
T-79.148 Spring 2002
Introduction to Theoretical Computer Science
Tutorial 10
Solutions to the demonstration problems

4. Problem: Extend the notion of a Turing machine by providing the possibility of a two-way
infinite tape. Show that nevertheless such machines recognize exactly the same languages
as the standard machines whose tape is only one-way infinite.

Solution: A Turing machine with a two-way infinite tape works otherwise in a same way
than a standard machine except that the position of the tape start symbol (>) is not fixed
and it can move in a same way than the end symbol (<). The tape positions are indexed
by the set Z of integers where 0 denotes the initial position of >.

We can simulate such a Turing machine by a two-track one-way Turing machine. Con-
ceptually, we divide the tape into two parts: upper and lower. The upper part holds the
two-way tape cells i ≥ 0 and the lower part cells i < 0. For example, a two-way tape:

ε-3 >-2 b-1 a
0

b
1

a
2

ε
4

<
3

· · ·· · ·

is expressed as a one-way tape:

>
a

0

b-1

b
1

>′
-2

a
2

ε-3

<′
3

ε-4

· · ·
· · ·

In practice the construction of two tracks is done by replacing the alphabet Σ by a new
alphabet Σ′ = (Σ∪{<

′, >
′})× (Σ∪{<

′, >
′}). Each symbol of Σ′ thus denotes two symbols

of Σ. The symbols {<
′, >

′} are new symbols that denote the start and end symbols of the
original tape. So, the above example is expressed as:

> 〈a, b〉 〈b, >′〉 〈a, ε〉 〈<′, ε〉 <

We still need a way to decide which tape-half is used. The easiest way to do this is to
define a mirror image state q′ for each state q. When the machine is in state q, it examines
only the upper track when it decides what move to take next (tape head is on right side
of the tape). Similarily, in state q′ it examines only the lower symbol (tape head is on the
left side). Since the lower tape is in a reversed order, all tape head moving instructions
have to be also reversed.

The formal definition of this construction is presented in an appendix.

5. Problem: Show that pushdown automata with two stacks (rather than just one as per-
mitted by the standard definition) would be capable of recognizing exactly the same
languages as Turing machines.

Solution: We first show that a two-stack pushdown automaton can simulate a Turing
machine. The only difficulty is to find a way to simulate the Turing machine tape using
two stacks. This can be done using a construction that is similar to the one presented in
the first problem: the first stack holds the part of tape that is left to the read/write head
(in reversed order), and the second stack holds the symbols that are right to the head.



>
0

a
1

b
2

a
3

a
4

b
5

b
6

<
7

=⇒

>
0

a
1

b
2

a
3

a
4

b
5

b
6

<
7

S1 S2

The computation of the automaton can be divided into two parts:

(a) Initialization, when the automaton copies the input to stack S1 one symbol at a
time, and then moves it, again one-by-one, to stack S2. (With the exception of the
first symbol).

(b) Simulation, where the automaton decides its next transition by examining the top
symbol of S1. If the machine moves its head to left, the top element of S1 is moved
into S2. If it moves to the other direction, the top element of S2 is moved to S1.

A two-stack pushdown automaton that is formed using these principles simulates a given
Turing machine. The formal details are presented in an appendix.

Next we show that we can simulate a two-stack pushdown automaton using a Turing
machine. This can be done trivially using a two tape nondeterministic Turing machine
where both stacks are stored on their own tapes.

Appendix: the formalisation of solution 4

Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be a two-way tape Turing machine. Define a standard
Turing machine M ′ as follows:

M ′ =(Q′,Σ′,Γ′, δ′, q0, qacc, qrej)
Q′ =Q ∪ {q′ | q ∈ Q}
Σ′ =(Σ ∪ {<

′, >
′})× (Σ ∪ {<

′, >
′})

Γ′ =(Γ ∪ {<
′, >

′})× (Γ ∪ {<
′, >

′})

The transition function δ′ is defined as follows:

δ′ = {(q1, 〈a, γ〉, q2, 〈b, γ〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}
∪ {(q1, 〈σ′, γ〉, q2, 〈b, γ〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}
∪ {(q′

1, 〈γ, a〉, q′
2, 〈γ, b〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}

∪ {(q′, 〈γ, a〉, qend, 〈γ, b〉,∆) | (q, a, qend, b,∆) ∈ δ, qend ∈ {qacc, qrej}, γ ∈ Γ′}
∪ {(q′

1, 〈γ, σ′〉, q′
2, 〈γ, b〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}

∪ {(q, >, q′, >, R), (q′, >, q, >, R) | q ∈ Q},

where L = R, R = L, < = > and > = <.

Appendix: the formalisation of solution 5 Let M = (Q,Σ,Γ, δ, q0, qacc, qrej} be a Tur-
ing machine. We construct a two-stack pushdown automaton M ′ = (Q′,Σ′,Γ′, δ′, p0, qacc, qrej)



as follows:

Q′ =Q ∪ {p0, p1, p2}
Σ′ =Σ ∪ {<}
Γ′ =Γ ∪ {>, <}
δ′ ={((p0, ε, ε, ε), (p1, >, ε)), ((p1, <, ε, ε), (p2, ε, <))}

∪ {((p1, x, ε, ε), (p1, x, ε)) | x ∈ Σ}
∪ {((p2, ε, x, ε), (p2, ε, x)) | x ∈ Σ}
∪ {((q1, ε, a, ε), (q2, ε, b)) | (q1, a, q2, b, L) ∈ δ}
∪ {((q1, ε, a, x), (q2, xb, ε)) | (q1, a, q2, b, R) ∈ δ, x ∈ Γ′}


