Autumn 2002

T-79.148 Introduction to Theoretical Computer Science Tutorial 1, 18–20 September Problems

Homework problems:

- 1. Let $A = \{a, b, c\}$, $B = \{b, d\}$, and $C = \{a, c, d, e\}$. List the elements of the following sets:
 - (a) $A \cup (C B);$
 - (b) $B \times (A \cap C);$
 - (c) $\mathcal{P}(\{\emptyset\}) \mathcal{P}(\emptyset)$.
- 2. Let $A = \{a, b, c, d\}$, and define a relation $R \subseteq A \times A$ as follows:

$$R = \{(a, b), (a, c), (b, c), (c, c), (d, b)\}.$$

Draw the graphs corresponding to the following relations:

a) R, c) $R \circ R$, b) R^{-1} , d) $R \cup (R \circ R)$.

Are some of these relations actually functions?

- 3. (a) List all the equivalence relations (partitions) on the set $\{a, b, c\}$.
 - (b) Verify by induction the correctness of the formula:

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1).$$

Demonstration problems:

4. Prove the correctness of the distributive laws for set unions and intersections:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

5. Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$(m,n) \sim (p,q) \quad \Leftrightarrow \quad m+n = p+q.$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.

6. Prove by induction that if X is a finite set of cardinality n = |X|, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)| = 2^n$.