnumber of models is 1.Optimize statementAn optimize statement has four possible forms:maximize f a 1, : : : , a n, not b 1, : : :, not b m g.maximize [ l 1 = w 1, : : : , l n =w n ℄.minimize f a 1, : : : , a n, not b 1, : : :, not b m g.minimize [ l 1 = w 1, : : : , l n = w n ℄.When an optimize statement is given, smodels tries to �nd models withas many (or as few) of the given literals as possible. You may also useweights with these literals and then the model with maximal (or minimal)weight is returned. The optimize statements use braes analogously toonstraint and weight literals; with urly braes the number of true literalsis maximized (or minimized) and with square brakets the weight of trueliterals is maximized. 48



However, the behavior of smodels is not the one that would ome to mind�rst. Namely, smodels �rst searhes a single model and prints it. Afterthat, smodels prints only \better" models. For example, if in the �rstmodel inludes three optimized atoms, only those with four or more arereturned afterwards.If there are many optimize statements, they are onsidered in �xed order,the last one being the strongest. When omparing two modelsM1 andM2the last optimize statement is onsidered �rst. If it gives di�erent valuesfor both models, the rest of the statements are not evaluated at all. Onlyif M1 and M2 tie with respet to the last optimize statement the next onebefore it is used, and so on.5.7 FuntionsThere are two kinds of funtions in lparse, numerial funtions and symbolifuntions. The di�erene is that a numerial funtion is used to omputesome onrete numeri value but a symboli funtion basially just de�nes anew onstant that is the value of the funtion.For example, in a program:d(1..2). e(a ; b).q(X+1) :- d(X).p(f(X)) :- e(X).there are two funtions, X+1 and f(X). Here X+1 is a numerial funtionand its value is omputed during grounding. On the other hand, f(X) is asymboli funtion and only thing that grounding does to it is to instantiate X .The grounded program is:d(1). d(2). e(a). e(b).q(2) :- d(1).q(3) :- d(2).p(f(a)) :- e(a).p(f(b)) :- e(b).The funtions f(a) and f(b) are treated just like onstants by smodels.A numerial funtion has to be delared with a funtion delaration beforethey an be used.5.7.1 Numerial FuntionsNumerial funtions an our in two di�erent roles in rules, either as a termor as a test in a rule body.As a term, a numerial funtion gives a value to an argument of a prediate.During grounding the rule the funtion is alled and the return value is usedas the argument. Internally the funtion is replaed by a new variable and anassign funtion in the rule body.For example, 49



Table 5.1: Lparse internal funtionsFuntion Operator Funtion Operatorplus(X,Y) X + Y lt(X,Y) X < Yminus(X,Y) X � Y gt(X,Y) X > Ytimes(X,Y) X � Y le(X,Y) X <= Ydiv(X,Y) X / Y ge(X,Y) X >= Ymod(X,Y) X mod Y eq(X,Y) X == Yassign(X,Y) X = Y neq(X,Y) X != Yand(X,Y) X & Y xor(X,Y) X ^ Yor(X,Y) X j Y bnot(X) ~Xabs(X) j X j weight(a(X))p(X, Y, X+Y) :- d(X,Y).beomesp(X, Y, Z) :- d(X,Y), Z = X+Y.If we ground the above rule with a variable binding fX=1; Y=2g, the groundrule beomesp(1,2,3) :- d(1,2).As a test, a funtion works as a onstraint for possible variable values. Ifthe funtion returns false, i.e. 0, when alled with a given variable binding, thebinding is disarded. If it returns true, i.e. any value other than 0, the groundrule orresponding to the binding is printed. After the test has been performedsuesfully, the funtion is removed before printing the ground rule.For example, the program:d(1). d(2).q(X,Y) :- d(X), d(Y), X < Y.is grounded to gived(1). d(2).q(1,2) :- d(1), d(2).A numerial funtion has to be delared (see Setion 5.5) before it an beused.5.7.2 Internal FuntionsThere are 17 di�erent arithmetial funtions built in lparse. The internalfuntions are automatially delared unless the -i ommand line option is given.The lparse interal funtions are shown in Table 5.1.There is an in�x operator de�ned for eah internal funtion1. The notationsf(X;Y ) and X Æf Y are interhangeable. In fat, the latter is onverted inter-nally to the former. All internal funtions aept many arguments, so you anall for example plus(X;Y; Z; 2). The operator preedene is shown in Table 5.2.1With the exeption of weight(a(X)). 50



Table 5.2: Lparse operator preedene� (unary), ~�, =, mod+, �==, !=, <, >, <=, >=&, j, ^=Only omparison funtions allow symboli onstants as their arguments andthe others work only for numbers. The symboli onstants are ompared usinglexiographi, that is phonebook, ordering.The funtions and, or, xor, and b not implement the bitwise logial opera-tions.The assign-funtion returns always 1 when the assignment sueeds, so theonstruts like X = Y = 5 don't work like they do in some other languages.The weight funtion is a speial ase that takes a basi literal as its argumentand returns its weight.Example 5.4Consider the program:weight a(X) = X.b(1..4).(X) :- b(X), weight(a(X)) <= 2.d(X,Y) :- b(X), b(Y), weight(a(X)) + weigh(a(Y)) > 4.The extension of  will be f(1); (2)g and the extension of d will befd(1; 4); d(2; 3); d(3; 2); d(4; 1)g. �5.7.3 User-De�ned FuntionsIt is possible to add a user-de�ned C or C++ funtion to lparse. In earlierversions of lparse you had to use the perl sript register to link the funtionsstatially to lparse binaries. The urrent method allows dynami linking ofshared library �les to lparse.Just about every C/C++-funtion an be linked with lparse, but those fun-tions that meant to be diretly alled from logi programs should have theprototype:long foo(int num args, long *args)That is, lparse passes the arguments in an array of long integers with aninteger parameter telling the lenght of the array. The symboli onstants areenoded as indies to a symbol table where the atual strings are stored. The51



numeri onstants an be handled using normal funtions and operators butthe only way to handle symboli onstants is to use the lparse API that isintrodued in the next setion.Lparse uses the normal C onvention of treating value 0 as false and everyother value as true.Before you an use your own funtion, you have to add it to a shared libraryand tell lparse where the library an be found. Lparse searhes for librariesfrom the following diretories:1. A path stored in an environmental variable LPARSE LIBRARY PATH.2. Diretories spei�ed in the �le ~/.lparser.3. A path stored in an environmental variable LD LIBRARY PATH.Lparse library de�nitions may be plaed either in the environmental variableLPARSE LIBRARIES or in the �le .lparser.An example .lparser is:LPARSE LIBRARY PATH = /home/tss/lparse-libsLPARSE LIBRARIES = libfoobar.soIf you have �les foo. and bar. that you want to use with lparse, you anreate the shared library with following steps. (These steps work with g on aLinux system; if you use some other system they may or may not work.)1. Compile the �les into objet �les using the option-fPIC:% g -fPIC -Wall - foo.2. Create the shared library. If your funtions all some library funtions,it will be safest to link these to the library. Here we suppose that foo.uses some funtions de�ned in standard math library:% g -shared -Wl,-soname,libfoobar.so -o libfoobar.sofoo.o bar.o -lm3. Move libfoobar.so to a suitable plae and put a pointer to it into.lparser.There is an example make�le in the lib diretory of the lparse distributionthat an be used as a model for generating your own libraries.The �nal step is to tell lparse that you want to use your own funtions.This is done by adding a funtion delarationfuntion foo.to the program. When a funtion is delared, lparse goes on and tries to�nd the funtion symbol from the libraries. It will pik the �rst math thatit �nds and display an error if no mathes are found. If lparse founds someother external symbol with the same name, suh as a harater array, it will diehorribly trying to jump at the symbol. If you get a lot of segmentation faultswhile using your own funtions, this may be one reason.52



lparse onstant t lparse onstant type(long onstant)int lparse is numeri(long onstant)int lparse is symboli(long onstant)har *lparse get symboli onstant name(long symboli onstant)long lparse get symboli onstant index(har *symboli onstant)int lparse symbol exists(har *symboli onstant)long lparse reate new symboli onstant(har *arg)Figure 5.1: Lparse API funtions5.7.4 Lparse APIThe lparse version 0.99.47 added a programming API that allows user-de�nedfuntions to manipulate symboli onstants. The API funtions are de�ned inthe �le lparse.h that is loated in the lib diretory of lparse distribution.The lparse.h ontains delarations of seven funtions that provide the basionstant handling apabilities. The funtions are listed in Figure 5.1 and theirdesriptions are below. The urrent version of the API doesn't di�erentiate be-tween symboli onstants and symboli funtions. That is, a symboli funtionis internally treated as a oridinary onstant that just happens to have a spei�form.The header �le de�nes an enumeration lparse onstant t to hold the pos-sible types of lparse onstants:typedef enum f LP NUMERIC, LP SYMBOLIC g lparse onstant t;The following funtions are available:lparse onstant t lparse onstant type(long onstant)The funtion lparse onstant type returns the type (LP NUMERIC orLP SYMBOLIC) of the argument onstant .int lparse is numeri(long onstant)Returns true if onstant is a numeri onstant, false otherwise.int lparse is symboli(long onstant)Returns true if onstant is a symboli onstant, false otherwise.har *lparse get symboli onstant name(long symboli onstant)Returns a pointer to the symbol table entry of symboli onstant or NULLif it is not de�ned. As the pointer is to the atual symbol table, don'tmess with it.long lparse get symboli onstant index(har *symboli onstant)Returns the lparse symboli onstant that orresponds to the haraterstring symboli onstant or a speial value LP INVALID CONSTANT if thesymboli onstant is not de�ned.53



int lparse symbol exists(har *symboli onstant)Returns true if symboli onstant is de�ned as a symboli onstant andfalse otherwise.long lparse reate new symboli onstant(har *new string)The funtion stores its argument into the symbol table and returns itssymboli onstant index value. It is safe to add same onstant many timesto the table and all alls will return the same value.Example 5.5The following ode an be used to identify whether a onstant is a symbolifuntion (this example an also be found in the lib diretory of lparsedistribution):/� ap i t e s t .  �� a smal l example onhow the l par se API an be used �/#inlude " lpar s e . h"#inlude < s t r ing . h>/� This funt ion re turns the onstant ' true ' i fi t s f i r s t argument i s a symbol i funt ion ,and ' f a l s e ' o therwise �/long i s s ymbo l i  f un  t i on ( int nargs , long � args )f har � st = 0;i f ( l p a r s e i s s ymbo l i  ( args [ 0 ℄ ) ) fst = lpar s e ge t symbo l i  ons tant name ( args [ 0 ℄ ) ;/� supposes that there i s a ' ( ' in a onstant onlyi f i t a  t ua l l y i s a symbol i funt ion �/i f ( s t r s t r ( st , "(" ) ) freturn l pa r s e  r ea t e new symbo l i  ons tant ( " true " ) ;ggreturn l pa r s e  r ea t e new symbo l i  ons tant ( " f a l s e " ) ;gSupposing that the above funtion was ompiled and linked to liblparse.so.Then, the following programProgram 5.1funtion is symboli funtion.a(is symboli funtion(1)).b(is symboli funtion(foo(1))).(is symboli funtion(bar)).54



Table 5.3: Lparse keywordsompute onstexternal funtionhide maximizeminimize modnot showweightgives the following output:smodels version 2.23. Reading...doneAnswer: 1Stable Model: (false) b(true) a(false)True �5.8 KeywordsLparse has a set of keywords that may not be used for other purposes. Thekeywords are shown in Table 5.3. In addition to keywords lparse uses internalatoms, prediates, and variables. The names of the internal prediates andatoms start with an undersore ( ). The names of internal variables start withI . You should avoid using the internal symbols in your programs, or strangebehavior may result.
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Chapter 6ExamplesThe soure ode of all examples in this hapter is inluded in the examplesdiretory of lparse tarball. More examples an be found from lparse-demo.tgzwhih is available athttp://www.ts.hut.fi/pub/smodels/lparse/.6.1 Node ColoringProgram 6.1% Node oloring problem by Tommi Syrj�anen.% Given a graph given as a set of nodes and edges% find a way to olor the nodes with 'n' olors suh that% two adjaent nodes are not olored with the same olor.onst n=3. % this an be hanged with the%ommand line argument '-'.olor(1..n).% Eah node should have exatly one olor:1 f node olor(N, C) : olor(C) g 1 :- node(N).% Two adjaent nodes have to have different olors::- node olor(X, C), node olor(Y,C), edge(X,Y), olor(C).% Typial ommand line% lparse -d none - n=3 olor2.lp graph | smodels6.2 Logial PuzzlesThe example/puzzle diretory ontains a ouple Smodels programs that solvelogial puzzles that are taken from Raymond Smullyan's exellent Forever Un-deided [17℄. All following programs should be run with the ommand line% lparse file | smodels 0so that all possible answers are generated.56



Knights and KnavesThe Island of Knights and Knaves has two types of inhabitants: knights,who always tell the truth, and knaves, who always lie.One day, three inhabitants (A, B, and C) of the island met a foreigntourist and gave the following information about themselves:1. A said that B and C are both knights.2. B said that A is a knave and C is a knight.What types are A, B, and C?This logial puzzle an be solved with the following program:Program 6.2% Eah person is either a knight or a knave1 f knight(P), knave(P) g 1 :- person(P).% There are three persons in this puzzle:person(a ; b ; ).% Rest of this program models the two hints.% Hint 1:% If A tells the truth, B and C are both knights2 f knight(b), knight() g 2 :- knight(a).% If A lies, both annot be knights.:- knave(a), knight(b), knight().% Hint 2:% If B tells the truth, A is a knave and B is a knight2 f knave(a), knight() g 2 :- knight(b).% If B lies, one of the laims has to be false:- knave(b), knave(a), knight().Martian-Venusian Club, part 1On Ganymede | a satellite of Jupiter | there is a lub known as theMartian-Venusian Club. All members are either from Mars or from Venus,although visitors are sometimes allowed. An earthling is unable to dis-tinguish Martians from Venetians by their appearane. Also, earthlingsannot distinguish either Martian or Venusian males from females, sinethey dress alike. Logiians, however, have an advantage, sine the Venu-sian women always tell the truth and the Venusian men always lie. Themartians are the opposite; the Martian men tell the truth and the Martianwomen always lie.One day a visitor met two Club members, Ork and Bog, who made thefollowing statements: 57



1. Ork: Bog is from Venus.2. Bog: Ork is from Mars.3. Ork: Bog is male.4. Bog: Ork is female.Where are Ork and Bog from, and are they male or female?Program 6.3% All persons are from Mars or Venus1 f martian(P), venetian(P) g 1 :- person(P).% All persons are male or female1 f female(P), male(P) g 1 :- person(P).% All persons either lie or tell the truth depending on% their origins and sex.lies(P) :- person(P), martian(P), female(P).lies(P) :- person(P), venetian(P), male(P).truthful(P) :- person(P), martian(P), male(P).truthful(P) :- person(P), venetian(P), female(P).% A person may not tell the truth and lie at the% same time:- person(P), lies(P), truthful(P).% Persons:person( ork; bog ).% Hints% 1.venetian(bog) :- truthful(ork).:- lies(ork), venetian(bog).% 2.martian(ork) :- truthful(bog).:- lies(bog), martian(ork).% 3.male(bog) :- truthful(ork).:- lies(ork), male(bog).% 4.female(ork) :- truthful(bog).:- lies(bog), female(ork).58



Martian-Venusian Club, part 2The Martians and the Venetians often intermarry, and there are severalmixed ouples in the lub. One ouple approahed the visitor and thefollowing onversation ensued:1. Visitor: Where are you from?2. A: From Mars.3. B: That's not true!Was the ouple mixed or not?The program to solve this one uses the same basi foundations as thepuzzle above and below only the hanged parts are shown.Program 6.4% Persons:person( a; b ).% The persons in this puzzle are married so they an't% have the same sex.:- male(a), male(b).:- female(a), female(b).% The hints.% 1.martian(a) :- truthful(a).:- martian(a), lies(a).% 2.lies(a) :- truthful(b).:- lies(a), lies(b).6.3 PlanningThe largest example program in the example diretory is logistis.lp whihshows a way to enode planning problems as Smodels programs. The programis too big to be inluded in this manual entirely but here are some seleted bits.In a planning problem, we are given a desriptions of the initial state of theworld and the desired goal state. In addition, we are given a set of ations thatan be used to hange the state of world.In logistis domain, we have an ation load truk(Objet, Truk) that isused, naturally enough, to load pakages into truks. The preondition for thisoperation is that the objet and truk are at the same plae and the e�et isthat the pakage will be inside the truk.59



The �rst step in onverting the ation to smodels rules is to add a third ar-gument to it, namely time, to it. Thus we'll use prediate load truk(Objet,Truk, Time) to model the loading.A natural way to enode ations is to use hoie rules, in form:f ation g :- preonditions.If the body of a hoie rule is true in a model, the head may be true in it,but it doesn't have to. Thus, when the preonditions are ful�lled we an eitherperform the ation or deide to do some other ation.The e�ets of an ation are implied by the ation:effets :- ation.The bloking of oniting ations is done by adding a onstraint that saysthat if an ation doesn't hange its own preondition, then the preondition hasto hold also at the next instant:preondition(I+1) :- ation, preondition(I).Using these guidelines we an enode load truk with following rules:Program 6.5f load truk(Obj, Tr, I) g :-at(Obj, Lo, I),at(Tr, Lo, I),objet(Obj),truk(Tr),loation(Lo),time(I).%Effets:in(Obj, Tr, I+1) :-load truk(Obj, Tr, I),truk(Tr),objet(Obj),time(I).hanges(Obj, I) :-load truk(Obj, Tr, I),truk(Tr),objet(Obj),time(I).% As one of the preonditions for load truk(Obj, Tr, I) is% at(Tr, Lo, I) and the operator doesn't hange it, the% truk has to be at the same plae at the next instant.at(Tr, Lo, I+1) :-load truk(Obj, Tr, I),at(Tr, Lo, I),loation(Lo),truk(Tr),objet(Obj),time(I). 60



In addition to the operators we also need a set of frame axioms that take areof those parts of the world that doesn't hange at an time step and that keepthe system in onsistent state:Program 6.6% FRAME AXIOMS% Everything stays at the same plae where it is unless% some ation moves it.at(Obj, Lo, I+1) :-at(Obj, Lo, I),not hanges(Obj, I),objet(Obj),loation(Lo),time(I).% An objet may not be in two plaes at the same time:- 2 f at(Obj, Lo, I) : loation(Lo),in(Obj, Cont, I) : ontainer(Cont) g,objet(Obj),time(I).
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Chapter 7Writing Smodels ProgramsThis hapter ontains some misellaneous topis on writing programs for Smod-els. The �rst setion detains the operation of an Emas major-mode for writingSmodels ode. The two following setions ontain some tips for debugging logiprograms and using parser warnings.7.1 Editing Smodels Programs with EmasThere is a major-mode for writing Smodels programs with Emas. It is de-�ned in �le smodels-mode.el whih is loated int the lib diretory of lparsedistribution.To use the mode you have to opy smodels-mode.el into some diretorythat is mentioned in your load-path Emas variable and add a ommand toload the mode when needed.For example, suppose that you want to use the diretory ~/.elisp for allyour Emas Lisp �les. Then you ould opy smodels-mode.el to that diretoryand add the following ommands to your .emas startup �le:;; First set the load path(setq load-path (ons "~/.elisp" load-path));; Load smodels-mode automatially when needed.(autoload 'smodels-mode "smodels-mode" "Smodels Editing Mode" t);; Use smodels-mode for all files that end with `.lp'.(setq auto-mode-alist (ons '("\\.lp$" . smodels-mode)auto-mode-alist));; Turn syntax highlighting on automatially(add-hook 'smodels-mode-hook 'turn-on-font-lok)Smodels-mode knows how to indent Smodels programs and performs some syn-tax highlighting. All keywords are printed with font-lok-keyword-fae font,62



built-in funtions with font-lok-builtin-fae, and variables with font-lok-variable-fae.You an also run lparse and smodels proesses under Emas with smodels-mode. You an hoose what parser you want to use with the ommand M-xsmodels-set-parser. By default lparse is used. The atual smodels versionthat is used to ompute the models an be set with M-x smodels-set-program.By default, smodels is used. You an set ommand line arguments with M-xsmodels-set-parser-arguments and M-x smodels-set-program-arguments.There are four di�erent ommands that an be used to start smodels pro-esses:� M-x smodels-ompute-buffer grounds the urrent bu�er with hosenparser, sends the results to a smodels proess, and prints the stable modelsin bu�er *smodels*.� M-x smodels-ompute-files works like smodels-ompute-buffer butit allows you to proess programs that are stored in multiple �les. Whenyou use this funtion the �rst time it asks what �les you want to inludewith the run. If you want to hange the �le list later, you an do it withommand M-x smodels-set-file-list.� M-x smodels-parse-buffer sends the urrent bu�er to the parser anddisplays the output in the bu�er *smodels*. By default, the ommanddisplays its output in plain text format but if you inlude an argument(i.e. if you invoke it with C-u M-x smodels-parse-buffer), the outputis in smodels internal format.� M-x smodels-parse-files grounds many �les.The smodels-mode keymap binds above funtions to following keys:� C- C-b is binded to smodels-parse-buffer� C- C-f is binded to smodels-parse-files� C-t C-b is binded to smodels-ompute-buffer� C-t C-f is binded to smodels-ompute-files7.2 Debugging Smodels ProgramsSo now you have written a large logi program, but only thing that smodelswants to answer is False. Finding problems within logi programs may betedious and frustrating sine a small typo may ruin the whole program. It isnot possible to give a debugging proedure that works every time, but here aresome things that I have found helpful.63



� Make sure that all onstants begin with a lower ase letter and thatall variables begin with an upper ase letter. I one spent a ouple ofhours searhing for a mysterious bug in a planning model that seemed toome and go. The ause for the bug was that in one rule I had writtenat(tr, Lo, I) instead of at(Tr, Lo, I). When there was only onetruk (namely, tr) in the model, everything worked well, but when therewere more truks a plan ouldn't be found beause only one of the truksould move.� Comment rules out one at a time to see whih rule auses the ontradi-tion. Of ourse, if the problem is that some neessary rule is missing, youannot �nd it this way. It is also possible that the rule ommented outworks orretly, but some other inorret rule onits with it.� Make the domains as small as possible. If your program works well whenthere is only one item of some type and it fails when there are more ofthem, it is quite likely that some rule demands that if something is true forone item, it is true for all of them. For example, I one tried to split theprediate drive truk(Tr, From, To, I) into three smaller prediates:drives(Tr, I), moves from(Tr, From, I), and moves to(Tr, To, I).The rule that I wrote for moves to was of the form:moves to(Tr, To, I) :-truk(Tr),loation(To),time(I),drives(Tr, I).Grounding transformed this rule into form:moves to(tr, a, 1) :- drives(tr, 1).moves to(tr, b, 1) :- drives(tr, 1).That is, the rule demanded that if a truk drives somewhere at all, it mustat the same time drive to eah possible loation.� Use ompute statements to test what ombination of atoms ause ontra-ditions. Start with an empty ompute statement and if smodels �nds amodel, ontinue by adding some atoms that should be in the model to seewhere the things go wrong.For example, when debugging my planning enoding, I used ompute state-ments of the formompute 1 f load truk(pt,tr,1), drive truk(tr,a,b,2),unload truk(pt,tr,3), at(pt,b,4) g.after adding eah operator to hek that the program ould �nd at leastsome legal plan.� Use the -t option to see what exatly lparse does to your program.Beause the ground programs are often quite big you should omment outeverything that in your opinion is not related to the bug.64



� Use the parser warnings. The warnings are detailed in the next setion.� You an also try to ompute the partial models of the program using theopition --partial. This may sometimes give some hints on where theproblem is loated.For example, a programa :- b.b :- not a.doesn't have any models sine not a implies a, whih auses a ontradi-tion. The problem here is that a not was forgotten from the �rst rule.Using the option --partial we get the following result:% lparse --partial foo | smodelssmodels version 2.25. Reading...doneAnswer: 1Stable Model: a' b'TrueThe atoms a0 and b0 are true in the partial model but a and b are not,suggesting that the problem is somehow related to a and b atoms, sinethey are only possibly true.7.3 Parser WarningsLparse an detet some possible errors from its input. The heks are mostlyaimed to detet onstruts that have aused trouble earlier1. Most of the on-struts are sometimes useful, but in wrong plaes they have aused a lot ofdebugging. If you want to use the warnings e�etively, you should know whatauses warnings and why.-W arityArity detets ases when a prediate symbol has two di�erent arities insame program. This warning is mainly intended for athing bugs whereyou forgot an argument from a prediate. For examplep(a).p(a,a).auses the warning2: Warning: prediate 'p' is used with 2 arguments at line 2,while it is also used with 1 argument at line 1.There are ases when when it is useful to have many di�erent arities forsame prediate. For example, you ould want to say something like1If you are sometimes bitten badly by something you think lparse should detet automat-ially, please send me an email about it and I'll try to inorporate a new warning for it inlater releases. 65



goal :- goal(I), time(I).to say that it doesn't matter when the goal is found. Of ourse, in manyof these ases it would be better to use di�erent prediate symbols.-W extendedExtended detets general problems with extended rules. This is a warn-ing that should be enabled nearly always. At least I haven't found anylegitimate use for the onstruts that trigger this warning.Currently, extended warns about ases where you have expliitly de�nedweights in plaes where they don't have any e�et. Most often this happensbeause you have used urly braes instead of brakets.For example,a :- 2 f b = 3, not  = 2 g.gives the warning1: Warning: weight defined for literal 'b' in a onstraintrule.1: Warning: weight defined for literal 'not ' in a onstraintrule.Here the �x is to replae `f' and `g' with `[' and `℄ '.-W libraryLibrary auses a warning in two ases: if you have de�ned a library �lethat doesn't exist in .lparser or if you delare a funtion two times.-W similarSimilar detets ases where you might have misspelled the initial letterof a onstant or variable. For example, in the programa(1..5).b(3..7).(I) :- a(I), b(i).the variable I was misspelled in the literal b(i) so the domain of theprediate (X) is empty instead of (3..5) as intended. If the warningsimilar is enabled, lparse prints:3: Warning: onstant 'i' is similar to variable 'I'(other ourrenes of 'i' are not heked)Lparse warns only the �rst possible typo that it sees.This warning is quite often a false alarm, sine there are many reasonswhy a program would have similar names for onstants and variables.However, enabling this warning athes some of the most annoying bugsin logi programs. 66



-W unsatUnsat is another option that an ath hard-to-�nd typos. Given thisoption lparse warns if there is some prediate symbol that an't be satis�edbeause it doesn't our in a head of any rule. This option is mainlyintended to �nd out ases where you have misspelled a prediate. Forexample, in the programonst max time = 10.time(1 .. max time).f ation(I) g :- preonition(I), time(I).preondition(I) :- time(I).the �rst non-trivial rule is probably trying to say that an ation is pos-sible only if its preondition is true, but the prediate was misspelled.Sometimes these errors are a pain to �nd and orret. Using warningunsat lparse prints:3: Warning: prediate 'preonition/1' doesn't our in any rulehead.This option is similar to the one above in that there are many ases whereit is not an error to have some unsatis�able prediate in the program. Forexample, in the program,a :- not b, enable a.b :- not a.we want that a is not in any model unless we spei�ally allow it by addingenable a as a fat into the program.-W weightWeight prints a warning if you use the default weight of a literal in someweight rule. Default weights are very often useful but if you want to de�neweight expliitly for eah literal, you an set this option to ath typos inglobal weight de�nitions. For example, you might have programe(1..3).weight (1) = 10.weight (2) = 15.weight d(3) = 20.a :- 30 [ (X) : e(X) ℄.Here the idea is, that a should be true if the total weight of true (X)atoms is more than 30. However, the last weight de�nition was misspelledso that the weight of (3) is the default 1 instead of 20.Given the option -W weight lparse warns:5: Warning: default weight used for literal '(3)'-W errorError auses lparse to treat all warnings as errors.67



There are three options that an be used to set more than one warning agat a time:� -W all enables all warnings.� -W syntax sets arity, extended, and weight.� -W typo sets similar and unsat.7.4 Handling BIG programsYou sometimes meet problems where the smodels �nds the stable models in fewseonds but lparse takes 20{30 seonds (or even more) to ground the problem.If these are isolated ases, the problem is not severe. On the other hand, if youwant to alter the ompute statements just a bit or tweak the domain prediates,having to ground the whole program every time an be quite a nuisane.This problem an be partially solved using external delarations and theommand line option -g. The option allows you to read in a previously groundedprogam and add new rules to it.In this setion we onsider three ases that our in pratie:1. we don't have to hange the atual grounded program but we want tohange the ompute statement;2. there's a domain prediate whose extension is not available during ground-ing but we know what is the largest possible extension; and3. we have an existing program and we want to enlarge the extensions ofdomain prediates to get more rules.The seond ase ours for example in the on�guration management problem;we know that there's a set of omponents that the user an hoose but we don'tknow what the atual hoies will be for eah on�guration task beforehand.An example of the third ase ours in planning problems where we may wantto inrease the number of time steps if a plan an't be found.For the rest of this setion we will examine the program test.lp:Program 7.1a(1 .. max a).b(X) :- a(X), not (X).(X) :- a(X), not b(X).7.4.1 Altering the Compute StatementSo, you have now written test.lp and you want to test it out with severaldi�erent ompute statements without having to ground the program again eahtime.First step is to ground the program the �rst time:68



% lparse - max_a=2 test.lp > test\_outputThis ommand grounds test.lp and stores the output in the �le test output.The argument - max a=2 sets the extension of a to fa(1); a(2)g.Next step is to write a soure �le ompute.lp that ontains the omputestatement:ompute f b(1) g.Now you an �nd all models of Program 7.1 with the ommand line:$ lparse -g test output ompute.lp | smodels 0The output of the ommand is:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) (2) a(1) a(2)Answer: 2Stable Model: b(1) b(2) a(1) a(2)FalseChanging the ompute.lp toompute f b(1), b(2) g.you will get only one model, as expeted:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) b(2) a(1) a(2)FalseNow, with all this suess you might want to simplify the ompute statement abit and hange it to the form:ompute f b(X) : a(X) g.However, quite surprisingly the answer is not the same as it was to the earlierquery! Instead of having only one model ontaining b(1) and b(2), you will getall four models of Program 7.1:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) (2) a(1) a(2)Answer: 2Stable Model: b(1) b(2) a(1) a(2)Answer: 3Stable Model: (1) b(2) a(1) a(2)Answer: 4Stable Model: (1) (2) a(1) a(2)FalseWhat happened here? The explanation lies in the fat that one a rule isgrounded its struture is lost. There is no onnetion from the grounded rule69



to the original non-ground rule that generated it. Similarily, the knowledge ofdomain prediates and their extensions is lost.Lparse �rst read the ground program in, reognizing and storing the atomnames in the proess. Then it simply passed the rules, unmodi�ed, to smodelsand started to read in ompute.lp and proess. As it didn't give any de�nitionsto the prediate a=1, the ondition in the ompute statement was expanded tothe empty set of literals that didn't onstraint the models in any way.In theory it would be possible to onstrut the domains from the groundedprogram but this would ause other problems:1. it is possible that the program was originally grounded with -d none andthere are atually no domain prediates left at all; and2. omputing domains would make it impossible to inrementally ground aprogram as all rules would need to be grounded for the old domains aswell as the new ones.7.4.2 Restriting the Extensions of Domain PrediatesIn the seond senario you want to alter the domains of domain prediates andyou have the advantage of knowing the maximal extensions for eah prediate.In terms of Program 7.1, you would know that there were at most max a in-stanes of a(X) but you didn't know whih ones are neessary.These situations an be handled with the external delarations. We startby modifying test.lp a bit:Program 7.2external a(X).a(1 .. max a).b(X) :- a(X), not (X).(X) :- a(X), not b(X).We an now hek with the -t option what happens to the program:% lparse -t - max_a=2 test.lp(1) :- a(1), not b(1).(2) :- a(2), not b(2).b(1) :- a(1), not (1).b(2) :- a(2), not (2).As we see, lparse reated a rule for eah possible binding of a(X) didn't inludethem as fats in the program. Now we an speify the extension of a in a separateprogram a def.lp:a(1).We an now ombine a def.lp with the test output generated as in theprevious setion to get: 70



% lparse -g test_output a_def.lp | smodels 0smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) a(1)Answer: 2Stable Model: (1) a(1)FalseNote that you annot use a hide delaration on a prediate that is delaredto be external. The reason for this is that one you have thrown the nameaway, only thing that is left is the numerial index of the atom and it isn'tpossible to assoiate it to its original representation.If you really wish, you an read more than one grounded program in with-g swithes. However, this will probably ause problems as di�erent programsmay have used the same numerial index for di�erent atoms. Lparse notiesand gives an error message for many of these ases but if there are hidden orinternal atoms, it is very likely that the programs will mix together inorretly.So use multiple -g options only if you are absolutely sure that the atom listsare idential for both programs.7.4.3 Enlarging the Extensions of the Domain PrediatesIn the third senario we have grounded the program but we want to add moreinstanes of domain prediates to it. This an be done most onveniently whenusing numeri domains but the same priniples hold also for symboli domains.Again, we start by modifying test.lp:Program 7.3a(min a .. max a).b(X) :- a(X), not (X).(X) :- a(X), not b(X).First we ground the program with the initial values of domain prediates:% lparse - min_a=1 - max_a=2 test.lp > test_outputSuppose that we now want to inrease the maximum value for a to 3. We an dothat by reading in the grounded program, setting the minimum and maximumvalues to 3 and grounding the original program again:% lparse -g test_output - min_a=3 - max_a=3 test.lp > new_output% smodels 0 < new_output7.4.4 Haking Bits and Piees Together by HandIf the grounded program is suÆiently big, just running it through lparse antake too muh time as eah atom has to be individually proessed. In thoseases you may have to roll up your sleeves and do some manipulation diretly71



to the grounded program. When doing this, you may �nd it helpful to readSetion B where the internal smodels 2.x format is explained.There is one ommand line option, --atom-file that an be used to dividethe lparse output into two parts: the rules and the rest stu�. Given theommand line% lparse --atom-file atoms program.lplparse prints the ground rules of program.lp to standard output and sendsthe symbol table and ompute statement to the �le atoms.For example, we an extrat the symbol table of Program 7.1 with the om-mand line:% lparse --atom-file atoms - max_a=2 test.lp1 1 1 1 21 3 1 1 41 2 1 1 11 4 1 1 31 5 0 01 6 0 0The rules are in smodels internal format. The most interesting rules for hakingaround are the last two rules. Rules of the form:1 n 0 0denote that the atom number n is a fat in the program (i.e., there's a basirule with n as the head and an empty body in the program).After the preeeding ommand line the atoms �le looks like this:1 (1)2 b(1)3 (2)4 b(2)5 a(1)6 a(2)0B+0B-01The �rst part is the symbol table giving the representation for eah atom. Thepart after B+ ontains the atoms that have to be in a model (the zero designatesthe end of this part), part after B- ontains the negative ompute statementand the �nal line gives the desired number of models.The easiest way to modify grounded programs by hands is to ground it withexternal delarations, read in the symbol table and ompute statement, andadd some of the external atoms as fats to the program.72



7.5 Misellanous TipsThis setion ontains a few misellanous tips that an help in writing Smodelsprograms. Most of this stu� is also mentioned elsewhere in the manual, but Ithought that it would be nie to ollet them to one plae. This setion willprobably inrease in size in the future revisions when more things ome to mymind.The -t optionThe -t is probably the most important lparse ommand line option asyou an use it to see what atually happened to your program when itwent through lparse.The -d optionThe seond most important option is -d none that simpli�es the outputby leaving out the domain prediates. It also speeds smodels a little.Hide delarationsAnother way how you an get simpler models is to use hide delarationsliberally. Postproessing the answer is muh easier when you don't haveto worry about some hundreds of uninteresting atoms.Using a prediate as its own onditionYou may use a domain prediate as its own ondition in onstraint andweight literals. For example, you might want to say that a graph is big ifthere are more than 100 edges:big graph :- 101 f edge(X,Y) : edge(X,Y) g.
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Chapter 8Future DevelopmentI have a ouple of ideas that will probably be inluded in lparse some day.They inlude:� Extended support for data types. I vision system like one that is used inthe programming language Sheme, that is, the user may freely mix normalintegers, oating point numbers, and bignums and the system takes areof rest. However, as this requires rewriting of quite large parts of lparseode this will not happen very soon.� Some sort of uni�ed method for setting attributes for prediates, like mark-ing them hidden, setting weights, and like. This feature would prevent\keyword-pollution" that has been threatening lparse lately. The featurewill be implemented in suh way that it will be easy to onvert urrentprograms into new format automatially.� Possibility of using prediates that our as head of a speial rule as do-main prediates.If you have some suggestions or if you found a bug in lparse, please sendemail it for me (tommi. syrjanen�hut.�).
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Appendix ASmodels APIThis setion ontains a brief overview of the smodels programming API. TheAPI is a library interfae that allows a C++ program to onstrut logi programsand ompute their stable models. Unfortunately, the urrent interfae is quiteunintuitive and there's no easy way of using the funtionality of lparse withit, so in pratie only ground programs an be handled onveniently. However,the integration of these funtionalities will be added in a future version and thelibrary interfae will be leaned.A.1 Installing and Using the APIBefore you an use smodels as a library you have to ompile it as suh. Thisan be ahieved by typing:% make libin the smodels soure diretory. The library build proess uses GNU libtoolthat should be installed on the system. The ommand:% make libinstallwill then install the libraries to a path that is spei�ed in the Makefile.The default path is /usr/loal/lib. The ommand doesn't install the header�les anywhere, so they should either be opied to a suitable loation by handor the programs should be ompiled with the `-I' ompiler option. The mostimportant header �les are listed in Figure A.1.If the ompiler and linker an �nd the header �les and the libsmodels.la�le, respetively, you an link the library to your programs in the usual way,using the `-lsmodels' argument to instrut the linker:% g -o foo -I/smodels/header/path foo. -lsmodelsThe smodels example diretory ontains several examples on API use.
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A.2 Header FilesThis setion goes through the �ve most important header �les and presentsimportant lasses and methods that are de�ned in them. However, this is notintended to be a omplete referene but it is more like a ookbook of usefulstu�.A.2.1 defines.hThe most important thing in the header �le defines.h is the de�nition ofdi�erent rule types:typedef enum fENDRULE,BASICRULE,CONSTRAINTRULE,CHOICERULE,GENERATERULE,WEIGHTRULE,OPTIMIZERULEg RuleType ;The meaning of di�erent rule types an be best explained by showing theorresponding logi program segments.ENDRULEAn ENDRULE is not a onrete rule but it is used as a plaeholder beforethe atual rule type is deided. You don't have to worry about it.BASICRULEA basi rule is a normal logi programming rule that doesn't ontain anyonstraint or weight literals. For example, a rulea :- b1, b2, b3, not 1, not 2, not 3.is a basi rule.CONSTRAINTRULEA onstraint rule has a basi literal as its head and its tail is one onstraintliteral with only a lower bound. For example, the ruleapi.h Funtions for reating logi programsatomrule.h De�nitions of atoms and rulesdefines.h General de�nitionsstable.h Funtions for reading programs from �lessmodels.h Funtions for omputing stable modelsFigure A.1: Important smodels header �les76



a :- 2 f b1, b2, b3, not 1, not 2, not 3 g.is a onstraint rule.CHOICERULEA hoie rule has a onstraint literal with no bounds as its head and thebody has only basi literals:f a1, a2, a3 g :- b1, b2, b3, not 1, not 2, not 3.GENERATERULEGenerate rules are not used anymore sine their semantis ouldn't bede�ned in a nie way.WEIGHTRULEA weight rule is otherwise similar to a onstraint rule but every literal inthe tail should have an expliit weight de�ned for it. For example,a :- 2 [ b1=1,b2=2,b3=3,not 1=1,not 2=2,not 3=3 ℄.OPTIMIZERULEAn optimize rule handles minimize and maximize statements. However,only minimization is expliitly modeled and maximization has to be doneby negating all literals in the rule body. Also, every literal in the rulebody needs a weight de�nition for it.A.2.2 api.hThe header �le api.h ontains the lass Api that an be used to reate andmanipulate logi programs. The lass has the following methods:ConstrutorThe onstrutor of the Api lass is:Api ( Program � pr ) ;The lass Program is de�ned in the header program.h and it is not ne-essary to know about its internal details to be able to use the API. Theonly thing that you need to ensure is that an Api has a valid pointer touse. In pratie, most often you want to use a program that is tied to aninstane of the Smodels lass that will be presented below. So an Api isusually reated using the following ommands:Smodels smodels ;Api api (&smodels . program ) ;You'll get a segmentation fault if the pointer is not valid, so it is not oneof those hard-to-detet bugs.DestrutorThe destrutor of the lass is simply:virtual ~ Api ( ) ; 77



and it doesn't do anything speial.Creating RulesThe rules are reated using the following three methods:void beg in ru l e ( RuleType type ) ;void add head ( Atom � a ) ;void add body ( Atom � a , bool pos ) ;void add body ( Atom � a , bool pos , Weight w) ;void end ru le ( ) ;The possible rule types are desribed in the above setion. When usingall other rule types but CHOICERULE you may add only one head to arule. The pos argument to an add body all deides whether the literal ispositive or negative.Example A.1The rulea :- b, not .ould be reated withapi . beg in ru l e (BASICRULE) ;api . add head ( a ) ;api . add body ( b , true ) ;api . add body (  , false ) ;api . end ru le ( ) ;supposing that the Atoms a, b, and  have been de�ned aordingly.�Setting boundsThe bounds for onstraint and weight rules an be de�ned using the fol-lowing two funtions:void s e t a t l e a s t body ( long ) ;void s e t a t l e a s t w e i g h t ( Weight ) ;Currently the type Weight is de�ned with a typedef:typedef unsigned long Weight ;Note that both of these funtions have to be alled before end rule().Creating and Manipulating AtomsThere are �ve funtions that an be used to reate and manipulate atoms.virtual Atom � new atom ( ) ;void set name ( Atom � a , onst har � name ) ;Atom � get atom ( onst har � name ) ;void set ompute ( Atom � a , bool in model ) ;void reset ompute ( Atom � a , bool in model ) ;78



The new atom() funtion reates a new atom and returns a pointer to it.The atom doesn't have a name assigned to it and it has to be set with theset name() funtion. Note that you have to all the remember() funtionbefore you an de�ne names. If you know a textual representation of anatom, you an get a pointer to it with the get atom funtion. Note thatget atom returns NULL if no suh atom is de�ned.The two last funtions are used to de�ne the ompute statement. A state-ment set ompute ( a , true ) ;asserts that the atom a has to be true in the models. Correspondingly,set ompute ( a , false ) ;asserts that it must be false. If neither statement is given, the atom maybe true or false. If both are given, the result is an immediate ontradition.The last funtion an be used to remove an atom from the ompute state-ment. The boolean argument is used to indiate whether the atom isremoved from the positive or the negative ompute list.Example A.2Suppose that you want to de�ne an atom a and demand that it has tobe true in all models. Then you an do it with the program snippet:api . remember ( ) ;Atom � a = api . new atom ( ) ;api . set name ( a , "a" ) ;api . set ompute ( a , true ) ; �Handling Atom NamesThere are two funtions that ontrol whether atom names are allowed ornot: void remember ( ) ;void f o rge t ( ) ;You an all remember() when you want to use names for atoms andforget() when you want to get rid of them.Misellanous Funtionsvoid opy ( Api � ap ) ;void done ( ) ;The funtion opy() generates a new opy of the Api that is given as theargument. The funtion done() is alled when all rules of the programhave been onstruted. This is used to signal the Api lass that it annow reate the internal data strutures for the program. You an't addnew rules or atoms to an Api after the done() all.79



The following ode example is based on the �le example. that is in theexamples diretory of the smodels distribution.Example A.3We will reate the Api representation of the simple program:a :- not b. b :- not a. ompute a .The resulting C++ ode is:#in lude " smodels . h"#in lude " api . h"int main ( )f Smodels smodels ;Api api (& smodels . program ) ;// Keep trak of atom namesapi . remember ( ) ;// Define the atomsAtom � a = api . new atom ( ) ;Atom � b = api . new atom ( ) ;api . set name ( a , "a" ) ;api . set name ( b , "b" ) ;// de f ine the ru le a :� not bapi . beg in ru l e ( BASICRULE) ;api . add head ( a ) ;api . add body ( b , false ) ;api . end ru le ( ) ;// and b :� not a .api . beg in ru l e ( BASICRULE) ;api . add head ( b ) ;api . add body ( a , false ) ;api . end ru le ( ) ;// ompute statementapi . set ompute ( a , true ) ;// s i gna l the endapi . done ( ) ;g �
80



A.2.3 atomrule.hThe header �le atomrule.h ontains the de�nitions of the lasses Atom andRule. Both ontain lots of internal stu� that is not neessary for using the API.However, the Atom lass ontains few useful methods and attributes:ConstrutorThe onstrutor is de�ned as:Atom ( Program � p ) ;The argument p is a pointer to the program where the atom ours. Youshouldn't have to reate atoms diretly as it is better to use the new atommethod of the Api lass.NameThe name of an atom (if de�ned) an be obtained with the method:onst har � atom name ( ) ;Truth valueThe truth value of an atom in a stable model is stored in two attributes:bool Bpos : 1 ;bool Bneg : 1 ;The variable Bpos is true when the atom is in a stable model and Bneg istrue when the atom is not in the model. If both are false, then the atomis neither true or false. Note that this may not our in normal use.Compute statementThe following two attributes ontrol whether an atom is in the omputestatement: bool omputeTrue : 1 ;bool omputeFalse : 1 ;You an also use the set ompute method of the Api lass to do this.A.2.4 smodels.hThe header �le smodels.h ontains the de�nition of the lass Smodels that im-plements the atual omputation of stable models. The most important methodsof the lass are:ConstrutorSmodels ( ) ;The onstrutor doesn't take any arguments.81



InitializationAfter the rules of a logi program have been generated using the Api lassthat is tied to a Smodels instane, the omputation has to be initializedwith the initialization funtion:void i n i t ( ) ;ComputationThe stable models are omputed with the model funtion.int model ( bool look = true , bool jump = false ) ;The funtion returns 1 if a model is found and 0 if there are no moremodels. Suessive alls return all models of the program. For example,the ode snippet:while ( smodels . model ( ) ) f// do somethinggan be used to generate all stable models.The arguments to the funtion ontrol whether lookahead heuristis isused and whether bakjumping tehniques are enabled. Lookahead helpsin most programs so it is usually a good idea to leave it on. However,the algorithm is quadrati and with programs that have \easy" struturemay be slower with it. Bakjumping is sometimes worthwile but usuallyit osts more than it helps so it is o� by default.Examining ModelsAfter a model has been omputed, it an be printed with the funtionvoid printAnswer ( ) ;If you want to go through the atoms one at a time, you an do it by goingthrough the atom list of the Program omponent using the following odesnippet:Node � nd = smodels . program . atoms . head ( ) ;for ( ; nd ; nd = nd�>next ) fi f ( nd�>atom�>Bpos ) f // the atom is true// do somethingg else i f ( nd�>atom�>Bneg ) f // the atom is f a l s e// do somethingggResetting the ComputationThe funtion 82



void revert ( ) ;undoes all hanges that have been done after alling init(). In partiular,it will destroy all baktrak information so the next model() all will again�nd the �rst model. This all is useful when you want to use many omputestatements.Misellanous BitsThe next funtions may be useful if you want to do something speial withthe logi program. They are alled by the above funtions but sometimesit may be useful to all them independently.void setup ( ) ;void setup with lookahead ( ) ;These two funtions simplify the program by �rst omputing a dedutivelosure of the rules and then dropping all unsatis�able atoms and rulesfrom it. The latter funtion also does one round of lookahead examination.bool  o n f l i  t ( ) ;The onflit() funtion heks whether a ontradition is found. Also,if optimize statements are used, this funtion heks whether the modelandidate is better than the urrently best found. Note that this funtionlears the onit ag so you'll have to be areful with it.void lookahead ( ) ;bool l o okahead no heu r i s t i  ( ) ;void h eu r i s t i  ( ) ;The two lookahead funtions hoose what literal should be added to themodel andidate. The index number of the hosen atom is stored intothe variable hi index. If the best hoie is a positive literal, the booleanvariable hi is positive is set to be true, otherwise it is set to false.void expand ( ) ;The funtion expand() omputes the dedutive losure of the atoms whosetruth value is known.int wel l founded ( ) ;This funtion omputes and prints the well-founded model of the program.void setToBTrue ( Atom � a ) ;void setToBFalse ( Atom � a ) ;These two funtions an be used to set truth values of atoms diretly.Note that usually it is better to set the ompute statement, instead.
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A.2.5 stable.hThe header �le stable.h ontains the lass Stable that an be used to readlogi programs from �les. The programs should be stored in smodels internalformat that is explained in Setion B. The important methods are:ConstrutorThe onstrutor is simplyStable ( ) ;Reading programsLogi programs an be read with the methodint read ( istream &f ) ;The argument f should be bound to the �le storing the program.A.2.6 ExampleThis setion ontains an example API funtion that an be used to omputepartial models of logi program, not in the sense of Setion 4.8, but in the sensethat it will �nd a partial model andidate that an possibly be extended to afull stable model. This kind of funtion may be useful when the program islarge and we want to onstrut the model interatively.For onveniety, this funtion is added to the Smodels lass, but it might beused also outside it.bool Smodels : : pa r t i a l mode l ( )f // ontinue as long as there are po s s i b l e modelswhile ( ! f a i l )f // ompute the dedut ive  l o sure of// the urrent pa r t i a l modelexpand ( ) ;i f (  o n f l i  t ( ) ) // is the s i t u a t i on ons i s t en t ?baktrak ( true ) ;else i f ( overed ( ) )return true ; // a f u l l modelelse i f ( ! l o okahead no heu r i s t i  ( ) )return true ; // a pa r t i a l modelgreturn false ; // no models l e f tgThis funtion would then be used like:84



while ( 1 ) fi f ( par t i a l mode l ( ) ) f// proess the pa r t i a l model and po s s i b l y ask// the user how the model should be extended .// the s e l e  t i o n s an be expressed using// setToBTrue ( atom ) and setToBFalse ( atom)//  a l l s . A l t e rna t i v e l y , you an use the sequene// h e u r i s t i  ( ) ; hoose ( ) ;// to use smodels ' s h e u r i s t i  s .g else f// pr int some d i a gno s t i  sbaktrak ( true )gg
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Appendix BSmodels Internal FormatThe language that smodels 2.x aepts is muh simpler than the one aeptedby lparse. During grounding lparse transforms the omplex rules to thoseaepted by smodels. There are four di�erent rule types: basi rules, onstraintrules, hoie rules, and weight rules.Additionally, the minimize statements are internally represented by theirown rule type. The maximize statements are hanged into minimize statementsby negating all literals in them.Basi rules are the normal rules that don't use any extended features. Con-straint rules orrespond to lparse rules of the forma :- 2 f b, , not d g.hoie rules have the formf a, b,  g :- d, e, not f, not g.and weight rules have the forma :- 2 [ b=1, =2, not d=3 ℄.In all ases there may be only one speial onstrut in one rule and thereare only lower bounds for onstraint and weight rules.Internally smodels uses integers as atoms and the atom names are stored ina separate symbol table. The smodels expets to read �rst the atual rules ofthe program, next the symbol table, and �nally the ompute statement. Thedi�erent parts are separated by a line that has only a `0'.The di�erent setions are best introdued by an example. Consider thefollowing program:Program B.1a :- not b.b :- not a.:- b.ompute f a g.The internal format for this program is:86



1 2 1 1 31 3 1 1 21 1 1 0 302 a3 b0B+20B-101The �rst part of the listing onsists of the the rules of the program:1 2 1 1 31 3 1 1 21 1 1 0 30The �rst number denotes the rule type. All of the rules are basi rules so thenumber is one in all ases. The next number identi�es the head of the atom. Inthis ase, the atom a is represented by 2 and the atom b by 3. The atom number1 is an internal atom named false that is true when a model andidate shouldbe rejeted.Next omes the body de�nition. The �rst number is the total number ofliterals in the body and the seond one is the number of negative literals. Therest of the line ontains the numbers of the literals, with negative ones being infront. The line with just 0 signals the end of the rules.The seond part is the symbol table ontaining the atom de�nitions:2 a3 b0If an atom is left out the symbol table, it is onsidered to be a hidden atomand it is not printed in the model. In this example, the �rst atom is hidden.The third part ontains the ompute statementB+20B-101After B+ omes the positive ompute statement, that is, a list of atoms thatshould be true in the model. After B- omes a list of atoms that shouldn't be inthe model. The last 1 signi�es the number of models that should be alulated.87



Table B.1: The mapping of atoms that are used in the examplesatom numbera 1b 2 3d 4e 5B.1 Rule TypesBasi RuleA basi rule has the form:1 head #literals #negative negative positiveWhere head is the atom that is the head of the rule, #literals is the totalnumber of literals in the rule body, #negative is the number of negativeliterals in the rule body, negative is the list of negative literals, and positiveis the list of positive literals.Example B.1Let the atoms be de�ned as in Table B.1. Then, the rule:a :- b, not , d, not e.is represented as:1 1 4 2 3 5 2 3 �Constraint RuleA onstraint rule has the form:2 head #literals #negative bound negative positivewhere head, #literals, #negative, negative, and positive are as withbasi rules and bound is the amount of literals in body that has to be trueso that the head is true.Example B.2Given the bindings in Table B.1, the rulea :- 2 f b, , not d g.is represented as2 1 3 1 2 4 2 3 �88



Choie RuleA hoie rule has the form3 #heads heads #literals #negative negative positiveMost of the entries are the same as with basi rules. The entry #headsdenotes the number of the atoms in a hoie rule head and heads is thelist of the atoms in the rule head.Example B.3Using the usual bindings for the atoms, the rulef a, b,  g :- e, not d.is represented as3 3 1 2 3 2 1 4 5 �Weight RuleA weight rule has the form5 head bound #lits #negative negative positive weightsMost of the entries are the same as in onstraint rules. The entry weightsis a list of the weights of the literals in the rule body.Example B.4The rule:a :- 3 [ b=1, not =2 ℄.is represented as:5 1 3 2 1 3 2 2 1 �Minimize RuleA minimize rule is of the form:6 0 #lits #negative negative positive weightsNote that eah literal has to have an expliit weight assigned to it. Max-imization an be ahieved by negating all literals in the statement body.Example B.5The statement:maximize [ a=5, not b = 10 ℄.is represented as:6 0 2 1 2 1 10 5 �In ase you wonder, the missing rule type 4 was originally used for generaterules that were essentially hoie rules with bounds. As they aused semantialtroubles, they were removed from use.89
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