
T–79.4201 Search Problems and Algorithms

Lecture 9: Linear and integer programming
algorithms

I Solving MIPs:
Relaxations
Branch and bound search

I Solving LPs:
Simplex algorithm

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Solving MIPs

I A typical approach is use branch and bound search with a
suitable relaxation.

I A relaxation of a problem removes constraints in order to get an
easier to solve problem.

I Given a MIP P, its relaxation R(P) is a problem satisfying the
following conditions (for a minimization problem P):

I the optimal solution value to R(P) is no more than that of P,
I if the solution to R(P) is feasible to P, then it is optimal for P,
I if R(P) is infeasible, then so is P.

I A useful relaxation of a MIP P satisfying these condition is the
linear relaxation LR(P) of P which is obtained by removing the
integrality constraints from P.

I Linear relaxation is computationally interesting because it is a
strong relaxation, it provides a global view on the constraints, and
it generates “dual values” for the constraints.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Branch and bound
Given a MIP P and its relaxation R(P), branch and bound works as
follows:

1. Solve R(P) to get an optimal relaxation solution x∗.

2. If R(P) is infeasible, then so is P
else if x∗ is feasible to P, then x∗ is optimal to P
else create new problems P1, . . . ,Pk by branching and solve
recursively. Stop examining a subproblem if it cannot be optimal
to P (bounding).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Branching

I Branching creates new subproblems based on an optimal
solution x∗ to R(P) that is infeasible to P.

I The subproblems P1, . . . ,Pk must satisfy the following properties:

I Every feasible solution to P is feasible to at least one of P1, . . . ,Pk .
I x∗ is infeasible in each of R(P1), . . . ,R(Pk ).

I For the linear relaxation, x∗ is infeasible iff there is variable xj that
has a fractional value x∗

j in x∗.
I In this case we can create two new problems:

I one with the additional constraint xj ≤ bx∗
j c;

I one with the additional constraint xj ≥ bx∗
j c+1.

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Bounding

I Bounding also uses relaxation.

I Suppose we have generated a feasible solution to some
subproblem with objective value z∗. This could be optimal to a
subproblem but we do not yet know whether it is optimal to P.

I If we now have a subproblem with relaxation objective value
z ′ ≥ z∗, then we can cease examining this subproblem
(bounding).

I This is because further branching can only increase the objective
value.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Improving Effectiveness

I Careful formulation
I Strong relaxations typically work well but are often bigger in size.
I Break symmetries.
I Multiple “big-M” values often lead to performance problems.
I Deciding which formulation works better needs often

experimentation.

I Cutting plans
These are constraints that are added to a relaxation to “cut off”
the optimal relaxation solution x∗. Often are problem specific but
there are also general techniques (e.g. Gomory cuts).

I Special branching rules
In many systems, for example, Special Ordered Sets are
available.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Solving Linear Relaxation

I Linear Relaxation of a MIP gives a linear program (LP)
I There are a number of well-known techniques for solving LPs

I Simplex
The oldest and most widely used method with very mature
implementation techniques.
Worst-case time complexity exponential but seems to work
extremely well in practice.

I Interior point methods
A newer approach; polynomial time worst case time complexity;
implementation techniques advancing

I Next Simplex method is reviewed as an example.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Simplex Method

I Assume that the linear program is in standard form:
mincx s.t.
Ax = b
x ≥ 0

I The basic idea: start from a basic feasible solution (“a corner
point”) and look at the adjacent ones. If an improvement in cost is
possible by moving to an adjacent solution, we do so. An optimal
solution has been found if no improvement is possible.

I Next we briefly review the basic concepts needed:
I basic feasible solutions (bfs)
I move from one bfs to another (pivoting)
I the overall simplex algorithm

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Basic Feasible Solutions

I Assume an LP in standard form.
mincx s.t.
Ax = b
x ≥ 0

where A is a m×n matrix and m < n.

I A basis of A is a linearly independent collection {Aj1 , . . . ,Ajm} of
column vectors Aji of A. The basis can be treated as a m×m
nonsingular matrix B = [Aji ].

I The basic solution corresponding to B is a vector x such that
I xj = 0 if Aj is not in the basis and
I xjk = the kth component of B−1b otherwise.

I A basic feasible solution (bfs) is a basic solution such that xi ≥ 0
for all i .

I Note that a basic solution is obtained by setting n−m variables
to zero and solving the resulting set of equations for the
remaining m variables. If there is a unique solution, this is gives a
basic solution.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Example

I Consider the LP

min 2x2 + x4 +5x7

x1 + x2 + x3 + x4 = 4
x1 + x5 = 2

x3 + x6 = 3
3x2 + x3 + x7 = 6

x1, . . . ,x7 ≥ 0

A possible basis:
{A4,A5,A6,A7}
and the corresponding matrix:

B =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Now the basic solution is
x0 = (0,0,0,4,2,3,6)
since x01 = x02 = x03 = 0 and

B−1b = b =









4
2
3
6









I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Moving from bfs to bfs

I The idea is to remove one variable from the basis and replace it
with another. This is called pivoting.

I In simplex this is organized as a manipulation of a tableau where,
for instance, a set of equations

3x1 + 2x2 + x3 = 1
5x1 + x2 + x3 + x4 = 3
2x2 + 5x2 + x3 + x5 = 4

is represented as

x1 x2 x3 x4 x5

1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Tableaux
I Pivoting is handled by keeping the set of equations diagonalized

with respect to the basic variables.
I This can be achieved using elementary row operations:

multiplying a row with a non-zero constant; adding a row to
another.

Example.
Consider the set of equations

x1 x2 x3 x4 x5

1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

Given a basis B = {A3,A4,A5},
we can transform the tableau to a
diagonalized form w.r.t. the basic
variables x3,x4,x5 by multiplying
Row 1 with -1 and adding it to
Rows 2 and 3:

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Tableaux—cont’d

I Notice that in the diagonalized form column 0 gives the values of
the basic variables in the bfs x0 in question:

x0B(i) = xi,0, i = 1, . . . ,m

where B(i) denotes the i th basic variable (column).

I Example . Consider the set of equations:

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

Given the basis B = {A3,A4,A5}, B(1) = 3,B(2) = 4,B(3) = 5
and for its basic solution x0 holds: x03 = 1,x04 = 2,x05 = 3

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Pivoting
I In pivoting variable xj enters the basis and variable xi leaves it.
I In the tableau this defines a pivot element xl,j where column j

corresponds to the entering variable xj and row l to the leaving
variable xi such that B(l) = i . We say that we pivot on xl,j .

I In pivoting the tableau is brought to the diagonalized form w.r.t.
the new basis using elementary row operations (Gaussian
elimination):

I for the pivot row l , all elements are divided by the pivot element
and, hence, the pivot element in the new tableau is 1;

I for other rows i , the resulting pivot row multiplied by xi,j is
subtracted from the row, and, hence all elements in column j
(except the pivot element) are 0 in the new tableau.

I This means that

x ′
l,q =

xl,q

xl,j
q = 0, . . . ,n

x ′
i,q = xi,q − x ′

l,qxi,j i = 1, . . . ,m; i 6= l
q = 0, . . . ,n

where xi,j and x ′
i,j are the old and new tableaux, respectively.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Example
I Consider the tableau

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I and the case where x1 enters and x3 leaves the basis.
I Now the pivot element is x1,1 as B(1) = 3, and
I the new tableau

x1 x2 x3 x4 x5
1
3 1 2

3
1
3 0 0

4
3 0 −7

3 −2
3 1 0

10
3 0 11

3
1
3 0 1

I and the new basis is x1,x4,x5 and, hence,
B(1) = 1,B(2) = 4,B(3) = 5.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Cost Function in the Tableau

I A cost function z = cx can
added as an extra equation
−z + cx = 0 to the tableau (no
need to add a column for z).

I To start, we need a bfs and to
make zero the cjs for the basic
columns.

I This can be done using
elementary row operations.

I Our running example and a
cost function
z = x1 + x2 + x3 + x4 + x5

lead to a tableau:

x1 x2 x3 x4 x5

0 1 1 1 1 1
1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

I Consider the example with 3,
4, and 5 as the basic columns.

I After transformation to the
diagonalized form, subtract the
resulting Rows 1, 2, 3 from
Row 0, to get the desired form:

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Choosing a Profitable Column

I It turns out that the cost function can be improved if we move to a
bfs containing a non-basic variable xj where the corresponding
value cj in the tableau is negative.

I If no such cj exists, then an optimal solution has been found.

I In the previous example the bfs corresponding to Columns 3, 4,
and 5 is not optimal because c1 = c2 = −3 < 0.

I Hence, we could move to a new bfs with entering variable x1 or x2

to improve the cost function.

I But how to choose the leaving variable?

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Choosing the Leaving Variable

I The idea is to move to an adjacent bfs containing the entering
variable xj .

I In order not to miss an adjacent bfs we need to choose a pivot
element xk ,j with the smallest positive ratio x0k

xk ,j
, that is, a xk ,j such

that
x0k

xk ,j
= min

i
xi,j>0

(
x0i

xi,j
)

where x0 is the current bfs.

I Then the leaving variable is B(k).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Example

I Consider the tableau

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I If x2 is the entering variable, then the pivot element is x1,2

because the smallest positive ratio x0k
xk ,2

is 1
2 for k = 1.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Simplex algorithm

procedure Simplex
opt := “no”; unbounded := “no”;
while opt = “no” and unbounded = “no” do

if cj ≥ 0 for all j then opt := “yes”
else

choose any j such that cj < 0 ;
ifxi,j ≤ 0 for all i then unbounded := “yes”
else

find min
i

xi,j>0

(
x0i

xi,j
) =

x0k

xk ,j

and pivot on xk ,j

end if
end if

end while .

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Example

I Consider the tableau on the
right (above).

I Running Simplex on this
tableau, we notice that for
Columns 1 and 2, cj < 0.

I If we choose c2, then we need
to pivot on x1,2 as argued in
the previous example.

I Then the new tableau is on the
right (below).

I Here all cjs are positive and,
hence, an optimal solution
(0,

1
2 ,0,

5
2 ,

3
2) has been found

with cost 9
2 (−z = − 9

2 ).

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

x1 x2 x3 x4 x5

−9
2

3
2 0 3

2 0 0
1
2

3
2 1 1

2 0 0
5
2

7
2 0 1

2 1 0
3
2 −11

2 0 −3
2 0 1

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Further Issues
For an efficient implementation of Simplex there are a number issues
that need to be handled:

I Finding the first bfs to start Simplex:
artificial variable method, two-phase method, . . .

I How to choose the entering variable:
nonbasic gradient method (choosing the most negative cj ),
greatest increment method, . . .

I How to choose the pivot element in case of a tie:
avoiding cycling, . . .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Summary: Solving MIPs

I Experiment with different formulations as well as different
systems and solving techniques to see which performs best.

I Avoid multiple “big-M” values.

I Try to break symmetries.

I Do not introduce unnecessary integer variables.

I Scale the coefficients in the constraint to as small as possible.

I.N. & P.O. Spring 2006


