
T-79.148 Spring 2004
Introduction to Theoretical Computer Science
Tutorial 3
Solutions to the demonstration excercises

4. Problem: Formulate the model of a simple coffee machine presented in class (lecture
notes p. 15) precisely according to the mathematical definition of a finite automaton
(Definition 2.1). What is the formal language recognized by this automaton?

Solution: The problem was to give formal representation to the finite automaton given
below:

0.00 0.10 0.20

0.30 0.40

>0.40

10 c 10 c 10 c 10 c

10 c, 20 c

20 c

20 c

20 c

20 c

10 c, 20 c

Formally, a deterministic state machine (finite automaton) is a tuple M = (Q,Σ, δ, q0, F ),
where Q is finite set of states, Σ finite alphabet, δ function Q × Σ → Q, q0 ∈ K initial
state and F ⊆ Q set of accepting states.

In the Coffee Machine the parts are defined as follows:

Q = {0.00, 0.10, 0.20, 0.30, 0.40, >0.40}
Σ = {10c, 20c}
q0 = {0.00}
F = {0.40, >0.40}

The easiest way to show the transition function δ is a table.

q δ(q, 10c) δ(q, 20c)
0.00 0.10 0.20
0.10 0.20 0.30
0.20 0.30 0.50
0.30 0.40 >0.40
0.40 >0.40 >0.40

A configuration c ∈ Q × Σ∗ of a finite automaton contains the current state and input.
The automaton reads input one symbol at a time and then moves to a new state according
to the symbol and current state. If the automaton is in an accepting state when the word
ends, the word is accepted. Otherwise the word is rejected. The language L(M) accepted
by a finite automaton M is the set of all accepted words. For the automaton in question
it is:

L(M) = {x1x2 . . . xn | xi ∈ Σ for all 1 ≤ i ≤ n and
n∑

i=1

xi ≥ 40 c}

So the machine accepts all the strings in which the sum of given coins is 40 c or more.
Let us see through a few inputs and how the machines operates with them.

1



– w = 0.10c 0.10c 0.20c:

(0.00, 0.10c 0.10c 0.20c) `M (0.10, 0.10c 0.20c)
`M (0.20, 0.20c) `M (0.40, ε)

Because 0.40 ∈ F the word is accepted. Here the `M means that machine M
proceeds one step.

– w = 0.20c 0.10c:

(0.00, 0.20c 0.10c) `M (0.20, 0.10c ) `M (0.30, ε)

Because 0.30 /∈ F , the word is rejected.
– w = 0.20c 0.20c 0.20c:

(0.00, 0.20c 0.20c 0.20c) `∗M (>0.40, ε)

Word is accepted. Marking `∗M denotes that machine M proceeds zero or more steps.

5. Problem: Design finite automata that recognise the following languages:

1. {ambn | m = n mod 3};
2. {w ∈ {a, b}∗ | w contains equally many a’s and b’s, modulo 3}.

(The notation “m = n mod 3” means that the numbers m and n yield the same remainder
when divided by three.)
Solution:

a) The language L = {amnn | m = n mod 3} can be recognized by the finite automa-
ton:

M = (Q, Σ, δ, q0, F )
Q = {q0, q1, q2, q3, q4, q5, q6}
Σ = {a, b}
F = {q0, q5}

The state transition function δ is:

q δ(q, a) δ(q, b)
q0 q1 q3

q1 q2 q5

q2 q0 q4

q3 q6 q4

q4 q6 q5

q5 q6 q3

q6 q6 q6

The state q6 is used as a rejecting state. It means that the automaton moves into
that state as soon as it is clear that the word cannot belong to the language (when
ba substring is found). The machine then stays in that state until the end of the
string. These states are often left out when an automaton is represented as a state
diagram. This is also the case for the diagram below:

q0
q1 q2

q3
q4

q5

a a

a

b b

b

b b
b

2



b) Language L = {w ∈ {a, b}∗ | w contains as many a and b letters modulo 3} is rec-
ognized by the following finite automaton:

q0
q1

q2

a a

a

b b

b

6. Problem: Design a finite automaton that recognizes sequences of integers separated by
plus and minus signs (e.g. 11+20−9, −5+8). Implement your automaton as a computer
program that also calculates the numerical value of the input expression.

Solution: The plus and minus operations can be recognized with the following automa-
ton:

q0

q1

q2

+,−

d

d

d

+,−

Here d is a shorthand notation that means any number from set {0, . . . , 9}.
Below is a C-program that reads user input and does the required addition. It has been
modified from the C-program presented in the lecture that can identify a number and it’s
size.

#include <stdio.h>
#include <ctype.h>

int main (void)
{
int q; /* state */
int c; /* input symbol */
int sgn, val, sum;
sgn=1; val = 0, sum = 0;
q = 0;

while ((c = getchar()) !=’\n’) {
switch (q) {
case 0:
if (c == ’+’) q = 1;
else if (c == ’-’) {
sgn = -1;
q = 1;

}
else if (isdigit(c)) {
val = c -’0’;
q = 2;

}
else q = 99;
break;

3



case 1:
if (isdigit(c)) {
val = c -’0’;
q = 2;

}
else q = 99;
break;

case 2:
if (isdigit(c)) {
val = 10 * val + (c - ’0’);
q = 2;

}
else if (c == ’+’)
{
sum = sum + val*sgn;
val = 0;
sgn = 1;
q = 1;

}
else if (c == ’-’)
{
sum = sum + val*sgn;
val = 0;
sgn = -1;
q = 1;

}
else q = 99;
break;

case 99:
break;

}
}
sum = sum + sgn*val;
if (q == 2)
printf("SUM IS %d.\n", sum);

else
printf("INVALID INPUT.\n");

return;
}

4


