
T-79.148 Spring 2004
Introduction to Theoretical Computer Science
Tutorial 13
Solutions to the demonstration problems

4. Problem: Show that all context-sensitive languages can be recognised by linear-bounded
automata. (Make use of the fact that in applying the grammar’s production rules, the
length of the sentential form under consideration can never decrease, except in the special
case of the empty string.) Deduce from this result the fact that all context-sensitive
languages are recursive.

Solution:

By definition, all rules of a context-sensitive languages are of the form where the right
side is at least as long as the left side (apart from the possible rule S → ε).

A context-sensitive language can be recognized by a linear-bounded automaton that non-
deterministically moves into some place of the input and applies one of the rules of the
grammar from right to left. Since the string may only become shorter, no new space is
needed. Also, if symbols are removed, then it is trivial to construct a machine that remo-
ves all extra space. If we have only the initial symbol S on the tape at the end, the word
is accepted.

Consider the following context-sensitive grammar:

S → aA | bB
aA → abB | ab

bB → baA | ba

A linear-bounded automaton recognizing this language would work as follows for the input
abab:

> a b a b < `∗ > a b a A <

`∗ > a b B <

`∗ > a A <

`∗ > S <

The machine described above is not total, since it is possible that it ends in an infinite
loop. For example, if the grammar in question is:

S → ε

ab → ba

ba → ab,

then all computations with a non-empty input fail to terminate.

We can fix the problem by noting that since the length of the tape may not increase, the
number of possible configurations is finite. This number is of the magnitude q× n× |Γ|n,
where q is the number of states, n the length of input, and |Γ| the size of the tape alphabet.

We can totalize the machine by adding a counter for it that counts the number of steps
taken. The easiest way to do this is to have a two-track machine that keeps the counter
on the second track encoded as a binary number. This number is then increased with each
step of the original machine. When the counter reaches the limit, we can reject the word
as the machine is in a loop.

Finally, we have to check that we can implement the counter without breaking the linear
space bound. To encode a number q× n× |Γ|n we need k = log2(q) + log2(n) + n log(|Γ|)
bits that is linear with respect to n. Even though k > n, we can squeeze it into the
available space by encoding it in a suitable base.

5. Problem:

Show that every language generated by an unrestricted grammar can also be generated
by a grammar where no terminal symbols occur on the left hand side of any production.

Solution: We can systematically construct a grammar G′ that fulfills the conditions and
generates the same language as a given grammar G by adding a new nonterminal Aa for
each symbol a ∈ Σ, replacing a by Aa in each rule of the grammar, and finally adding a
rule Aa → a.

Formally: Let G be an unrestricter grammar G = (V,Σ, P, S). We construct a grammar
G′ = (V ′,Σ, P ′, S′), where

V ′ = V ∪ {Aa | a ∈ Σ}

Each rule r = x1 · · ·xn → xn+1 · · ·xn+m of G where xi ∈ V is transformed into:

c(r) = y1 · · · yn → yn+1 · · · yn+m

where

yi =

{
xi, xi ∈ V − Σ
Axi

, xi ∈ Σ .

Now the set of rules P ′ can be defined as follows:

P ′ = {c(r) | r ∈ P} ∪ {Aa → a | a ∈ Σ} .

Consider the grammar from the Exercise 4:

S → aA | bB
aA → abB | ab

bB → baA | ba

By using the construction, we get a grammar:

S → AaA | AbB

AaA → AaAbB | AaAb

AbB → AbAaA | AbAa

Aa → a

Ab → b

6. Problem:

Show that every context-sensitive grammar can be put in a normal form where the pro-
ductions are of the form S → ε or αAβ → αωβ, where A is a nonterminal symbol and
ω 6= ε. (S denotes here the start symbol of the grammar.)

Solution:

In normalizing the grammar we have three steps:

i) Remove the initial symbol S from the right side of rules.

ii) Remove all terminal symbols from the left sides of the rules.

iii) Fix all rules that are of a wrong form.

The three steps are defined as follows:

i) If S occurs in the right side of a rule, we add a new initial symbol S′ and a rule
S′ → S to the grammar.

ii) The terminal symbols are removed using the method presented in solution of Exercise
5.

iii) Each incorrect rule
X1 · · ·Xn → Y1 · · ·Ym ,

where m ≥ n we add n−1 new nonterminals (Z1, . . . , Zn−1) and the rule is replaced
by the set of rules:

Xn−1Xn → Z1Xn

Z1Xn → Z1Yn · · ·Ym

Xn−2Z1 → Z2Z1

Z2Z1 → Z2Yn−1

...
Zn−1Zn−2 → Zn−1Y2

Zn−1Y2 → Y1Y2

For example, let us consider the rule

ABBA → BAABA

As n = 4 we need three new nonterminals: Z1, Z2, and Z3. The corresponding set of rules
is:

BA → Z1A

Z1A → Z1BA

BZ1 → Z2Z1

Z2Z1 → Z2A

AZ2 → Z3Z2

Z3Z2 → Z3A

Z3A → BA .

Now the derivation of the original rule becomes the following derivation:

ABBA ⇒ ABZ1A ⇒ ABZ1BA ⇒ AZ2Z1BA ⇒ AZ2ABA

⇒ Z3Z2ABA ⇒ Z3AABA ⇒ BAABA .

