Sorting and Other Distributed Set Operations T-79.4001 Seminar on Theoretical Computer Science Spring 2007 – Distributed Computation

Eero Häkkinen

2007-04-18

Based on sections 5.3-5.4 of N. Santoro: Design and Analysis of Distributed Algorithms, Wiley 2007.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set

- Introduction
- OddEven-LineSort
- OddEven-MergeSort
- Lower Bounds
- SelectSort
- DynamicSelectSort
- 2 Distributed Set Operations
 - Introduction
 - Intersection Difference Partitioning (IDP)
 - Local Evaluation
 - Global Evaluation

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Definitions (1/3)

Notation (1/2)

- a *local set D_x* in an entity *x*
- a distributed set $\mathcal{D} = \bigcup D_x$
- a distribution **D** = ⟨D_{x1}, D_{x2},..., D_{xn}⟩ of *D* among the entities x₁, x₂,..., x_n
- the number of data items $N = \sum |D_x|$
 - x
- a *topology* G of the network

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Definitions (2/3)

Notation (2/2)

- a *permutation* π of the indices $\{1, 2, \ldots, n\}$
- an *i*th item π (*i*) of π
 (if π = (2, 4, 1, 3), then π (2) = 4)

For Simplicity

- $id(x_i) = i$
- D_i denotes D_{x_i}

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Definitions (3/3)

Sorting Condition

The distribution $\langle D_1, D_2, ..., D_n \rangle$ is *sorted according to* π if and only if the following sorting condition holds:

$$i < j \Rightarrow orall oldsymbol{d}' \in oldsymbol{D}_{\pi(i)}, oldsymbol{d}'' \in oldsymbol{D}_{\pi(j)}: oldsymbol{d}' < oldsymbol{d}''$$

Some Sorting Orders

- increasing order: $\pi = \langle 1, 2, \dots, n \rangle$
- decreasing order: $\pi = \langle n, (n-1), \dots, 1 \rangle$

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Sorting Problem

Sorting Problem

Then the initial distribution of \mathcal{D} is $\mathbf{D} = \langle D_1, D_2, \dots, D_n \rangle$, the problem is to move data items among the entities so that the final distribution of \mathcal{D} is $\mathbf{D}' = \langle D'_1, D'_2, \dots, D'_n \rangle$ and the distribution \mathbf{D}' is sorted according to π .

Notes

No relation is defined between D_i and D'_i , yet. There are thus multiple variations of the problem.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Sorting and Distribution Types

Fundamental Requirements

- *invariant-sized* sorting: $|D'_i| = |D_i|, 1 \le i \le n$
- equidistributed sorting:

$$\left| D'_{\pi(i)} \right| = \begin{cases} \left\lceil \frac{N}{n} \right\rceil, & \text{if } 1 \le i < n \\ N - (n-1) \left\lceil \frac{N}{n} \right\rceil, & \text{if } i = n \end{cases}$$

• compacted sorting:

$$\begin{vmatrix} D'_{\pi(i)} \end{vmatrix} = \begin{cases} w, & \text{if } 1 \le i < \frac{N}{w} \\ N - (i - 1) w, & \text{if } i = \lceil \frac{N}{w} \rceil \le n \\ 0, & \text{if } \lceil \frac{N}{w} \rceil < i \le n \end{cases}$$
, where $w \ge \lceil \frac{N}{n} \rceil$ is the *storage capacity* of the entities

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of OddEven-LineSort (1/2)

Restrictions

- Standard restrictions R.
- Ordered line: links $(x_{\pi(i)}, x_{\pi(i+i)})$, $1 \le i < n$.

Origin

 Based on the parallel algorithm odd-even-transposition sort, which is based on the serial algorithm bubble sort.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of OddEven-LineSort (2/2)

Technique

- In an odd iteration, entities x_{π(2i+1)} and x_{π(2i+2)}, 0 ≤ i ≤ ⌊n/2 ⌋ − 1 exchange data items. The smallest items are retained by x_{π(2i+1)} and the largest ones are retained by x_{π(2i+2)}.
- 2 In an even iteration, entities $x_{\pi(2i)}$ and $x_{\pi(2i+1)}$, $1 \le i \le \lfloor \frac{n}{2} \rfloor - 1$ exchange data items. The smallest items are retained by $x_{\pi(2i)}$ and the largest ones are retained by $x_{\pi(2i+1)}$.
- If no items change the place in an iteration other than the first one, the process stops.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Properties of OddEven-LineSort

Complexity

- Sorting an equidistributed distribution requires at most *n* – 1 iterations if the required sorting is invariant-sized, equidistributed or compacted.
- Invariant-sized sorting requires at most N 1 iterations.
- $T[OddEven-LineSort_{invariant}] = O(nN)$
- **M** [OddEven-LineSort_{invariant}] = O(nN)

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of OddEven-Merge (1/2)

Restrictions

- Standard restrictions R.
- Complete graph.

Initially

• Sorted partial distributions $\left\langle A_1, A_2, \dots, D_{\frac{p}{2}} \right\rangle$ and

$$\left\langle A_{\frac{p}{2}+1}, A_{\frac{p}{2}+2}, \dots A_{p} \right\rangle.$$

• For simplicity, *p* is a power of 2.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of OddEven-Merge (2/2)

Technique

If p = 2, there are two entities y₁ and y₂ containing sets A₁ and A₂. Entities y₁ and y₂ exchange data items. The smallest items are retained by y₁ and the largest ones are retained by y₂. This is a *merge*.

- Recursively OddEven-Merge partial distributions $\langle A_1, A_3, \dots, A_{\frac{p}{2}-1} \rangle$ and $\langle A_{\frac{p}{2}+1}, A_{\frac{p}{2}+3}, \dots, A_{p-1} \rangle$.
- **2** Recursively OddÉven-Merge partial distributions $\langle A_2, A_4, \dots, A_{\frac{p}{2}} \rangle$ and $\langle A_{\frac{p}{2}+2}, A_{\frac{p}{2}+4}, \dots, A_{p} \rangle$.
- **3** Merge A_{2i} and A_{2i+1} , $1 \le i \le \frac{p}{2} 1$.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of OddEven-MergeSort

Technique

- Recursively OddEven-MergeSort the partial distribution $\langle D_1, D_2, \dots, D_{\frac{n}{2}} \rangle$.
- **2** Recursively OddEven-MergeSort the partial distribution $\langle D_{\frac{n}{2}+1}, D_{\frac{n}{2}+2}, \dots, D_n \rangle$.

• OddEven-Merge partial distributions $\langle D_1, D_2, \dots, D_{\frac{n}{2}} \rangle$ and $\langle D_{\frac{n}{2}+1}, D_{\frac{n}{2}+2}, \dots, D_n \rangle$.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Properties of OddEven-MergeSort

Complexity

- Sorting requires at most 1 + log *n* iterations.
- $M[OddEven-MergeSort] = O(N \log n)$

Correctness

Does it work? Not always.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Lower Bounds – Analysis

Sorting Problem (recapitulation)

Then the initial distribution of \mathcal{D} is $\mathbf{D} = \langle D_1, D_2, \dots, D_n \rangle$, the problem is to move data items among the entities so that the final distribution of \mathcal{D} is $\mathbf{D}' = \langle D'_1, D'_2, \dots, D'_n \rangle$ and the distribution \mathbf{D}' is sorted according to π .

Messages

- $|D_i \cap D'_i|$ items to be moved from x_i to x_j .
- At least $d_G(x_i, x_j)$ messages for each item to be moved.
- The total cost at least $\mathbf{C}(\mathbf{D}, G, \pi) = \sum_{i \neq j} \left| D_i \cap D'_j \right| d_G(x_i, x_j).$

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Lower Bounds – Values

Ordered Line

•
$$\mathbf{C}(\mathbf{D}, G, \pi) = \sum_{i \neq j} \left| D_i \cap D'_j \right| d_G(x_i, x_j) = \Omega(nN)$$

OddEven-LineSort has O(nN). The same!

Complete Graph

•
$$\mathbf{C}(\mathbf{D}, G, \pi) = \sum_{i \neq j} \left| D_i \cap D'_j \right| \underbrace{d_G(x_i, x_j)}_{=1} = \Omega(N)$$

• OddEven-MergeSort has $O(N \log n)$.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of SelectSort

Technique

- Entity $x_{\pi(j)}$ broadcasts the number of items k_j it must end up with.
- The entities find the k_jth smallest item b_j still under consideration using a distributed selection algorithm.
- 3 The item *b_i* is broadcasted.
- Each entity assigns items which are still under consideration and smaller or equal to b_i to be sent to x_{π(i)}.

After n - 1 iterations, items are sent to their destinations using the shortest paths.

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Properties of SelectSort

Properties

- Generic regarding topology.
- Correct if the distributed selection algorithm is correct.

• Additional cost of iterations is

$$\sum_{1 \le i \le n-1}^{N} M[k_i, N - K_{i-1}] = M[Rank] \sum_{1 \le i \le n-1} \log(\min\{k_i, N - K_i + 1\}) + I.o.t.$$

 If N ≫ n (for instance N ≥ n² log n) in a complete graph, the additional cost is o (N) and the total cost is O (N).

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Description of DynamicSelectSort

Protocol

begin

```
for j = i,...,n-1 do
            Collectively determine b_i = \mathbf{D}[k_i] using distributed selection;
            D_{i,i} := d \in D_i : b_{i-1} < d \le b_i;
            n_i(j) := |D_{i,j}|;
      end
      D_{i,n} := d \in D_i : b_{n-1} < d;
      n_i(n) := |D_{i,n}|;
      if x_i \neq \overline{x} then
            send \langle n_i(1), \ldots, n_i(n) \rangle to \overline{x};
      else
            wait until receive information from all entities:
            determine \overline{\pi} and notify all entities;
      end
      send D_i(j) to x_{\pi(i)}, i \leq j \leq n;
end
```

Introduction OddEven-LineSort OddEven-MergeSort Lower Bounds SelectSort DynamicSelectSort

Properties of DynamicSelectSort

Properties

- Selects a permutation which results the least amount of items to be moved.
- Sorts according to the selected permutation.
- Does not move items if already sorted.
- Additional cost is $\sum (|N(x)| + 2n) d_G(x, \overline{x}).$

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Operations on Distributed Sets (1/2)

Notation

- sets *A*, *B*, *C*, ...
- an entity x (A), x (B), x (C), ... owning the corresponding set
- an entity x making a query
- a strategy S_i to find the result of a query

Query Expression Example

 $A\cup ((B\cap C)\setminus (B\cap D))$

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Operations on Distributed Sets (2/2)

Costs of Some Strategies

•
$$Vol(S_1) = \underbrace{|A|}_{x(A) \to x} + \underbrace{|B|}_{x(B) \to x} + \underbrace{|C|}_{x(C) \to x} + \underbrace{|D|}_{x(D) \to x}$$

•
$$Vol(S_2) =$$

 $|B| + |B \cap C| + |(B \cap C) \setminus D| + |A \cup ((B \cap C) \setminus D)|$
 $x(B) \rightarrow x(C) + (C) \rightarrow x(D) + (D) \rightarrow x(A) + (A \cup (A) \rightarrow x(A) + (A \cup (A) \rightarrow x(A)) + (A \cup (B \cap (C \setminus D))) + (A \cup (A) \rightarrow x(B) + (A \cup (A) \rightarrow x(B)) + (A \cup (A) \rightarrow x(B) + (A \cup (A) \rightarrow x(A) + ($

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Description of Intersection Difference Partitioning

Motivation

Some queries can be evaluated locally.

Intersection Difference Partitioning (IDP)

•
$$Z_{0,1}^{i} = D_{i}$$

• S_{1}, S_{2}, \dots are sets D_{1}, D_{2}, \dots excluding D_{i}
• $Z_{l+1,2j-1}^{i} = Z_{l,j}^{i} \cap S_{l+1}$
• $Z_{l+1,2j}^{i} = Z_{l,j}^{i} \setminus S_{l+1}$
• $Z_{n-1,j}^{i} = Z_{j}^{i}$
• $Z_{i} = \langle Z_{1}^{i}, Z_{2}^{i}, \dots, Z_{2^{n-1}}^{i} \rangle$ is a partition of D_{i} and denotes it.

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Example of IDP

Partitioning

$$\begin{array}{c|c} D_1 = Z_{0,1}^1 = \{a,b,e,f,g,m,n,q\} \\ Z_{1,1}^1 = \{a,e,f,g\} & Z_{1,2}^1 = \{b,m,n,q\} \\ Z_{2,1}^1 = \{e,f\} & Z_{2,2}^1 = \{a,g\} & Z_{2,3}^1 = \{m,q\} & Z_{2,4}^1 = \{b,n\} \end{array} \\ \hline D_2 = Z_{0,1}^2 = \{a,e,f,g,o,p,r,u,v\} \\ Z_{1,1}^2 = \{a,e,f,g\} & Z_{1,2}^2 = \{o,p,r,u,v\} \\ Z_{2,1}^2 = \{e,f\} & Z_{2,2}^2 = \{a,g\} & Z_{2,3}^2 = \{p,r,v\} & Z_{2,4}^2 = \{o,u\} \end{array} \\ \hline D_3 = Z_{0,1}^3 = \{e,f,m,p,q,r,v\} \\ Z_{1,1}^3 = \{e,f,m,q\} & Z_{1,2}^3 = \{p,r,v\} & Z_{2,4}^3 = \{p,r,v\} \\ Z_{2,1}^3 = \{e,f\} & Z_{2,2}^3 = \{m,q\} & Z_{2,3}^3 = \{p,r,v\} & Z_{2,4}^3 = \{p,r,v\} \end{array} \\ \hline \end{array}$$

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Properties of IDP

Expressions

$$\begin{array}{lcl} Z_{l,j}^{i} & = & \bigcup_{\substack{1 \le k \le 2^{n-1-l} \\ D_{i}} & Z_{l,j}^{i} & = & \bigcup_{\substack{1 \le j \le 2^{l} \\ 1 \le j \le 2^{l-1} \\ Z_{l,2j-1}^{i} & Z_{l,2j-1}^{i} \\ D_{i} \cap S_{l} & = & \bigcup_{\substack{1 \le j \le 2^{l-1} \\ 1 \le j \le 2^{l-1} \\ Z_{l,2j}^{i} & Z_{l,2j}^{i} \\ Z_{l,2j-1}^{i} & Z_{l,2j-1}^{i} \\ Z_{l,2j-1}^{i} & Z_{l,2j-1}^{i} \\ Z_{l,2j-1}^{i} & Z_{l,2j-1}^{i} \\ Z_{l,2j-1}^{i} & Z_{l,2j-1-l}^{i} \\ Z_{l,2j-1-l-1}^{i} \\ Z_{l,2$$

Eero Häkkinen Sorting and Other Distributed Set Operations

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Local Evaluation Using IDP

Local Queries

- If an expression *E* can be evaluated locally and an expression *E'* is an arbitrary local expression, then *E* ∩ *E'* can be evaluated locally.
- The same is true for $E \setminus E'$.
- If an expressions E_1 and E_2 can be evaluated locally, then $E_1 \cup E_2$ can be evaluated locally.

Properties

No messages are sent.

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Global Evaluation (1/2)

Technique

- *x* decomposes a query *Q* into sub-queries $Q_1, Q_2, ..., Q_k$ which satisfy the following properties:
 - ∀Q_j : ∃y_j : Q_j ∈ E (y_j), where E (y_j) is the sets of expressions y_j can evaluate locally.

•
$$\forall i \neq j : Q_i \cap Q_j = arnothing$$

- $Q = \bigcup_{1 \le j \le k} Q_j$
- 2 x sends Q_j s to y_j s.
- y_i evaluates Q_i locally and sends the result to x.
- x computes the union of all received results.

Introduction Intersection Difference Partitioning (IDP) Local Evaluation Global Evaluation

Global Evaluation (2/2)

Properties

- Each result item is sent only once.
- Data transfer optimal.

Eero Häkkinen Sorting and Other Distributed Set Operations