Lecture 9: Linear and integer programming algorithms

- Solving MIPs: Relaxations Branch and bound search
- Solving LPs: Simplex algorithm

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Branch and bound

Given a MIP P and its relaxation R(P), branch and bound works as follows:

- 1. Solve R(P) to get an optimal relaxation solution x^* .
- 2. If R(P) is infeasible, then so is P (by R3) else if x^* is feasible to P, then x^* is optimal to P (by R2) else create new problems P_1, \ldots, P_k by branching and solve recursively. Stop examining a subproblem if it cannot be optimal to P (bounding).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

-79.4201 Search Problems and Algorithms

Solving MIPs

- ► A typical approach is use branch and bound search with a suitable relaxation.
- A relaxation of a problem removes constraints in order to get an easier to solve problem.
- \triangleright Given a MIP P, its relaxation R(P) is a problem satisfying the following conditions (for a minimization problem *P*):
 - R1: for the optimal solution value z' (value of the objective function) to R(P) and for z^* which is that of P, it holds that $z^* > z'$.
 - R2: if the optimal solution to R(P) is feasible to P, it is optimal for P,
 - R3: if R(P) is infeasible, then so is P.
- ▶ A useful relaxation of a MIP P satisfying these condition is the linear relaxation LR(P) of P which is obtained by removing the integrality constraints from P.
- ▶ LR(P) satisfies conditions R1–R3 because feasible solutions of LR(P) include all feasible solutions of P.
- ▶ Linear relaxation is computationally interesting because it is a strong relaxation which provides a global view on the constraints.

.N. & P.O. Autumn 2006

F-79.4201 Search Problems and Algorithms

Branching

- ▶ Given a problem *P* branching creates new subproblems P_1, \ldots, P_k based on an optimal solution x^* to R(P) that is not feasible to P.
- ▶ The subproblems $P_1, ..., P_k$ must satisfy the properties:
 - Every feasible solution to P is feasible to at least one of P_1, \ldots, P_k .
 - \triangleright x^* is not feasible in any of $R(P_1), \dots, R(P_k)$.
- \triangleright For the linear relaxation, x^* is not feasible iff there is a variable x_i that has a fractional value x_i^* in x^* .
- ▶ For such a variable x_i with a fractional value x_i^* , we can create two subproblems:
 - one with the additional constraint $x_i \leq |x_i^*|$;
 - one with the additional constraint $x_i \ge |x_i^*| + 1$.
- ▶ The two subproblems obtained in this way satisfy the two conditions above.

イロト (個) (4) (4) (4) (4) (5)

I.N. & P.O. Autumn 2006 I.N. & P.O. Autumn 2006

Bounding

- Bounding also uses relaxation.
- ▶ Suppose we have generated a feasible solution to some subproblem with solution value z^* . This could be optimal to a subproblem but we do not yet know whether it is optimal to P.
- ▶ Then for each subproblem P_i whose relaxation $R(P_i)$ has the optimal solution value $z'_i \ge z^*$, we can cease examining this subproblem (bounding).
- ▶ This is because by R1 $z_i^* \ge z_i'$ where z_i^* is the optimal (minimum) solution value for P_i and, hence, it is not possible to find a solution with a smaller solution value than z^* among the feasible solutions to P_i .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Solving Linear Relaxation

- ▶ Linear Relaxation of a MIP gives a linear program (LP)
- ▶ There are a number of well-known techniques for solving LPs
 - Simplex method The oldest and most widely used method with very mature implementation techniques.
 - Worst-case time complexity exponential but seems to work extremely well in practice.
 - Interior point methods
 A newer approach; polynomial time worst case time complexity;
 implementation techniques advancing
- Next, Simplex method is reviewed as an example.

Improving Effectiveness

- Careful formulation
 - Strong relaxations typically work well but are often bigger in size.
 - Break symmetries.
 - ▶ Multiple "big-M" values often lead to performance problems.
 - Deciding which formulation works better needs often experimentation.
- Cutting plans

These are constraints that are added to a relaxation to "cut off" the optimal relaxation solution x^* . Often are problem specific but there are also general techniques (e.g. Gomory cuts).

Special branching rules In many systems, for example, Special Ordered Sets are available.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ()・

I.N. & P.O. Autumn 2006

I.N. & P.O. Autumn 2006

I–79.4201 Search Problems and Algorithms

Simplex Method

Assumes that the linear program is in standard form:

min
$$\sum_{i=1}^{n} c_i x_i$$
 s.t.

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m$$

$$x_i > 0, \quad j = 1, \dots, n$$

- ➤ The basic idea: start from a basic feasible solution and look at the adjacent ones. If an improvement in cost is possible by moving to an adjacent solution, we do so. An optimal solution has been found if no improvement is possible.
- Next we briefly review the basic concepts needed:
 - basic feasible solutions (bfs)
 - move from one bfs to another (pivoting)
 - the overall simplex algorithm

→□→→□→→□→→□→□ 900

I.N. & P.O. Autumn 2006 7

79.4201 Search Problems and Algorithms

Basic Feasible Solutions

- Assume an LP in standard form with m linear equations and n variables $x_1, \ldots, x_n, m < n$.
- ► A solution to the LP is an assignment of a real number to each variable *x_i* such that all equations are satisfied.
- A solution safisfying the following condition is called a basic solution:
 - \triangleright n-m variables are set to 0 and
 - the assignment for the other m variables (the basis) gives a unique solution to the resulting set of m linear equations.
- ▶ This means that a basic solution is obtained by choosing m variable as the basis, setting the other n-m variables to zero and solving the resulting set of equations for the basic variables. If there is a unique solution, this is gives a basic solution.
- ► A basic feasible solution (bfs) is a basic solution such that every variable is assigned a value > 0.



I.N. & P.O. Autumn 2006

I.N. & P.O. Autumn 2006

9

T-79.4201 Search Problems and Algorithms

Moving from bfs to bfs

- ► When moving from one bfs to another the idea is to remove one variable from the basis and replace it with another. This is called pivoting.
- ► In Simplex this is organized as a manipulation of a tableau where, for instance, a set of equations

$$3x_1 + 2x_2 + x_3 = 1$$

 $5x_1 + x_2 + x_3 + x_4 = 3$
 $2x_2 + 5x_2 + x_3 + x_5 = 4$

is represented as

	<i>X</i> ₁	X 2	X 3	<i>X</i> ₄	X 5
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

F-79.4201 Search Problems and Algorithms

Example

Consider the LP

For example, the basis (x_4, x_5, x_6, x_7) gives a basic feasible solution x0 = (0, 0, 0, 4, 2, 3, 6) because $x_4 = 4, x_5 = 2, x_6 = 3, x_7 = 6$ is the unique solution to the resulting set of equations:

.N. & P.O. Autumn 2006

Tableaux

- ▶ Pivoting is handled by keeping the set of equations diagonalized with respect to the basic variables.
- ➤ This can be achieved using elementary row operations (Gaussian elimination): multiplying a row with a non-zero constant; adding a row to another.

Example.

Consider the set of equations

	<i>X</i> ₁	X 2	X 3	<i>X</i> ₄	<i>X</i> ₅
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

Given a basis $B = (x_3, x_4, x_5)$, we can transform the tableau to a diagonalized form w.r.t. it by multiplying Row 1 with -1 and adding it to Rows 2 and 3:

	<i>x</i> ₁	<i>x</i> ₂	X 3	<i>X</i> ₄	X 5
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Tableaux—cont'd

- ▶ We denote by $x_{i,j}$ the entry on the *i*th row and *j*th column in a tableau.
- ▶ Notice that in the diagonalized form column 0 gives the values of the basic variables in the bfs x0 in question:

$$x0_{B(i)} = x_{i,0}, i = 1, ..., m$$

where B(i) denotes the column of the *i*th basic variable.

Example. Consider the set of equations:

	<i>x</i> ₁	<i>x</i> ₂	X 3	<i>X</i> ₄	X 5
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Given the basis $B = (x_3, x_4, x_5)$, B(1) = 3, B(2) = 4, B(3) = 5 and for its basic solution x_0 holds: $x_0 = 1$, $x_0 = 2$, $x_0 = 3$

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Pivoting

- ▶ In pivoting the tableau is brought to the diagonalized form w.r.t. the new basis using elementary row operations (Gaussian elimination):
 - ▶ for the pivot row *I*, all elements are divided by the pivot element and, hence, the pivot element in the new tableau is 1;
 - for other rows i, the resulting pivot row multiplied by x_{i,j} is subtracted from the row, and, hence all elements in column j (except the pivot element) are 0 in the new tableau.
- This means that

$$x'_{l,q} = \frac{x_{l,q}}{x_{l,j}}$$
 $q = 0,...,n$
 $x'_{i,q} = x_{i,q} - x'_{l,q}x_{i,j}$ $i = 1,...,m; i \neq l$
 $q = 0,...,n$

where $x_{i,j}$ and $x'_{i,j}$ are the old and new tableaux, respectively.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Pivoting

- ▶ In pivoting a chosen variable x_j enters the basis and another variable x_i leaves it.
- ▶ In the tableau this defines a pivot element $x_{l,j}$ where column j corresponds to the entering variable x_j and row l to the leaving variable x_j such that B(l) = i. We say that we pivot on $x_{l,i}$.

Example

Consider the tableau

	<i>X</i> ₁	x_2	X 3	<i>X</i> ₄	X 5
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

and the case where x_1 enters and x_3 leaves the basis.

Now the pivot element is $x_{1,1}$ as B(1) = 3.

.N. & P.O. Autumn 2006

マロナス部とスミとスミと (語)

T-79.4201 Search Problems and Algorithms

Example

Consider the tableau below and the pivot element x_{1,1}.

	<i>X</i> ₁	X 2	X 3	<i>X</i> ₄	<i>X</i> ₅
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

After pivoting we obtain a new tableau:

	<i>X</i> ₁	X 2	X 3	<i>X</i> ₄	X 5
1 3	1	<u>2</u> 3	1 3	0	0
34 3	0	$-\frac{7}{3}$	$-\frac{2}{3}$	1	0
1 <u>0</u>	0	<u>11</u> 3	<u>1</u>	0	1

where, e.g.,
$$x_{2,2} = -1 - 2\frac{2}{3} = -\frac{7}{3}$$
.

► The new basis is (x_1, x_4, x_5) and, hence, B(1) = 1, B(2) = 4, B(3) = 5.

Cost Function in the Tableau

- A cost function $z = \sum_{i=1}^{n} c_i x_i$ can be added as an extra equation $-z + \sum_{i=1}^{n} c_i x_i = 0$ to the tableau (no need to add a column for z).
- ➤ To start, we need a bfs and to make zero the c_js for the basic variables.
- This can be done using elementary row operations.
- Consider the example with x_3, x_4 , and x_5 as the basis.
- After transformation to the diagonalized form, subtract the resulting Rows 1, 2, 3 from Row 0, to get the desired form.

Our running example and a cost function
 z = x₁ + x₂ + x₃ + x₄ + x₅

	<i>x</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	X 5
0	1	1	1	1	1
1	3	2	1	0	0
2	5	1	1	1	Λ

lead to a tableau:

	<i>x</i> ₁	x ₂	x ₃	x_4	<i>x</i> ₅
-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

◆ロト ◆部 → ◆ 恵 ト ◆ 恵 ・ 釣 へ (や)

◆□▶◆昼▶◆意▶ ● り९@

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Choosing the Leaving Variable

- ► The idea is to move to an adjacent bfs containing the entering variable *x_i*.
- In order not to miss an adjacent bfs we need to choose a pivot element $x_{k,j}$ with the smallest positive ratio $\frac{x_{0_k}}{x_{k,j}}$, that is, a $x_{k,j}$ such that

$$\frac{x0_k}{x_{k,j}} = \min_{\substack{i \\ x_{i,j} > 0}} \left(\frac{x0_i}{x_{i,j}}\right)$$

where x0 is the current bfs.

▶ Then the leaving variable is B(k).

-79.4201 Search Problems and Algorithms

Choosing a Profitable Column

- ▶ It turns out that the cost function can be improved if we move to a bfs containing a non-basic variable x_j where the corresponding value c_i in the tableau is negative.
- ▶ If no such *c_i* exists, then an optimal solution has been found.
- Consider the previous example with the basis (x_3, x_4, x_5) . Now the equation for the cost function is $-z 3x_1 3x_2 = -6$, i.e., $z = -3x_1 3x_2 + 6$. Hence, we can improve (decrease) the value of the cost function by increasing the value of x_1 or x_2 (because $c_1 = c_2 = -3 < 0$) and, hence, the current bfs $x_0 = (0,0,1,2,3)$ is not an optimal one.
- ▶ Hence, we could move to a new bfs with entering variable x_1 or x_2 to improve the cost function.
- ▶ But how to choose the leaving variable?

4 D > 4 B > 4 B > 4 B > 9 Q (P

.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Example

Consider the tableau

	<i>x</i> ₁	X 2	X 3	<i>X</i> ₄	X 5
-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

▶ If x_2 is the entering variable, the ratios are:

$$\begin{array}{c|cccc}
i & \frac{x0_i}{x_{i,2}} \\
1 & \frac{1}{2} \\
2 & -\frac{2}{1} \\
3 & \frac{3}{3}
\end{array}$$

▶ Then the pivot element is $x_{1,2}$ because the smallest positive ratio $\frac{x_{0_i}}{x_{i,2}}$ is $\frac{1}{2}$ for i = 1 and the leaving variable is x_3 as B(1) = 3.

Simplex algorithm

□ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

I.N. & P.O. Autumn 2006

21

F-79.4201 Search Problems and Algorithms

Further Issues

For an efficient implementation of Simplex there are a number issues that need to be handled:

- ► Finding the first bfs to start Simplex: artificial variable method, two-phase method, ...
- ► How to choose the entering variable: nonbasic gradient method (choosing the most negative c_j), greatest increment method, . . .
- ► How to choose the pivot element in case of a tie: avoiding cycling, . . .

T-79.4201 Search Problems and Algorithms

Example

- Consider the tableau on the right (above).
- ▶ Running Simplex on this tableau, we notice that for variables x₁ and x₂, c_i < 0.</p>
- ▶ If we choose c_2 , then we need to pivot on $x_{1,2}$ as argued in the previous example.
- ➤ Then the new tableau is on the right (below).
- ► Here all c_j s are positive and, hence, an optimal solution $\left(0, \frac{1}{2}, 0, \frac{5}{2}, \frac{3}{2}\right)$ has been found with cost $\frac{9}{2}$ $\left(-z = -\frac{9}{2}\right)$.

	<i>X</i> ₁	x ₂	X 3	<i>X</i> ₄	X 5
-6	-3	-3	0		0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

	<i>x</i> ₁	X 2	X 3	<i>X</i> ₄	X 5
$-\frac{9}{2}$	<u>3</u> 2	0	<u>3</u> 2	0	0
1 2	3 2 7	1	1/2	0	0
-12512312	$\frac{\overline{7}}{2}$	0	1/2 3	1	0
<u>3</u> 2	$-\frac{11}{2}$	0	$-\frac{3}{2}$	0	1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ めへで

I.N. & P.O. Autumn 2006

イロト (個) (4) (4) (4) (4) (5)

T-79.4201 Search Problems and Algorithms

Summary: Solving MIPs

- ► Experiment with different formulations as well as different systems and solving techniques to see which performs best.
- ► Avoid multiple "big-M" values.
- ▶ Try to break symmetries.
- ▶ Do not introduce unnecessary integer variables.
- Scale the coefficients in the constraint to as small as possible.