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Leture 3: Normal Programs

Outline1. Negative onditions2. Stable model semantis3. Variables and domains4. Programming tips5. Problem solving
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1. NEGATIVE CONDITIONS

➤ The semantis based on least models provides a logial foundationfor rule-based reasoning: P |= a i� a ∈ LM(P) for an atom a.

➤ In partiular, atoms a ∈ Hb(P) that are not logial onsequenesof P, i.e., P 6|= a holds, are false in LM(P) by default.

➤ In many appliations, it is onvenient/neessary to refer toomplements of ertain relations using negative onditions.
➤ The notion of answer sets based on stable models provides adelarative semantis for programs involving negative onditions.Example. Consider the following de�nition of a onsript:

Conscript(X)← Person(X),∼Female(X).
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Example

Consider the following set of rules involving negative onditions.
Conscript(x)← Person(x),∼Female(x).

Female(x)← Person(x),∼Volunteer(x),∼Conscript(x).

Person(joe).What would be the right answer for the query Conscript(joe)?
➤ The meaning of the rules depends on the order of appliation:

Person(joe), ∼Female(joe) =⇒ Conscript(joe)

Person(joe), ∼Volunteer(joe), ∼Conscript(joe) =⇒ Female(joe)

➤ Thus it seems non-trivial to ombine reursive de�nitions withnegation and, in partiular, to obtain a delarative semantis.
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2. STABLE MODEL SEMANTICS

➤ In 1988, Gelfond and Lifshitz proposed stable models in order toprovide a delarative semantis for negative onditions in rules.

➤ The rules of normal logi programs are of the form

a← b1, . . . ,bn,∼c1, . . . ,∼cm.where ∼ denotes negation by default.

➤ Stable models are based on the following two ideas:1. M |=∼c holds for a negative ondition ∼c ⇐⇒ c 6∈M, and2. a model M is stable i� it is the least Herbrand model for therules having their all negative onditions satis�ed by M.
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Example

Reonsider the program from the preeding example after grounding:

Conscript(joe)← Person(joe),∼Female(joe).

Female(joe)← Person(joe),∼Volunteer(joe),∼Conscript(joe).

Person(joe).

➤ The model M = {Person(joe),Conscript(joe)} is stable.

➤ The negative onditions of the �rst and the last rule are true in Mwhih is the least Herbrand model of the respetive positive rules:

Conscript(joe)← Person(joe). Person(joe).

➤ But N = {Person(joe),Female(joe)} is also stable (whih suggestsus to speify Joe's gender; or to revise the given rules somehow).
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De�nition of Stability

De�nition. Let P be a normal logi program without variables and

M ⊆ Hb(P) an interpretation.The Gelfond-Lifshitz redut of P with respet to M is

PM = {a← b1, . . . ,bn | a← b1, . . . ,bn,∼c1, . . . ,∼cm ∈ Pand M |=∼c1, . . . ,∼cm}.Remark. Note that in the de�nition of PM,

M |=∼c1, . . . ,∼cm i� M∩{c1, . . . ,cm}= /0.De�nition. Let P be a normal logi program without variables.An interpretation M ⊆ Hb(P) is a stable model of P i� M = LM(PM).
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Example

Consider a normal logi program P having the rules listed below:
a← c,∼b.

b←∼a.

c←∼d.

d←∼a.1. The interpretation M1 = {a,c} is a stable model of P beause

PM1 = {a← c. c. } and M1 is the least model of PM1 .2. But M2 = {a,d} is not stable beause PM2 = {a← c. } for whihthe least model is /0. Note that M2 |= P in the lassial sense.3. Finally, M3 = {b,d} is also a stable model of P.
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The ΓP Operator

De�nition. Given a normal logi program P, de�ne an operator

ΓP : 2Hb(P)→ 2Hb(P) by setting

ΓP(M) = {a | a ∈ Hb(P) and PM |= a}= LM(PM).Proposition. An interpretation M ⊆ Hb(P) is a stable model of anormal program P i� M = ΓP(M).The operator ΓP is not monotoni but antimonotoni:Proposition. For any normal program P and interpretations

M ⊆ N ⊆ Hb(P), ΓP(N)⊆ ΓP(M).Proof. It is su�ient to note that M ⊆ N implies PN ⊆ PM and

LM(PN)⊆ LM(PM) by the monotoniity of LM(·). 2
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Properties of Stable Models

➤ Unlike the least model of a positive program, stable models arenot neessarily unique as demonstrated by programs given below:1. P0 = {a←∼a. } has no stable models.2. P1 = {a←∼b. } has one stable model {a}.3. P2 = {a←∼b. b←∼a. } has two stable models {a} and {b}.

☞ We write SM(P) for the set of stable models of P.

➤ Stable models are minimal in the sense that if M ∈ SM(P) thenthere is no other N ∈ SM(P) suh that N ⊂M.

➤ A stable model M ∈ SM(P) is strongly grounded in the rules of P:

a ∈M i� PM |= a.

© 2007 TKK / TCS

AB

T-79.5102 / Autumn 2007 Normal programs 10

Answer Set Programming

➤ A traditional PROLOG system answers a query Q either �yes�(with an answer substitution θ for the variables of Q) or �no�.

➤ Stable models, or answer sets, are based on a novel interpretationof logi programs as sets of onstraints on their models.
➤ Typially, an answer set�omputed using a speial searhengine�aptures a solution to the problem being solved.
➤ Rule-based languages are highly expressive:Many problems involving onstraints an be reformulated asproblems of �nding a stable model for the respetive set of rules.
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3. VARIABLES AND DOMAINSThe ground program Gnd(P) is de�ned for normal logi programs P inthe same way as for positive programs.De�nition. Let P be a normal logi program�potentially involvingvariables�and Gnd(P) the respetive ground program.A Herbrand interpretation M ⊆ Hb(P) is a stable model of P i�
M = ΓGnd(P)(M) = LM(Gnd(P)M).Example. Let us onsider P = {A(c,d). B(x)← A(x,y),∼B(y). }.The ground program Gnd(P) ontains the following rules:

A(c,d). B(c)← A(c,c),∼B(c). B(c)← A(c,d),∼B(d).

B(d)← A(d,c),∼B(c). B(d)← A(d,d),∼B(d).The interpretation M = {A(c,d), B(c)} is the only stable model of P.© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Normal programs 12

Domain Prediates

➤ Ground programs Gnd(P) an beome very large and they mayontain many useless or redundant rules.

➤ A way to prune unneessary rules is to introdue domainprediates whih are relation symbols having a �xed interpretation.

➤ Even reursive de�nitions for domain prediates, like G(·, ·) below,an be tolerated unless reursion does not involve negation.Example. Consider the following example:

D(a). E(b). F(x)← D(x). F(x)← E(x).

G(x,y)← D(x), E(y). G(y,x)← G(x,y), F(x), F(y).

R(x,y)← G(x,y),∼S(y,x). S(y,x)← G(x,y),∼R(y,x).Here D, E, F, and G are domain prediates but R and S are not.© 2007 TKK / TCS
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Example

Some observations about the preeding program, say P, follow:

➤ The Herbrand universe Hu(P) = {a,b} is �nite.

➤ The least Herbrand model for P′ onsisting of the �rst six rules of

P is LM(Gnd(P′)) = {D(a),E(b),F(a),F(b),G(a,b),G(b,a)}.

➤ The model LM(Gnd(P′)) an be represented as a set of fats.

➤ Only two ground instanes of the last two rules eah are needed:

R(b,a)← G(a,b),∼S(b,a). R(a,b)← G(b,a),∼S(a,b).

S(b,a)← G(a,b),∼R(b,a). S(a,b)← G(b,a),∼R(a,b).

➤ An intelligent grounder an simplify these rules further by droppingonditions G(a,b) and G(b,a) as they are satis�ed for sure.
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Restriting Domains of Variables

➤ The idea is to ontrol the size of the resulting ground program byintroduing domain prediates that �x the domain of eah variable.De�nition. A normal program P is strongly typed or strongly domainrestrited i� for eah rule

R(~t)← R1(~t1), . . . ,Rn(~tn),∼S1(~u1), . . . ,∼Sm(~um)of P and for eah variable x appearing in the rule, x appears in some ofthe positive onditions Ri(~ti) where Ri is a domain prediate.

Example. Assuming that D(·) is the only domain prediate, the rule
R(x,y)← D(x), D(y),∼S(y,x) is strongly typed, but the rules
F(x,y)← D(x), E(x) and E(x)←∼D(x) are not.
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4. PROGRAMMING TIPSThe logial onnetives of propositional logi are available.
➤ The onjuntion of onditions c1, . . . ,cn is aptured by a single(positive) rule c← c1, . . . ,cn.

➤ Expressing the disjuntion of onditions d1, . . . ,dn requires theintrodution of n rules d← d1. . . . d← dn.
➤ A onstraint ← b1, . . . ,bn that formalizes the negation
¬(b1∧ . . .∧bn) is best expressed using a rule f ← b1, . . . ,bn,∼ fwhere f is a new atom not appearing elsewhere in the program.Example. One is supposed to have one or two deliaies out of three:

Some← Cake. Some← Bun. Some← Cookie.

All← Cake, Bun, Cookie. F← All,∼F. F←∼Some,∼F.
© 2007 TKK / TCS
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Making Choies

➤ A hoie between two atoms a and b an be expressed in terms oftwo normal rules a←∼b and b←∼a.

➤ Suh a hoie an be generalized for any number of atoms andonditionalized by adding onditions in rule bodies.

➤ A typial approah in ASP is to express a number of hoies andthen exlude ertain ombinations using other rules or onstraints.Example. One is supposed to have o�ee or tea�but not both�andalso one of three deliaies in ase tea is seleted:

Coffee←∼Tea. Cake← Tea,∼Cookie,∼Bun.

Tea←∼Coffee. Bun← Tea,∼Cookie,∼Cake.

Cookie← Tea,∼Bun,∼Cake.
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Rules with Exeptions

➤ Normal programs enable ontext-dependent reasoning in whihthe appliability of rules depends dynamially on the ontext.

➤ In ommon-sense reasoning, it is typial to formalize the normalstate of a�airs inluding any exeptions to that.Example. Birds do normally �y�unless we have an exeptional bird.

Flies(x)← Bird(x),∼Abnormal(x).

Abnormal(x)← Penguin(x). Abnormal(x)←Oily(x). . . .The stable models of this program, say P, behave as follows:1. SM(P∪{Bird(tw). }) = {{Bird(tw),Flies(tw)}}.2. SM(P∪{Bird(tw). Oily(tw). }) = {{Bird(tw),Oily(tw),Abnormal(tw)}}.
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4. PROBLEM SOLVINGCheking the satis�ability of a propositional theoryA set of lauses S is translated into a normal program PS as follows:1. For eah atom a ∈ Hb(S), we introdue a new atom a and tworules a←∼a and a←∼a.2. Eah lause a1∨ . . .∨an∨¬b1∨ . . .∨¬bm from S is translated into
f ← a1, . . . ,an, b1, . . . ,bm,∼ fwhere f 6∈ Hb(S) is a new atom.

=⇒ Hb(PS) = Hb(S)∪{a | a ∈ Hb(S)}∪{ f}.Proposition. A set of lauses S has a model M, i.e., S is satis�able, i�the program PS has a stable model N suh that M = N∩Hb(S).
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Example

Consider the translation of S = {a∨b, a∨¬b, ¬a∨¬b} into a normalprogram. The translation PS onsists of the following rules:
a←∼a. a←∼a. b←∼b. b←∼b.

f ← a, b,∼ f . f ← a, b,∼ f . f ← a, b,∼ f .A number of observations an be made:
➤ Now, the set of lauses S has a model M i� the program PS has astable model N suh that M = N∩{a,b}.
➤ Beause N1 = {a,b} is a stable model of PS, we know that

M1 = {a} is a model of S.
➤ On the other hand, N2 = {a,b} is not a stable model of PS.
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Graph 3-Coloring

A graph G an be represented by fats of the form �Edge(x,y).�where x and y stand for nodes. The following normal program P3c
G isa uniform enoding for the problem of oloring the nodes of G withthree olors so that the endpoints of eah edge have di�erent olors.

Node(x)← Edge(x,y). Node(y)← Edge(x,y). (projetion)

Black(x)← Node(x),∼White(x),∼Grey(x). (hoies)

White(x)← Node(x),∼Black(x),∼Grey(x).

Grey(x)← Node(x),∼White(x),∼Black(x).

F← Edge(x,y), Black(x), Black(y),∼F. (onstraints)

F← Edge(x,y), White(x), White(y),∼F.

F← Edge(x,y), Grey(x), Grey(y),∼F.Proposition. The graph G has a 3-oloring i� P3c
G has a stable model.© 2007 TKK / TCS
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Hamiltonian Cyles in Graphs

The problem is to hek whether a given graph has a Hamiltonianyle whih visits all nodes of the graph exatly one. In addition tothe edge relation, the following rules are introdued in program PH
G .1. The nodes of the graph are extrated from the edge relation:

Node(x)← Edge(x,y). Node(y)← Edge(x,y). Same(x,x)←Node(x).2. Any yle starts from a partiular node hosen here.

Start(x)← Node(x),∼Other(x).

Other(x)← Node(x),∼Start(x).

F← Start(x), Start(y),∼Same(x,y), Node(x), Node(y),∼F.

HasStart← Start(x), Node(x).

F←∼HasStart,∼F.
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3. Next the edges whih are on the yle are hosen.

In(x1,x2)← Edge(x1,x2),∼Out(x1,x2).

Out(x1,x3)← In(x1,x2),∼Same(x2,x3), Edge(x1,x2), Edge(x1,x3).

Out(x3,x2)← In(x1,x2),∼Same(x2,x3), Edge(x1,x2), Edge(x3,x2).4. All nodes of the graph must be reahable via the yle.

Reached(x)← Start(x).

Reached(x)← In(y,x), Reached(y), Edge(y,x).

F← Node(x),∼Reached(x),∼F.

Proposition. The program PH
G�together with fats that desribe theedge relation�has a stable model ⇐⇒ G has a Hamiltonian yle.
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OBJECTIVES

➤ You know what kind of problems arise when negative onditionsare inorporated into reursive de�nitions.
➤ You are able to reprodue the de�nition of stable models and toprove simple properties about them.
➤ You an alulate stable models for simple normal logi programs(at least by exhaustive generation of model andidates).

➤ You are able to formalize simple onstraint programming problemsby desribing their solutions in terms of rules.
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TIME TO PONDERAs demonstrated above, a normal logi program an have severalstable models, a unique stable model, or no stable models at all.

Problem. Design a propositional normal program Pn that has exatly

n≥ 0 stable models.How does the length of Pn, measured in the number of atoms andonnetives, hange as the funtion of n?
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