Spring 2002

T-79.148 Introduction to Theoretical Computer Science Tutorial 6 Solutions to the demonstration problems

Theorem (The Pumping Theorem). Let A be a regular language. There exists $n \ge 1$ such that any string x of A where the length of which $|x| \ge n$ can be rewritten as x = uvw such that $|uv| \le n$, $|v| \ge 1$ and uv^iw belongs to A for all $i \ge 0$.

In a more compact form, the pumping theorem can be written as follows:

 \forall regular languages A

$$\begin{split} \exists n \geq 1 \text{ such that} \\ \forall x \in A : |x| \geq n \\ \exists \ x = uvw, \text{ such that } |uv| \leq n, \, |v| \geq 1 \\ \forall i \geq 0 \ uv^i w \in A. \end{split}$$

The pumping theorem can be used in showing a language L to be *not regular* using contradiction. First assume that L is a regular language. The goal is to end in contradiction with this assumption by following the demands imposed on L by the pumping theorem

When using the theorem we have to remember that it works only in one direction. It can show that a language is not regular, but it cannot be used to show nonregularity of a language. For example, the language $I = \{c^i a^n b^n \mid i > 0 \land n \ge 0\} \cup L(a^*b^*)$ is not regular, but all words in it may be partitioned in a way that satisfies the requirements of the theorem. Thus, it is not possible to use the theorem directly to prove that I is not regular. In this case we have to use an indirect proof using the closure properties of regular languages. The answer to exercise 5 shows how this is done.

4. **Problem:** Pattern expressions are a generalisation of regular expression used e.g. in some text editing tools of UN*X-type operating systems. In addition to the usual regular expression constructs, a pattern expression may contain string variables, inducing the constraint that any two appearances of the same variable must correspond to the same substring. Thus e.g. aXb^*Xa and $aX(a \cup b)^*YX(a \cup b)^*Ya$ are pattern expressions over the alphabet $\{a, b\}$. The first one of these describes the language $\{awb^nwa \mid w \in \{a, b\}^*, n \ge 0\}$. Prove that pattern expressions are a proper generalisation of regular expressions, i.e. that pattern expressions can be used to describe also some nonregular languages.

Solution:

Th prove that pattern expressions are a proper generalization os regular expressions, we must find a pattern expression that defines a language that is not regular.

Consider the pattern expression XX. The corresponding language is $L = \{zz \mid z = \{a, b\}^*\}$. Assume that L is regular Select $x = a^n ba^n b \in L$. Now |x| = 2n+2 > n. According to the pumping theorem, we can rewrite x as x = uvw, where $|uv| \leq n$ and $|v| \geq 1$. Now we have $u = a^{n-|v|-k}$, $v = a^{|v|}$ and $w = a^k ba^n b$, where $0 \leq k < n$. According to the theorem, for all $i \geq 0$ it should hold that $uv^i w \in L$. Still, $uv^0 w = uw = a^{n-|v|}ba^n b \notin L$, for it is not of the form zz, as $|v| \geq 1$. This is contradiction with the assumption that L is a regular language.

A non-regular language was found that can be expressed using pattern expressions. Therefore, pattern expressions are a proper generalisation of regular expressions. \Box

5. **Problem**: Prove that the language $L = \{w \in \{a, b\}^* \mid w \text{ contains equally many } a$'s and b's} is not regular, and design a context-free grammar generating it.

Solution:

It would be possible to use the pumping theorem directly to show that L is not regular. However, we will use a little more complex solution, because there is no other example in the course material that shows how "difficult" nonregular languages can be handled.

We define a language $L' = L \cap L(a^*b^*)$. Suppose that L is regular. Then, L' has to be also regular since the class of regular languages is closed under intersection and $L(a^*b^*)$ is regular (note that this condition does not hold to the other direction: L' may be regular even if L is not. For example, $A \cap \emptyset = \emptyset$ for all languages A).

We note that $L' = \{a^k b^k \mid k \ge 0\}$. Next, we examine the word $w = a^n b^n$ where n is the language-dependant length-bound given by the pumping theorem (so |w| > n). Now we try to partition w in a way that satisfies the conditions of the theorem. Since $|xy| \le n$, the partition has to be of the form:

$$x = a^{n-i}$$
$$y = a^{i}$$
$$z = b^{n},$$

where $0 < i \le n$. However, now $xz = a^{n-i}b^n$, so $xz \notin L'$. Since w cannot be pumped, L' is not regular. However, this is a contradiction with our assumption that L is regular, so L may not be regular, either.

The following context-free grammar G defines L: $G = (V, \Sigma, P, S)$, where

$$V = \{S, T, a, b\},$$

$$\Sigma = \{a, b\},$$

 $P = \{ S \to SS \mid aT \mid Ta \mid \varepsilon, \\ T \to ST \mid TS \mid b \}$

For example, the word $aababb \in L$ may be derived as follows: $S \Rightarrow aT$

- $\Rightarrow aI$ $\Rightarrow aST$ $\Rightarrow aaTT$ $\Rightarrow aabT$ $\Rightarrow aabST$ $\Rightarrow aabaTT$ $\Rightarrow aababT$ $\Rightarrow aababb$
- 6. **Problem**: Design a context-free grammar describing the syntax of simple "programs" of the following form: a program consists of nested **for** loops, compound statements enclosed by **begin-end** pairs and elementary operations **a**. Thus, a "program" in this language looks something like this:

```
a;
for 3 times do
begin
for 5 times do a;
a; a
end.
```

For simplicity, you may assume that the loop counters are always integer constants in the range $0, \ldots, 9$.

Solution: The context-free grammars of programming languages are most often defined so that the alphabet consists of all syntactic elements (lexemes) that occur in the language. In this case numbers, **a**, and reserved words are lexemes. We divide the parsing of a program into two parts:

(a) The program text is transformed into a string of lexemes using a finite state automaton; (b) The parse tree of the lexeme string is constructed.

The given grammar can be formalized in many ways, this is one possible interpretation:

 $G = (V, \Sigma, P, C)$ $V = \{C, S, N, \text{begin}, \text{do}, \text{end}, \text{for}, \text{times}, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ;, a\}$ $\Sigma = \{\text{begin}, \text{do}, \text{end}, \text{for}, \text{times}, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ;, a\}$

Here the nonterminal S denotes a statement, C a compound statement, and N a number. The rules of the grammar are defined as follows:

$$P = \{C \to S \mid S; C$$

$$S \to a \mid \mathbf{begin} \ C \ \mathbf{end} \mid \mathbf{for} \ N \ \mathbf{times} \ \mathbf{do} \ S$$

$$N \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9\}$$

For example, the program in the problem text can be derived as follows:

 $S' \Rightarrow C$ $\Rightarrow S; C$ $\Rightarrow a; C$ $\Rightarrow a; S$ $\Rightarrow a; \text{for } N \text{ times do } S$ $\Rightarrow a; \text{for } 3 \text{ times do } S$ $\Rightarrow a; \text{for } 3 \text{ times do begin } C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } N \text{ times do } S; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } S; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } S; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } a; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } a; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } a; a; C \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } a; a; S \text{ end}$ $\Rightarrow a; \text{for } 3 \text{ times do begin for } 5 \text{ times do } a; a; a; a \text{ end}$