
T-79.148 Spring 2002
Introduction to Theoretical Computer Science
Tutorial 8
Solutions to the demonstration problems

4. Problem: Given a context-free grammar G = (V,Σ, P, S), a nonterminal A ∈ V − Σ is
redundant, if it cannot appear in the derivation of any sentence generated by G, i.e. if no
derivation in G is of the form S ⇒∗ αAβ ⇒∗ x, where α, β ∈ V ∗, x ∈ Σ∗. Design an
algorithm for removing all the redundant nonterminals from a grammar. (Hint: Determine
first the nonredundant nonterminals.)

Solution:

We want to remove redundant nonterminals from grammar G = (V,Σ, P, S).

First, we collect into a set T those nonterminals, which can appear in some derivation.
This is done as follows:

(i) Let initially
T := {S}.

(ii) Then we repeat the following until set T does not change

T := T ∪ {B ∈ V − Σ | A → αBβ is a production in G, α, β ∈ V ∗, A ∈ T}.

Because |V − T | decreases in every step, we must repeat (ii) at most |V − Σ| + 1 times,
so sooner or later the algorithm will stop.

Finally, we remove from the grammar those nonterminals (along with the productions
with those nonterminals), which are not in set T . Formally, this can be represented as
follows.

G′ = (V ′,Σ, P ′, S)
V ′ = V − T

P ′ = {A → α | A ∈ T ∧ (A → α) ∈ P}

For example, let us look at the grammar:

G = (V,Σ, P, S)
V = {S, A,B,C, a, b}
Σ = {a, b}
P = {S → aA | SS; A → bB | S

B → bS; C → aS}

Initially T0 = {S}. Now,

T1 = T0 ∪ {A,S} = {A,S}
T2 = T1 ∪ {A,S,B} = {A,S,B}
T3 = T2 ∪ {A,S,B} = {A,S,B} .

The only redundant nonterminal is C.

5. Problem: Design a pushdown automaton corresponding to the grammar G = (V,Σ, P, S),
where

V = {S, (,), ∗,∪, ∅, a, b}
Σ = {(,), ∗,∪, ∅, a, b}
P = {S → (SS), S → S∗, S → (S ∪ S),

S → ∅, S → a, S → b}

Solution: For any context-free grammar G = (V,Σ, R, S), the corresponding nondeter-
ministic pushdown automaton M = (Q,Σ,Γ, δ, q0, F) can be formed as follows:

Q = {q0, q1, qacc}
Γ = V ∪ {⊥}
F = {qacc}
δ = {

(
(q0, ε, ε), (q1, S⊥)

)
,
(
(q1,⊥, ε), (qacc, ε)

)
} (1)

∪ {
(
(q1, ε, A), (q1, α)

)
| (A → α ∈ P} (2)

∪ {
(
(q1, σ, σ), (q1, e)

)
| σ ∈ Σ} (3)

Here symbol ⊥ denotes the bottom of the stack.

For the grammar given in this exercise, the construction produces the following automa-
ton:

Q ={q0, q1, qacc}
Σ ={(,), ∗,∪, ∅, a, b}
Γ ={S, (,), ∗,∪, ∅, a, b,⊥}
F ={qacc}
δ =

{(
(q0, e, e), (q1, S⊥)

)
,
(
(q1,⊥, e), (qacc, e)

)
,
(
(q1, e, S), (q1, (SS))

)
,(

(q1, e, S), (q1, S
∗)

)
,
(
(q1, e, S), (q1, (S ∪ S))

)
,
(
(q1, e, S), (q1, ∅)

)
,(

(q1, e, S), (q1, a)
)
,
(
(q1, e, S), (q1, b)

)
,(

(q1, (, (), (q1, e)
)
,
(
(q1,),)), (q1, e)

)
,
(
(q1,

∗, ∗), (q1, e)
)
,(

(q1,∪,∪), (q1, e)
)
,
(
(q1, ∅, ∅), (q1, e)

)
,
(
(q1, a, a), (q1, e)

)
,(

(q1, b, b), (q1, e)
)}

The automaton is of the form:

q0
q1

qacc

ε, ε/S⊥ ε,⊥/ε

ε, A/α

σ, σ/ε

Let us look at how the automaton handles input (a ∪ b∗):

State Input Stack
q0 (a ∪ b∗) ε
q1 (a ∪ b∗) S⊥ (1)
q1 (a ∪ b∗) (S ∪ S)⊥ (2) (S → (S ∪ S))
q1 a ∪ b∗) S ∪ S)⊥ (3)
q1 a ∪ b∗) a ∪ S)⊥ (2) (S → a)
q1 ∪b∗) ∪S)⊥ (3)
q1 b∗) S∗)⊥ (2) (S → S∗)
q1 b∗) b∗)⊥ (2) (S → b)
q1

∗) ∗)⊥ (3)
q1))⊥ (3)
q1 ε ⊥ (3)

qacc ε ε (1)

Note: language L(G) defines all syntactically well-formed regular expressions formed over
alphabet Σ = {a, b}.

6. Problem: Form the grammar corresponding to the pushdown automaton M , where M =
(Q,Σ,Γ, δ, s, F):

Q ={s, q, f}
Σ ={a, b}
Γ ={a, b, c}
F ={f}
δ =

{(
(s, e, e), (q, c)

)
,
(
(q, a, c), (q, ac)

)
,
(
(q, a, a), (q, aa)

)(
(q, a, b), (q, e)

)
,
(
(q, b, c), (q, bc)

)
,
(
(q, b, b), (q, bb)

)(
(q, b, a), (q, e)

)
,
(
(q, e, c), (f, e)

)}
Solution: As a state diagram M look like this::

s q
f

ε, ε/c ε, c/ε

a, c/ac
a, a/aa
a, b/ε

b, c/bc
b, b/bb
b, a/ε

Determining the context-free grammar corresponding to a given pushdown automaton is
a rather tedious task. The algorithm that we use here works only with simple pushdown
automata that satisfy the following two requirements:

• If
(
(q, u, β), (p, γ)

)
is a transition in the pushdown automaton, then |β| ≤ 1.

• If
(
(q, u, e), (p, γ)

)
∈ ∆, then

(
(q, u, A), (p, γA)

)
∈ ∆ for all A ∈ Γ.

The requirements do not, however, reduce the expressive power of pushdown automata,
since every pushdown automaton can be converted into an equivalent simple pushdown
automaton (see the book for details).

The goal is to construct a grammar with nonterminals 〈q, A, p〉, where q, p ∈ K and
A ∈ Γ∪ {e}. Intuitively, the nonterminal 〈q, A, p〉 will generate all input strings on which
the automaton can move from the state q to the state p while removing the symbol A
from the stack.

There are four kinds of grammar rules:

1. For all f ∈ F there is a rule S → 〈s, e, f〉.
2. For all transitions

(
(q, u, A), (r, B1 . . . Bn)

)
∈ ∆, where q, r ∈ K, u ∈ Σ∗, n >

0, B1, . . . Bn ∈ Γ and A ∈ Γ ∪ {e}, there is a rule

〈q, A, p〉 → u〈r, B1, q1〉〈q1, B2, q2〉 . . . 〈qn−1, Bn, p〉

for all p, q1, . . . , qn−1 ∈ K.

3. For all transitions
(
(q, u, A), (r, e)

)
∈ ∆, where q, r ∈ K, u ∈ Σ∗ and A ∈ Γ ∪ {e},

there is a rule
〈q, A, p〉 → u〈r, e, p〉

4. For all q ∈ K there is a rule 〈q, e, q〉 → e.

The first rule encodes the goal to reach some final state from the initial state such that the
stack is finally empty. The rules of the last form tell that no computation is needed if the
automaton does not change its state. Rules of type 2 represent a sequence of transitions
that move the automaton from the state q to the state p while removing the symbol A
from the stack. The right side of the rule constructs the transition sequence one transition
at a time. Rules of type 3 are analogous to rules of type 2.

Grammar G = (V,Σ, P, S), V = Σ ∪ {S} ∪ {〈q, A, p〉 | q, p ∈ K, A ∈ Γ ∪ {e}}

P ={S → 〈s, e, f〉, (1.)
〈s, e, s〉 → e, 〈q, e, q〉 → e, 〈f, e, f〉 → e, (4.)
〈s, e, s〉 → e〈q, c, s〉, (2./tr.1)
〈s, e, q〉 → e〈q, c, q〉, (2./tr.1)
〈s, e, f〉 → e〈q, c, f〉, (2./tr.1)
〈q, c, s〉 → a〈q, a, s′〉〈s′, c, s〉 (2./tr.2)
〈q, c, q〉 → a〈q, a, q′〉〈q′, c, q〉 (2./tr.2)
〈q, c, f〉 → a〈q, a, f ′〉〈f ′, c, f〉 (2./tr.2)
〈q, a, s〉 → a〈q, a, s′〉〈s′, a, s〉 (2./tr.3)
〈q, a, q〉 → a〈q, a, q′〉〈q′, a, q〉 (2./tr.3)
〈q, a, f〉 → a〈q, a, f ′〉〈f ′, a, f〉 (2./tr.3)
〈q, b, s〉 → a〈q, e, s〉 (3./tr.4)
〈q, b, q〉 → a〈q, e, q〉 (3./tr.4)
〈q, b, f〉 → a〈q, e, f〉 (3./tr.4)
〈q, c, s〉 → b〈q, b, s′〉〈s′, c, s〉 (2./tr.5)
〈q, c, q〉 → b〈q, b, q′〉〈q′, c, q〉 (2./tr.5)
〈q, c, f〉 → b〈q, b, f ′〉〈f ′, c, f〉 (2./tr.5)
〈q, b, s〉 → b〈q, b, s′〉〈s′, b, s〉 (2./tr.6)
〈q, b, s〉 → b〈q, b, q′〉〈q′, b, q〉 (2./tr.6)
〈q, b, s〉 → b〈q, b, f ′〉〈f ′, b, f〉 (2./tr.6)
〈q, a, s〉 → b〈q, e, s〉 (3./tr.7)
〈q, a, q〉 → b〈q, e, q〉 (3./tr.7)
〈q, a, f〉 → b〈q, e, f〉 (3./tr.7)
〈q, c, s〉 → e〈f, e, s〉 (3./tr.8)
〈q, c, q〉 → e〈f, e, q〉 (3./tr.8)
〈q, c, f〉 → e〈f, e, f〉 (3./tr.8)

Many of these rules are redundant. The rules that need to be included in the grammar
can be found by starting from the rule S → 〈s, e, f〉 and checking which rules can ever be
used in a derivation. This results in the following set of rules:

P = {S → 〈s, e, f〉
〈s, e, f〉 → e〈q, c, f〉
〈q, c, f〉 → a〈q, a, q〉〈q, c, f〉
〈q, c, f〉 → b〈q, b, q〉〈q, c, f〉
〈q, c, f〉 → e〈f, e, f〉
〈q, a, q〉 → a〈q, a, q〉〈q, a, q〉
〈q, a, q〉 → b〈q, e, q〉
〈q, b, q〉 → b〈q, b, q〉〈q, b, q〉
〈q, b, q〉 → a〈q, e, q〉
〈q, e, q〉 → e

〈f, e, f〉 → e}

The grammar can still be simplified. Let 〈q, c, f〉 = S, 〈q, b, q〉 = B, 〈q, a, q〉 = A. This
gives the result

P = {S → aAS | bBS | ε
A → aAA | b,
B → bBB | a}

Appendix: Chomsky normal form and CYK-algorithm

Let’s change the grammar of the last exercise into Chomsky normal form, and check with
CYK-algorithm whether words abb and abba belong to language L(G).

A grammar is in Chomsky normal form, if the following conditions are met:

1. Only the initial symbol S can generate an empty string

2. All rules are of form A → BC or A → a (where A, B ja C are nonterminals and a a
terminal symbol), except for rule S → ε (if such a rule exists).

The grammar is put into the normal form in phases.

1. Initial symbol is removed from right side of the rules.
Because there are rules S → aAS and S → bBS in the grammar, let’s add a new
starting symbol S′ and a rule S′ → S. The resulting set of rules is

S′ → S,

S → aAS | bBS | ε
A → aAA | b,
B → bBB | a

2. ε-productions are removed.
Because in the Chomsky normal form only the initial symbol S′ may generate ε,
other ε rules must be removed from the grammar. We start by computing the set of
erasable nonterminals: NULL:

NULL0 ={S} (S → ε)
NULL1 ={S, S′} (S′ → S)
NULL2 ={S, S′} = NULL

Next, the rules A → X1 · · ·Xn are replaced by a set of rules

A → α1 · · ·α2, where αi =

{
Xi, Xi /∈ NULL
Xi or ε, Xi ∈ NULL

Finally, we remove all rules of form A → ε (except for rule S′ → ε). As the result we
get rule set1:

S′ → S | ε
S → aAS | aA | bBS | bB
A → aAA | b,
B → bBB | a

3. Unit productions are removed.
Next we remove from the grammar all rules of form A → B where both A and B
are nonterminals.
First, we compute sets F (A) for all A ∈ V − Σ:

F (A) = F (B) = F (S) = ∅
F (S′) = {S}

Nonterminal B belongs to set F (A) exactly when we can derive B from A using only
unit productions:
Rule A → B is replaced by {A → w | ∃C ∈ F (B)∪{B} : C → w ∈ P}. As the result
we get a set of rules

S′ → aAS | aA | bBS | bB | ε
S → aAS | aA | bBS | bB
A → aAA | b,
B → bBB | a

4. Too long productions are removed.
In the last phase we add into the grammar a new nonterminal Cσ and a rule Cσ → σ
for all σ ∈ Σ and divide all rules A → w (|w| > 2) into a chain of rules, all of which
consist of exactly two symbols.
The Chomsky normal form for the given grammar is the following set of rules:

S′ → CaS′
1 | CaA | CbS

′
2 | CbB | ε

S′
1 → AS

S′
2 → BS

S → CaS1 | CaA | CbS2 | CbB

S1 → AS

S2 → BS

A → CaA1 | b
A1 → AA

B → CaB1 | a
B1 → BB

Ca → a

Cb → b

1To be exact, now we should add a new initial symbol S′′ and rules S′′ → ε|S′, but in this case we can use
S′ as the starting symbol without problems.

Using CYK-algorithm we can check whether word x = x1 · · ·xn belongs to the language
defined by grammar G. During the progress of algorithm we compute nonterminal sets
Ni,j . Set Ni,j includes all those nonterminals, which can be used to derive substring
xi · · ·xj . We can apply dynamic programming for computing the sets:

Ni,i = {A | (A → xi) ∈ P}
Ni,i+k = {A | ∃B,C ∈ V − Σ s. t. (A → BC) ∈ P and

∃j : i ≤ j < i + k s. e B ∈ Ni,j ∧ C ∈ Nj+1,i+k}

Let’s look at the grammar we got above and word abba. First we compute sets Ni,i, i ≤ 4:

i →
Ni,i+k 1 : a 2 : b 3 : b 4 : a

k ↓ 0 abba abba abba abba
{B,Ca} {A,Cb} {B,Ca} {A,Cb}

On each square of the array it has been denoted, which substring the square corresponds
to.

Next we compute N1,2. Now the only possible j = 1, so we look at sets N1,1 = {B,Ca}
ja N2,2 = {A,Cb}. The only rules of form A → BC, B ∈ N1,1 and C ∈ N2,2, are: {S′ →
CaA,S → CaA}, so N1,2 = {S′, S}. The same way we can compute sets N2,3 = {A1} and
N3,4 = {S′, S}, so the second row of the array is

i →
Ni,i+k 1 : a 2 : b 3 : b 4 : a

0 abba abba abba abba
k ↓ {B,Ca} {A,Cb} {B,Ca} {A,Cb}

1 abba abba abba
{S′, S} {A1} {S′, S}

At square N1,3 we have to look at two alternatives,

j = 1 ⇒ N1,1 = {Ca, B} j = 2 ⇒ N1,2 = {S′, S}
N2,3 = {A1} N3,3 = {Cb, A}

The nonterminal set corresponding to case j = 1 is {A} (A → CaA1) and that of case
j = 2 is ∅, so N1,3 = {A}. We can continue the same way and and get the final table

i →
Ni,i+k 1 : a 2 : b 3 : b 4 : a

0 abba abba abba abba
{B,Ca} {A,Cb} {B,Ca} {A,Cb}

1 abba abba abba
k ↓ {S′, S} {A1} {S′, S}

2 abba abba
{A} {S′

1, S1}
3 abba

{S′, S,A1}

Since S′ ∈ N1,4, abba ∈ L(G). But, S′ /∈ N1,3, so abb /∈ L(G).

