Introduction to Theoretical Computer Science Tutorial 1, 18-20 September
Problems

Homework problems:

1. Let $A=\{a, b, c\}, B=\{b, d\}$, and $C=\{a, c, d, e\}$. List the elements of the following sets:
(a) $A \cup(C-B)$;
(b) $B \times(A \cap C)$;
(c) $\mathcal{P}(\{\emptyset\})-\mathcal{P}(\emptyset)$.
2. Let $A=\{a, b, c, d\}$, and define a relation $R \subseteq A \times A$ as follows:

$$
R=\{(a, b),(a, c),(b, c),(c, c),(d, b)\} .
$$

Draw the graphs corresponding to the following relations:
a) R,
b) R^{-1},
c) $R \circ R$,
d) $R \cup(R \circ R)$.

Are some of these relations actually functions?
3. (a) List all the equivalence relations (partitions) on the set $\{a, b, c\}$.
(b) Verify by induction the correctness of the formula:

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1) .
$$

Demonstration problems:

4. Prove the correctness of the distributive laws for set unions and intersections:

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
\end{aligned}
$$

5. Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$
(m, n) \sim(p, q) \quad \Leftrightarrow \quad m+n=p+q
$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.
6. Prove by induction that if X is a finite set of cardinality $n=|X|$, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)|=2^{n}$.

