

Example

Reconsider the program from the preceding example after grounding:

5

8

Consider a normal logic program *P* having the rules listed below:

 $Conscript(joe) \leftarrow Person(joe), \sim Female(joe).$ $a \leftarrow c, \sim b$. $Female(joe) \leftarrow Person(joe), \sim Volunteer(joe), \sim Conscript(joe).$ $b \leftarrow \sim a$. Person(joe). $c \leftarrow \sim d$. $d \leftarrow \sim a$ The model $M = \{\text{Person(joe)}, \text{Conscript(joe)}\}$ is stable. 1. The interpretation $M_1 = \{a, c\}$ is a stable model of P because \blacktriangleright The negative conditions of the first and the last rule are true in M $P^{M_1} = \{a \leftarrow c, c, \}$ and M_1 is the least model of P^{M_1} . which is the least Herbrand model of the respective positive rules: 2. But $M_2 = \{a, d\}$ is not stable because $P^{M_2} = \{a \leftarrow c.\}$ for which $Conscript(joe) \leftarrow Person(joe)$. Person(joe). the least model is \emptyset . Note that $M_2 \models P$ in the classical sense. ▶ But $N = \{\text{Person(joe)}, \text{Female(joe)}\}\$ is also stable (which suggests us to specify Joe's gender; or to revise the given rules somehow). 3. Finally, $M_3 = \{b, d\}$ is also a stable model of P. © 2007 TKK / TCS © 2007 TKK / TCS T-79.5102 / Autumn 2007 T-79.5102 / Autumn 2007 Normal programs 6 Normal programs Definition of Stability The Γ_P Operator **Definition.** Let *P* be a normal logic program without variables and **Definition.** Given a normal logic program P, define an operator $M \subseteq \operatorname{Hb}(P)$ an interpretation. $\Gamma_P: \mathbf{2}^{\operatorname{Hb}(P)} \to \mathbf{2}^{\operatorname{Hb}(P)}$ by setting The Gelfond-Lifschitz reduct of P with respect to M is $\Gamma_P(M) = \{a \mid a \in \operatorname{Hb}(P) \text{ and } P^M \models a\} = \operatorname{LM}(P^M).$ $P^{M} = \{a \leftarrow b_{1}, \dots, b_{n} \mid a \leftarrow b_{1}, \dots, b_{n}, \sim c_{1}, \dots, \sim c_{m} \in P$ **Proposition.** An interpretation $M \subseteq Hb(P)$ is a stable model of a and $M \models \sim c_1, \ldots, \sim c_m$. normal program P iff $M = \Gamma_P(M)$. The operator Γ_P is not monotonic but *antimonotonic*: **Remark.** Note that in the definition of P^M , **Proposition**. For any normal program P and interpretations $M \models \sim c_1 \dots \sim c_m$ iff $M \cap \{c_1, \dots, c_m\} = \emptyset$. $M \subseteq N \subseteq \operatorname{Hb}(P), \ \Gamma_P(N) \subseteq \Gamma_P(M).$ **Definition.** Let *P* be a normal logic program without variables. **Proof.** It is sufficient to note that $M \subseteq N$ implies $P^N \subseteq P^M$ and $LM(P^N) \subseteq LM(P^M)$ by the monotonicity of $LM(\cdot)$. An interpretation $M \subseteq \operatorname{Hb}(P)$ is a stable model of P iff $M = \operatorname{LM}(P^M)$.

9

10

3. VARIABLES AND DOMAINS

Normal programs

The ground program Gnd(P) is defined for normal logic programs P in the same way as for positive programs.

Definition. Let P be a normal logic program—potentially involving variables—and Gnd(P) the respective ground program.

A Herbrand interpretation $M \subseteq \operatorname{Hb}(P)$ is a stable model of P iff $M = \Gamma_{\operatorname{Gnd}(P)}(M) = \operatorname{LM}(\operatorname{Gnd}(P)^M).$

Example. Let us consider $P = \{A(c,d), B(x) \leftarrow A(x,y), \sim B(y), \}$. The ground program Gnd(P) contains the following rules:

The interpretation $M = \{A(c,d), B(c)\}$ is the only stable model of P.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

T-79.5102 / Autumn 2007

Normal programs

12

Domain Predicates

- ➤ Ground programs Gnd(P) can become very large and they may contain many useless or redundant rules.
- A way to prune unnecessary rules is to introduce *domain* predicates which are relation symbols having a fixed interpretation.
- Even recursive definitions for domain predicates, like $G(\cdot, \cdot)$ below, can be tolerated unless recursion does not involve negation.

Example. Consider the following example:

D(a). $E(b)$.	$F(x) \leftarrow D(x)$. $F(x) \leftarrow E(x)$.
$G(x,y) \leftarrow D(x), E(y).$	$G(y,x) \leftarrow G(x,y), F(x), F(y).$
$R(x,y) \leftarrow G(x,y), \sim S(y,x).$	$S(y,x) \leftarrow G(x,y), \sim R(y,x).$

Here D, E, F, and G are domain predicates but R and S are not.

Normal programs

Answer Set Programming

- > A traditional PROLOG system answers a query Q either "yes" (with an answer substitution θ for the variables of Q) or "no".
- ➤ Stable models, or *answer sets*, are based on a novel interpretation of logic programs as sets of constraints on their models.
- Typically, an answer set—computed using a special search engine—captures a solution to the problem being solved.
- ► Rule-based languages are highly expressive:

Many problems involving constraints can be reformulated as problems of finding a stable model for the respective set of rules.

14

Example

Some observations about the preceding program, say P, follow:

- ▶ The Herbrand universe $Hu(P) = \{a, b\}$ is finite.
- ➤ The least Herbrand model for P' consisting of the first six rules of P is LM(Gnd(P')) = {D(a), E(b), F(a), F(b), G(a,b), G(b,a)}.
- ▶ The model LM(Gnd(P')) can be represented as a set of facts.
- > Only two ground instances of the last two rules each are needed:

 $R(b,a) \leftarrow G(a,b), \sim S(b,a).$ $R(a,b) \leftarrow G(b,a), \sim S(a,b).$

- $S(b,a) \leftarrow G(a,b), \sim \!\! R(b,a). \qquad S(a,b) \leftarrow G(b,a), \sim \!\! R(a,b).$
- ➤ An intelligent grounder can simplify these rules further by dropping conditions G(a,b) and G(b,a) as they are satisfied for sure.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Normal programs

Restricting Domains of Variables

The idea is to control the size of the resulting ground program by introducing domain predicates that fix the domain of each variable.

Definition. A normal program P is strongly typed or strongly domain restricted iff for each rule

 $R(\vec{t}) \leftarrow R_1(\vec{t_1}), \ldots, R_n(\vec{t_n}), \sim S_1(\vec{u_1}), \ldots, \sim S_m(\vec{u_m})$

of *P* and for each variable *x* appearing in the rule, *x* appears in some of the positive conditions $R_i(\vec{t_i})$ where R_i is a domain predicate.

Example. Assuming that $D(\cdot)$ is the only domain predicate, the rule $R(x,y) \leftarrow D(x), D(y), \sim S(y,x)$ is strongly typed, but the rules $F(x,y) \leftarrow D(x), E(x)$ and $E(x) \leftarrow \sim D(x)$ are not.

4. PROGRAMMING TIPS

The logical connectives of propositional logic are available.

- The conjunction of conditions c_1, \ldots, c_n is captured by a single (positive) rule $c \leftarrow c_1, \ldots, c_n$.
- ► Expressing the *disjunction* of conditions d_1, \ldots, d_n requires the introduction of *n* rules $d \leftarrow d_1, \ldots, d \leftarrow d_n$.
- ➤ A constraint $\leftarrow b_1, ..., b_n$ that formalizes the *negation* $\neg(b_1 \land ... \land b_n)$ is best expressed using a rule $f \leftarrow b_1, ..., b_n, \sim f$ where f is a new atom not appearing elsewhere in the program.

Example. One is supposed to have one or two delicacies out of three: Some \leftarrow Cake. Some \leftarrow Bun. Some \leftarrow Cookie.

 $\mathsf{AII} \gets \mathsf{Cake}, \mathsf{Bun}, \mathsf{Cookie}. \quad \mathsf{F} \gets \mathsf{AII}, \sim \mathsf{F}. \quad \mathsf{F} \gets \sim \mathsf{Some}, \sim \mathsf{F}.$

© 2007 TKK / TCS

The

 \implies

20

 $b, \neg a \lor \neg b$ into a normal following rules:

$$\begin{array}{ll} a \leftarrow \sim \overline{a}. & \overline{a} \leftarrow \sim a. & b \leftarrow \sim \overline{b}. & \overline{b} \leftarrow \sim b. \\ f \leftarrow \overline{a}, \overline{b}, \sim f. & f \leftarrow \overline{a}, b, \sim f. & f \leftarrow a, b, \sim f. \end{array}$$

- M iff the program P_S has a
- P_S , we know that
- stable model of P_S .

ograms ıg ie form "Edge(x, y)." g normal program $P_G^{
m 3c}$ is ng the nodes of G with ge have different colors. e(x, y). (projection) (choices) (x).(x). *x*). (constraints)

Proposition. The graph G has a 3-coloring iff P_G^{3c} has a stable model.

ExampleExampleExampleNormal programs enable context-dependent reasoning in which
the applicability of rules depends dynamically on the context.In common-sense reasoning, it is typical to formalize the normal
state of affairs including any exceptions to that.ExampleConsider the translation
$$P_{\lambda}$$
 consists of the d
are $\neg \overline{a}$. $\overline{a} \leftarrow \neg \overline{a}$. |

Hamiltonian Cycles in Graphs

The problem is to check whether a given graph has a Hamiltonian cycle which visits all nodes of the graph exactly once. In addition to

the edge relation, the following rules are introduced in program $P_G^{\rm H}$.

1. The nodes of the graph are extracted from the edge relation:

2. Any cycle starts from a particular node chosen here.

 $Start(x) \leftarrow Node(x), \sim Other(x).$

 $Other(x) \leftarrow Node(x), \sim Start(x).$

 $HasStart \leftarrow Start(x), Node(x).$

 $F \leftarrow \sim HasStart, \sim F.$

T-79.5102 / Autumn 2007

 $Node(x) \leftarrow Edge(x, y)$. $Node(y) \leftarrow Edge(x, y)$. $Same(x, x) \leftarrow Node(x)$.

 $\mathsf{F} \leftarrow \mathsf{Start}(x), \mathsf{Start}(y), \sim \mathsf{Same}(x, y), \mathsf{Node}(x), \mathsf{Node}(y), \sim \mathsf{F}.$

© 2007 TKK / TCS

23

24

- > You know what kind of problems arise when negative conditions are incorporated into recursive definitions.
- > You are able to reproduce the definition of stable models and to prove simple properties about them.
- ➤ You can calculate stable models for simple normal logic programs (at least by exhaustive generation of model candidates).
- > You are able to formalize simple constraint programming problems by describing their solutions in terms of rules.

© 2007 TKK / TCS


```
3. Next the edges which are on the cycle are chosen.
```

```
ln(x1,x2) \leftarrow Edge(x1,x2), \sim Out(x1,x2).
\operatorname{Out}(x1,x3) \leftarrow \operatorname{In}(x1,x2), \sim \operatorname{Same}(x2,x3), \operatorname{Edge}(x1,x2), \operatorname{Edge}(x1,x3).
Out(x3,x2) \leftarrow In(x1,x2), \sim Same(x2,x3), Edge(x1,x2), Edge(x3,x2).
```

```
4. All nodes of the graph must be reachable via the cycle.
```

```
\mathsf{Reached}(x) \leftarrow \mathsf{Start}(x).
\mathsf{Reached}(x) \leftarrow \mathsf{In}(y, x), \mathsf{Reached}(y), \mathsf{Edge}(y, x).
\mathsf{F} \leftarrow \mathsf{Node}(x), \sim \mathsf{Reached}(x), \sim \mathsf{F}.
```

Proposition. The program $P_G^{\rm H}$ —together with facts that describe the edge relation—has a stable model $\iff G$ has a Hamiltonian cycle.

© 2007 TKK / TCS