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Common Flaws

Some common flaws in concurrent systems include:

Deadly Embrace

Circular Blocking

Deadlock

Starvation (livelock)

Underspecification

Overspecification
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Deadly Embrace

A common problem in resource allocation

Consider two callers A and B making a telephone
call to each other simultaneously

To connect a call two shared resources must be
exclusively allocated: the caller’s telephone line and
the receiver’s line

It would be natural to use a protocol where we first
allocate the caller’s line and only then the receiver’s
line
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Deadly Embrace (cnt.)

However, if A and B call simultaneously each other, it
can be the case that both A and B allocated their
own lines but fail to allocate the receiver’s line

If there is no recovery mechanism in place, the
system might deadlock
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Deadly Embrace - Process A

In pseudocode process A might look like:
process A:
// Code removed
lock(line_A);
// Code removed
lock(line_B);
// Code removed
release(line_B);
// Code removed
release(line_A);
// Code removed
endprocess;
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Deadly Embrace - Process B

In pseudocode process B might look like:
process B:
// Code removed
lock(line_B);
// Code removed
lock(line_A);
// Code removed
release(line_A);
// Code removed
release(line_B);
// Code removed
endprocess;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/56



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadly Embrace - Deadlock

An execution leading to a potential deadlock can be:
Process A: Process B:

lock(line_A)
lock(line_B)

// Deadlock:
// Process A is waiting for line B
// Process B is waiting for line A
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Circular Blocking

The deadly embrace extended over any number of
processes. Classic academic example:
Dining philosophers

There are n≥ 2 philosophers sitting around a round
table thinking

Because all thinking is a tough job also the
philosophers need to eat

The dish prepared for them is particularly slippery
spaghetti which requires two forks to be eaten

Unfortunately there are only n forks available,
distributed one between each pair of philosophers
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Philosophers

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/56



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Dining Philosophers

The philosophers have agreed on a protocol to
allocate the forks:

Think until hungry
Grab left fork
Grab right fork
Eat
Return right fork
Return left fork
Repeat from the beginning
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Dining Philosophers (cnt.)

Assume we have four philosophers:
p(0),p(1),p(2),p(3)

The forks are: f[0],f[1],f[2],f[3]

The fork f[0] is to left of p(0) and to the right of p(3)

It is now easy to see that the philosophers can all
starve: Can you see how?
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Dining Philosophers Pseudocode

#define left(i) (f[(i)])
#define right(i) (f[((i)+1)%n])
process p(i):

while true do
think();
lock(left(i));
lock(right(i));
eat();
release(right(i));
release(left(i));

enddo;
endprocess;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/56



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Dining Philosophers - Deadlock

A deadlock execution is:
p(0): p(1): p(2): p(3):
lock(f[0])

lock(f[1])
lock(f[2])

lock(f[3])
After this:
p(0) is waiting for p(1) to release fork f[1]
p(1) is waiting for p(2) to release fork f[2]
p(2) is waiting for p(3) to release fork f[3]
p(3) is waiting for p(0) to release fork f[0]
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Dining Philosophers vs. Real Life

The aim of the dining philosophers example is to:

Show that circular blocking chains can be arbitrarily
long

Show that the possibility of stumbling on the
deadlock by a randomly picked test run is extremely
small: There is exactly one deadlocking state, and an
exponential (in n) number of non-deadlocking states

Dining philosophers was too easy: Often locking
problems are much harder to spot just because the
programs are larger and the locking is less structured
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Deadlock

Deadlocks are a common problem in distributed
systems.

As seen before deadlocks can occur from the use of
blocking lock primitives.

In a message passing system deadlocks might occur
due to processes waiting for messages from one
another in similar manner as processes are waiting
for other processes to release locks

Mixing priority based scheduling with locking is also
known to easily lead to deadlocks
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Starvation (livelock)

Starvation (livelock) is a different problem. In it a part
of the system is live and executing but other parts of
the system are blocked indefinitely.

Example: High priority process using a busy wait
(spinlock) to wait for a low priority process to release
a lock in an OS kernel. However, the low priority
process is never given CPU time because the
scheduler always picks the highest priority runnable
task to be executed.

Deadlock and starvation will be treated more formally later.
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Under- and Overspecification

Examples in a message passing (data-communications
protocol) setting:

Underspecification: A message arrives in a protocol
implementation and there is no code to handle it
(unexpected reception)

Overspecification: There is code in a protocol
implementation to cope with the reception of
messages which are not possible in the protocol
(dead code)
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Non-concurrency Bugs

Of course your standard set of normal bugs not related to
concurrency applies

Incorrect control flow

Incorrect data manipulation

Wrong assumptions about the environment

Null pointer exceptions

Uninitialised data

Array out of bounds errors

Memory management problems
(e.g., leaks, accessing freed memory)
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Automata Theoretic Approach

A short theory of model checking using automata

Assume you have a finite state automaton (FSA) of
the behaviour of the system A
(see Lecture 1 automaton AM for an example)

Assume the specified property is also specified with
an FSA S

Now the system fulfils the specification, if the
language of the system is contained in the language
of the specification:
i.e., it holds that L(A) ⊆ L(S)
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Automata Theoretic Approach (cnt.)

If you have studied the course:
“T-79.1001 Introduction to Theoretical Computer
Science T”
or one of its predecessors well, you know how to
proceed:

We need to generate the product automaton:
P = A∩ S, where S is an automaton which accepts
the complement language of L(S)
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Automata Theoretic Approach (cnt.)

If L(P) = /0, i.e., P does not accept any word, then
the property holds and thus the system is correct

Otherwise, there is some run of P which violates the
specification, and we can generate a counterexample
execution of the system from it (more on this later)
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Language Inclusions

L(S)

L(A)

Good
behaviours behaviours

Bad

Σ∗

L(P) =

L(S)

L(A)∩L(S)
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Finite State Automata

Finite state automata (FSA) can be used to model
finite state systems, as well as specifications for
systems.

In this course they form the theoretical foundations of
analysis algorithms

Next we recall and adapt automata theory from
previous courses

The classes of automata will later be extended with
features such as variables and message queues to
make them more suitable for protocol modelling

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/56



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finite State Automaton

Definition 1 A (nondeterministic finite) automaton Ais a
tuple(Σ,S,S0,∆,F), where

Σ is a finitealphabet,

S is a finite set ofstates,

S0 ⊆ S is the set ofinitial states,

∆ ⊆ S×Σ×S is thetransition relation
(no ε-transitions allowed), and

F ⊆ S is the set ofaccepting states.
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Deterministic Automata (DFA)

An automaton A is deterministic (DFA) if |S0| = 1 and for
all pairs s∈ S,a∈ Σ it holds that if for some s′ ∈ S:
(s,a,s′) ∈ ∆ then there is no s′′ ∈ Ssuch that s′′ 6= s′ and
(s,a,s′′) ∈ ∆.

(I.e., there is only at most one state which can be reached

from s with a.)
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Transition Relation

The meaning of the transition relation ∆ ⊆ S×Σ×S
is the following: (s,a,s′) ∈ ∆ means that there is a
move from state s to state s′ with symbol a.

An alternative (equivalent) definition gives the
transition relation as a function
ρ : S×Σ → 2S, where ρ(s,a) gives the set of states
to which the automaton can move with a from state s.
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Synonyms for FSA

Synonyms for the word automaton are: finite state ma-

chine (FSM), finite state automaton (FSA), nondetermin-

istic finite automaton (NFA), and finite automaton on finite

strings/words.
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Runs

A finite automaton A accepts a set of words L(A) ⊆ Σ∗

called the language accepted by A, defined as follows:

A run r of A on a finite word a0, . . . ,an−1 ∈ Σ∗ is a
sequence s0, . . . ,sn of (n+1) states in S, such that
s0 ∈ S0, and (si,ai,si+1) ∈ ∆ for all 0≤ i < n.

The run r is accepting iff sn ∈ F . A word w∈ Σ∗ is
accepted by A iff A has an accepting run on w.
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Languages

The language of A, denoted L(A) ⊆ Σ∗ is the set of
finite words accepted by A.

A language of automaton A is said to be empty when
L(A) = /0.
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Boolean Operations with Automata

Let us now recall basic operations with finite state
automata.

We will do this by defining the Boolean operators for
finite automata:
A = A1 ∪ A2,A = A1 ∩ A2, and A = A1.

These operations will as a result have an automaton
A, such that:
L(A) = L(A1) ∪ L(A2),L(A) = L(A1) ∩ L(A2), and

L(A) = (Σ∗ \L(A1)) = L(A1), respectively.
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Example: Operations on Automata

As a running example we will use the following automata
A1 and A2, both over the alphabet Σ = {a,b}. We draw
boxes around automata to show which parts belong to
which.

b

a,bs0
A1 s1

b

A2

a

b

b

b
t0

t2

t1

a

b
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A = A1 ∪ A2

Definition 2 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2). We define theunionautomaton

to beA = (Σ,S,S0,∆,F), where:

S= S1 ∪ S2,

S0 = S0
1 ∪ S0

2
(Note: noε-moves but several initial states instead),

∆ = ∆1 ∪ ∆2, and

F = F1 ∪ F2.

We have L(A) = L(A1) ∪ L(A2).
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Example: Union of Automata

The following automaton A is the union, A = A1 ∪ A2.

a

b

b

b
t0

t2

a

b

t1

b

a,bs0 s1

b

Σ = {a,b}

A
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A = A1 ∩ A2

Definition 3 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2). We define theproductautomaton

to beA = (Σ,S,S0,∆,F), where:

S= S1×S2,

S0 = S0
1×S0

2,

for all s,s′ ∈ S1, t, t ′ ∈ S2,a∈ Σ:
((s, t),a,(s′, t ′)) ∈ ∆ iff (s,a,s′) ∈ ∆1 and
(t,a, t ′) ∈ ∆2; and

F = F1×F2.

We have L(A) = L(A1) ∩ L(A2).
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Example: Intersection of Automata

The following automaton A is the intersection (product)
A = A1 ∩ A2.

b

b

b

(s0, t2) (s1, t2)

(s1, t1)(s0, t1)

b

b

b

b

a

A

b
(s0, t0)

a

b

b
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Complementation

The definition of complementation is slightly more
complicated.

We say that an automaton has a completely specified
transition relation if for all states s∈ Sand symbols
a∈ Σ there exist a state s′ ∈ Ssuch that (s,a,s′) ∈ ∆.
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Completely Specified Automata

Any automaton which does not have a completely
specified transition relation can be turned into one by:

adding a new sink state qs,

making qs a non-accepting state,

adding for all a∈ Σ an arc (qs,a,qs), and

for all pairs s∈ S,a∈ Σ: if there is no state s′ such
that (s,a,s′) ∈ ∆, then add an arc (s,a,qs).
(Add all those arcs which are still missing to fulfil the
completely specified property.)
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Complementing DFAs

Note that this construction does not change the
language accepted by the automaton.

We first give a complementation definition which only
works for completely specified deterministic
automata!
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Complementing DFAs (cnt.)

Definition 4 Let A1 = (Σ,S1,S0
1,∆1,F1) be a

deterministicautomaton with a completely specified
transition relation. We define thedeterministic
complementautomaton to beA = (Σ,S,S0,∆,F), where:

S= S1,

S0 = S0
1,

∆ = ∆1, and

F = S1\F1 (“flip the acceptance bit”).

We have L(A) = (Σ∗ \L(A1)).
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Complementing NFAs

The operations we have defined for finite state
automata so far have resulted in automata whose
size is polynomial in the sizes of input automata.

The most straightforward way of implementing
complementation of a non-deterministic automaton is
to first determinize it, and after this to complement
the corresponding deterministic automaton.
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Complementing NFAs (cnt.)

Unfortunately determinization yields an exponential
blow-up. (A worst-case exponential blow-up is in fact
unavoidable in complementing non-deterministic
automata.)
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Determinization

Definition 5 Let A1 = (Σ,S1,S0
1,∆1,F1) be a

non-deterministic automaton. We define a deterministic
automatonA = (Σ,S,S0,∆,F), where

S= 2S1, the set of all sets of states inS1,

S0 = {S0
1}, a single state containing all the initial

states ofA1,

(Q,a,Q′) ∈ ∆ iff Q∈ S,a∈ Σ, and
Q′ = {s′ ∈ S1 | there is(s,a,s′) ∈ ∆1 such thats∈
Q}; and

F = {s∈ S| s∩ F1 6= /0}, those states inSwhich
contain at least one accepting state ofA1.
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Determinization (cnt.)

The intuition behind the construction is that it
combines all possible runs on given input word into
one run, where we keep track of all the possible
states we can currently be in by using the “state
label”.
(The automaton state consists of the set of states in
which the automaton can be in after reading the input
so far.)

We denote the construction of the previous slide with
A = det(A1) Note that L(A) = L(A1), and A is
deterministic. If A1 has n states, the automaton A will
contain 2n states.
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Determinization (cnt.)

Note also that the determinization construction gives
an automaton A with a completely specified
transition relation as output. Thus to complement an
automaton A1, we can use the procedure
A′ = det(A1), A = A′, and we get that

L(A) = Σ∗ \L(A′) = Σ∗ \L(A1) = L(A1).

To optimise the construction slightly, usually only
those states of A which are reachable from the initial
state are added to set of states set of A.

One can also use the classical DFA minimisation
algorithm to reduce the size of the result further.
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Example: Determinization

We want to determinize the following automaton A1 over
the alphabet Σ = {a,b}.

b

b

b

q3 q4

q2q1

b

b

b

b

a

A1

b
q0

a

b

b
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Example: Determinization Result

As a result we obtain the automaton A below. (In this
course it always suffices to only consider the part
reachable from the initial state!)

b

a

A

{q0}

a

b

a

b
{q3,q4}

a

a

b b

/0

{q2}

{q1,q2,q3,q4}

{q4}

a,b
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Example: Complementation

Let’s call the result of the previous slide A1, and
complement the result. We get:

b

a

A

{q0}

a

b

a

b
{q3,q4}

a

a

b b

/0

{q2}

{q1,q2,q3,q4}

{q4}

a,b
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Boolean Operations

We have now shown that finite state automata are
closed under all Boolean operations, as with ∪, ∩,
and A all other Boolean operations can be done.

All operations except for determinization (which is
also used to complement nondeterministic
automata!) created a polynomial size output in the
size of the inputs.
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State Explosion from Intersection

Note, however, that even if A1,A2,A3,A4 have k
states each, the automaton
A′

4 = A1 ∩ A2 ∩ A3 ∩ A4 (sometimes alternatively
called the synchronous product and denoted
A′

4 = A1×A2×A3×A4) can have k4 states, and

thus in the general A′
i will have ki states.

Therefore even if a single use of ∩ is polynomial,
repeated applications often will result in a state
explosion problem.

In fact, the use of × as demonstrated above could in
principle be used to compose the behaviour of a
parallel system from its components.
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Checking Safety Properties with FSA

A safety property can be informally described as a
property stating that “nothing bad should happen”.
(We will come back to the formal definition later in
the course.)

When checking safety properties, the behaviour of a
system can be described by a finite state automaton,
call it A.

Also in the allowed behaviours of the system can be
specified by another automaton, call it the
specification automaton S.
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Checking Safety (cnt.)

Assume that the specification specifies all legal
behaviours of the system. In other words a system is
incorrect if it has some behaviour (accepts a word)
that is not accepted by the specification. In other
words a correct implementation has less behaviour
than the specification, or more formally L(A) ⊆ L(S).
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Language Containment

Checking whether L(A) ⊆ L(S) holds is referred to
as performing a language containment check.

Recall: By using simple automata theoretic
constructions given above, we can now check
whether the system meets its specification. Namely,
we can create a product automaton
P = A∩Sand then check whether L(P) = /0.

In case the safety property does not hold, the
automaton P has a counterexample run rp which
accepts a word w, such that w∈ L(A) but w 6∈ L(S).
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Creating the Counterexample

By projecting rp on the states of A one can obtain a
run of ra of the system (a sequence of states of the
system) which violates the specification S.
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Example: Safety Property

Consider the problem of mutual exclusion. Assume
that the alphabet is Σ = {e1,e2, l1, l2}, where e1
means that process 1 enters the critical section and
l1 means that process 1 leaves the critical section.

The automaton Sspecifying correct mutual exclusion
property is the following.

e1

e2

s0

S

l2

l1

s2

s1
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Example: Safety Property (cnt.)

If we want to check whether L(A) ⊆ L(S), we need to
complement S. We get the following:

e1

e2

S

{s2}

{s1}

l2

l1

l1, l2

e1,e2, l2

e1,e2, l1

{s0}

e1,e2, l1, l2

/0
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Example: Safety Property (cnt.)

If we now have an automaton A modelling the behaviour of

the mutex system, we can create the product automaton

P = A ∩ det(S). Now the mutex system is correct iff the

automaton P does not accept any word.
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