T-79.1001/2 Syksy 2005
Introduction to Theoretical Computer Science (T/Y)

Session 5

Answers to demonstration exercises

4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, Ly C ¥* are context-free,
then so are the languages Ly U Lo, L1 Lo and Lj.

Solution: Let L; and Lo be context-free languages that are defined by grammars G; =
(‘/1, ¥, Ry, Sl) and Gy = (‘/2, Yo, R, SQ) In addition we require that (‘/1 — 21) N (‘/2 —
o) = 0. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V; UV, U{S}, X1 U%s, RiUR2U{S —
Sy | S2},S}. Now L(G) = L(G1) U L(G2) = Ly U Ly. This holds, since the initial
symbol S may derive only S; or So, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint,
this would not hold).

Concatenation: The language L L is defined by the following grammar:G = (V3 U
V2 @] {S}, 21 @] EQ, Rl @] RQ @] {S — S1S2}, S}

Kleene star: The language L7 is defined by the following grammar: G = (V3 U
{S}, Y1, R U {S — €|S;S’1}, S}

5. Problem: Design a context-free grammar describing the syntax of simple “programs” of
the following form: a program consists of nested for loops, compound statements enclosed
by begin-end pairs and elementary operations a. Thus, a “program” in this language looks
something like this:

a;
for 3 times do
begin
for 5 times do a;
a; a
end.

For simplicity, you may assume that the loop counters are always integer constants in the
range 0,..., 9.

Solution: The context-free grammars of programming languages are most often defined
so that the alphabet consists of all syntactic elements (lexemes) that occur in the language.
In this case numbers, a, and reserved words are lexemes. We divide the parsing of a
program into two parts:

(a) The program text is transformed into a string of lexemes using a finite state automa-
ton;

(b) The parse tree of the lexeme string is constructed.

The given grammar can be formalized in many ways, this is one possible interpretation:

G =(V,%, P,C)
V ={C, S, N,begin, do, end, for, times, 0,1,2,3,4,5,6,7,8,9,;, a}
Y. ={begin, do, end, for, times, 0,1,2,3,4,5,6,7,8,9,;,a}

Here the nonterminal S denotes a statement, C' a compound statement, and N a number.
The rules of the grammar are defined as follows:
P={C—-5|5;C
S — a | begin C end | for N times do S
N—-0]1]2]|3|4|5|6]|7|8]9}

For example, the program in the problem text has the following parse tree:

for N times do S

6. Problem: Prove that the following context-free grammar is ambiguous:

S — if bthen S

S — if bthen S else S

S — s
Design an unambiguous grammar that is equivalent to the grammar, i.e. one that generates
the same language.

Solution: A context-free grammar is ambiguous if there exists a word w € L(G) such
that w has at least two different parse trees. The simplest word for the given grammar
that has this property is:

if b then if b then s else s.

Its two parse trees are:

b then S
/// \\\
b then S else
! !

if b then S S
s

Usually we want to associate an else-branch to the closest preceeding if-statement. In
this case the former tree corresponds to this practice.

We define a grammar G as follows:

G =(V,3,P,8)
V ={S,B,U,s,b,if, then, else}
Y = {s,b,if, then, else}
P={S—-B|U
B — if b then B else B |s
U — if b then S | if b then B else U}

Here the nonterminal B is used to derive balanced programs where each if-statement has
both then- and else-branches. The nonterminal U derives those if-statements that do
not have an else-branch.

