T-79.5102 / Autumn 2007 Normal programs

Lecture 3: Normal Programs'

1. Negative conditions

Outline

2. Stable model semantics
3. Variables and domains
4. Programming tips

5. Problem solving

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

4 N

1. NEGATIVE CONDITIONS I

0 The semantics based on least models provides a logical foundation
for rule-based reasoning: P |=aiff ac LM(P) for an atom a

O In particular, atoms a € Hb(P) that are not logical consequences
of P, i.e., P |~ a holds, are false in LM(P) by default.

O In many applications, it is convenient/necessary to refer to
complements of certain relations using negative conditions.

0 The notion of answer sets based on stable models provides a
declarative semantics for programs involving negative conditions.

Example. Consider the following definition of a conscript:

Conscript(X) < Person(X), ~Female(X).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

Consider the following set of rules involving negative conditions.

Conscript(X) < Person(X), ~Female(X).
Female(x) < Person(x), ~Volunteer(x), ~Conscript(X).
Person(joe).
What would be the right answer for the query Conscript(joe)?
0 The meaning of the rules depends on the order of application:
Person(joe), ~Female(joe) = Conscript(joe)
Person(joe), ~Volunteer(joe), ~Conscript(joe) = Female(joe)

0 Thus it seems non-trivial to combine recursive definitions with
negation and, in particular, to obtain a declarative semantics.

_

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

2. STABLE MODEL SEMANTICSI

O In 1988, Gelfond and Lifschitz proposed stable models in order to
provide a declarative semantics for negative conditions in rules.
O The rules of normal logic programs are of the form
a< bq,...,by,~C1,...,~Cn.
where ~ denotes negation by default.
0 Stable models are based on the following two ideas:
1. M = ~c holds for a negative condition ~c <= c¢ M, and

2. a model M is stable iff it is the least Herbrand model for the
rules having their all negative conditions satisfied by M.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

Reconsider the program from the preceding example after grounding:

Conscript(joe) < Person(joe), ~Female(joe).
Female(joe) < Person(joe), ~Volunteer(joe), ~Conscript(joe).
Person(joe).

O The model M = {Person(joe), Conscript(joe)} is stable.

O The negative conditions of the first and the last rule are true in M
which is the least Herbrand model of the respective positive rules:

Conscript(joe) < Person(joe). Person(joe).

O But N ={Person(joe),Female(joe)} is also stable (which suggests
us to specify Joe's gender; or to revise the given rules somehow).

4)

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

4 N

Definition of Stability'

Definition. Let P be a normal logic program without variables and
M C Hb(P) an interpretation.

The Gelfond-Lifschitz reduct of P with respect to M is
PM — {a<— bi,....by | a«by,...,byh,~C1,...,~CneP
and M = ~cy,...,~Cn}.
Remark. Note that in the definition of PV,
M ~cy,...,~Cn iff MN{C1,...,Cm} = 0.

Definition. Let P be a normal logic program without variables.

An interpretation M C Hb(P) is a stable model of P iff M = LM(PM).

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

Consider a normal logic program P having the rules listed below:
a«<c, ~b.
b~ ~a.
C« ~d.
d«— ~a.

1. The interpretation My = {a,c} is a stable model of P because
Pi1 = {a«c. c } and My is the least model of PM:.

2. But My = {a,d} is not stable because PM2 = {a«c. } for which
the least model is 0. Note that My |= P in the classical sense.

3. Finally, M3 = {b,d} is also a stable model of P.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

The I'p Operator I

Definition. Given a normal logic program P, define an operator
Mp: 2H0(P) _, 2HB(P) by setting

Fp(M)={alacHb(P) and PM = a} = LM(PM).
Proposition. An interpretation M C Hb(P) is a stable model of a
normal program P iff M =Tp(M).

The operator 'p is not monotonic but antimonotonic:

Proposition. For any normal program P and interpretations
M C N CHb(P), F'p(N) CTp(M).

Proof. It is sufficient to note that M C N implies PN C PM and
LM(PN) C LM(PM) by the monotonicity of LM(-). O

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

_

Properties of Stable Models'

O Unlike the least model of a positive program, stable models are
not necessarily unique as demonstrated by programs given below:

1. PBp={a+« ~a. } has no stable models.
2. PL={a< ~b. } has one stable model {a}.
3. b={a< ~b. b« ~a } has two stable models {a} and {b}.
|:| We write SM(P) for the set of stable models of P.

O Stable models are minimal in the sense that if M € SM(P) then
there is no other N € SM(P) such that N C M.

O A stable model M € SM(P) is strongly grounded in the rules of P:

acMiff PM =a

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

Answer Set Programming'

O A traditional PROLOG system answers a query Q either “yes”
(with an answer substitution 8 for the variables of Q) or “no".

0 Stable models, or answer sets, are based on a novel interpretation
of logic programs as sets of constraints on their models.

O Typically, an answer set—computed using a special search
engine—captures a solution to the problem being solved.
0 Rule-based languages are highly expressive:

Many problems involving constraints can be reformulated as
problems of finding a stable model for the respective set of rules.

J

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007

4)

3. VARIABLES AND DOMAINSI

The ground program Gnd(P) is defined for normal logic programs P in

Normal programs

the same way as for positive programs.

Definition. Let P be a normal logic program—potentially involving
variables—and Gnd(P) the respective ground program.

A Herbrand interpretation M C Hb(P) is a stable model of P iff
M = Fgndep) (M) = LM(Gnd(P)™).

Example. Let us consider P = {A(c,d). B(Xx) < A(x,y), ~B(y). }.
The ground program Gnd(P) contains the following rules:

A(c,d). B(c) « A(c,c), ~B(c).

B(d) — A(d,c), ~B(c).

B(c) < A(c,d), ~B(d).
B(d) — A(d,d), ~B(d).
The interpretation M = {A(c,d), B(c)} is the only stable model of P.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4 N

Domain Predicates I

O Ground programs Gnd(P) can become very large and they may

Normal programs

contain many useless or redundant rules.

O A way to prune unnecessary rules is to introduce domain
predicates which are relation symbols having a fixed interpretation.

O Even recursive definitions for domain predicates, like G(-,-) below,
can be tolerated unless recursion does not involve negation.
Example. Consider the following example:
D(a). E(b). F(X) —D(x). F(x) < E(x).
G(x,y) < D(x), E(y)- G(y,x) — G(xy), F(x), F(y).
R(%,Y) = G(x,¥), ~Sy,x). S(¥%,%X) — G(x,Y), ~R(y,).

Here D, E, F, and G are domain predicates but R and S are not.

J

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Normal programs

4)

Some observations about the preceding program, say P, follow:

O The Herbrand universe Hu(P) = {a,b} is finite.

O The least Herbrand model for P’ consisting of the first six rules of
Pis LM(Gnd(P')) = {D(a),E(b),F(a),F(b),G(a b),G(b,a)}.

O The model LM(Gnd(P’)) can be represented as a set of facts.

O Only two ground instances of the last two rules each are needed:
R(b,a) — G(a,b), ~S(b,a). R(a,b) + G(b,a), ~Sa,b).
S(b,a) — G(a,b), ~R(b,a). S(a,b) — G(b,a), ~R(a,b).

O An intelligent grounder can simplify these rules further by dropping
conditions G(a,b) and G(b,a) as they are satisfied for sure.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

4 N

Restricting Domains of Variables'

O The idea is to control the size of the resulting ground program by

introducing domain predicates that fix the domain of each variable.

Definition. A normal program P is strongly typed or strongly domain
restricted iff for each rule

R(B — Rl(G.)v sy Rn(ﬁ:l)a Nsl(Jl)v [ERE NSn(U_'m)

of P and for each variable X appearing in the rule, X appears in some of
the positive conditions R(fi) where R; is a domain predicate.

Example. Assuming that D(-) is the only domain predicate, the rule
R(x,y) < D(x), D(y), ~S(y,X) is strongly typed, but the rules
F(x,y) < D(x), E(x) and E(X) < ~D(X) are not.

- J

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Normal programs

4)

4. PROGRAMMING TIPS I

The logical connectives of propositional logic are available.

O The conjunction of conditions Ci,...,C, is captured by a single
(positive) rule c«+cy, ..., Cn.

O Expressing the disjunction of conditions dy,...,dn requires the

d<—dn.

introduction of n rules d < dj.

O A constraint < by,...,by that formalizes the negation
—(b1A...Abp) is best expressed using a rule f«— by, ... by, ~f
where f is a new atom not appearing elsewhere in the program.

Example. One is supposed to have one or two delicacies out of three:

Some «+ Cake. Some < Bun. Some « Cookie.

All — Cake, Bun, Cookie. F « All, ~F. F « ~Some, ~F.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Making Choices I

O A choice between two atoms a and b can be expressed in terms of

Normal programs

two normal rules a <+ ~b and b+ ~a.

O Such a choice can be generalized for any number of atoms and
conditionalized by adding conditions in rule bodies.

O A typical approach in ASP is to express a number of choices and
then exclude certain combinations using other rules or constraints.

Example. One is supposed to have coffee or tea—but not both—and
also one of three delicacies in case tea is selected:

Coffee «+ ~Tea. Cake < Tea, ~Cookie, ~Bun.

Tea «— ~Coffee. Bun <« Tea, ~Cookie, ~Cake.

Cookie < Tea, ~Bun, ~Cake.

- J

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007

4)

Rules with Exceptions'

O Normal programs enable context-dependent reasoning in which

Normal programs

the applicability of rules depends dynamically on the context.

O In common-sense reasoning, it is typical to formalize the normal
state of affairs including any exceptions to that.

Example. Birds do normally fly—unless we have an exceptional bird.

Flies(x) < Bird(x), ~Abnormal(x).
Abnormal(x) < Penguin(x). Abnormal(x) < Oily(x).

The stable models of this program, say P, behave as follows:

1. SM(PU{Bird(tw). })= {{Bird(tw),Flies(tw)}}.

2. SM(PU{Bird(tw). Oily(tw). })= {{Bird(tw),Oily(tw), Abnormal(tw)}}.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

4. PROBLEM SOLVING I

Checking the satisfiability of a propositional theory

Normal programs

A set of clauses Sis translated into a normal program Ps as follows:

1. For each atom a € Hb(S), we introduce a new atom @ and two
rules @+ ~a and a«+ ~a
2. Each clause a1V ...Vay,V —-b1V...V-by, from Sis translated into
f«—a,....,anby,...,bm, ~f
where f & HDb(S) is a new atom.

— Hb(Ps) = Hb(S)U{a|ac Hb(S)} U{f}.

Proposition. A set of clauses Shas a model M, i.e., Sis satisfiable, iff
the program Ps has a stable model N such that M = NN Hb(S).

- J

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Normal programs

-

Consider the translation of S={aVb, av—b, —aV —b} into a normal
program. The translation Ps consists of the following rules:

b — ~h. b« ~h.

fab,~f.

a<«— ~a. a<«— ~a.

f—ab,~f. f—ahb, ~f.
A number of observations can be made:

O Now, the set of clauses S has a model M iff the program Ps has a
stable model N such that M =NnN{a,b}.

0 Because Ny = {a,b} is a stable model of Ps, we know that
M; = {a} is a model of S

O On the other hand, N, = {@,b} is not a stable model of Ps.

_

~

/

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

Graph 3—Co|oring'

A graph G can be represented by facts of the form “Edge(X,y)
where X and y stand for nodes. The following normal program ch is

a uniform encoding for the problem of coloring the nodes of G with
three colors so that the endpoints of each edge have different colors.

Node(x) < Edge(X,y). Node(y) < Edge(X,y). (projection)
Black(x) « Node(x), ~White(X), ~Grey(X).
White(x) < Node(x), ~Black(x), ~Grey(X).
Grey(x) — Node(x), ~White(x), ~Black(x).
F — Edge(x,y), Black(x), Black(y), ~F.

F — Edge(x,y), White(x), White(y), ~F.

F — Edge(x,y), Grey(x), Grey(y), ~F.

(choices)

X)
X)
(constraints)

Proposition. The graph G has a 3-coloring iff ch has a stable model.

_

/

© 2007 TKK / TCS

19

20

T-79.5102 / Autumn 2007 Normal programs

-

Hamiltonian Cycles in Graphs'

The problem is to check whether a given graph has a Hamiltonian
cycle which visits all nodes of the graph exactly once. In addition to
the edge relation, the following rules are introduced in program Pg.

1. The nodes of the graph are extracted from the edge relation:
Node(x) < Edge(x,y). Node(y) < Edge(X,y). Same(X,X) < Node(X).
2. Any cycle starts from a particular node chosen here.
Start(X) «<— Node(x), ~Other(X).
Other(Xx) < Node(X), ~Start(x).
F «— Start(x), Start(y), ~Same(X,y), Node(x), Node(y), ~F.

HasStart < Start(x), Node(x).
F «— ~HasStart, ~F.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

-

3. Next the edges which are on the cycle are chosen.
In(x1,x2) < Edge(x1,x2), ~Out(x1,x2).
Out(x1,x3) < In(x1,x2), ~Same(x2,x3), Edge(x1,X2), Edge(x1,X3).
Out(x3,%2) < In(x1,x2), ~Same(x2,x3), Edge(x1,x2), Edge(x3,X2).
4. All nodes of the graph must be reachable via the cycle.
Reached(X) < Start(X).

Reached(X) < In(Y,X), Reached(y), Edge(y,X).
F < Node(x), ~Reached(x), ~F.

Proposition. The program PGH—together with facts that describe the
edge relation—has a stable model <= G has a Hamiltonian cycle.

_

J

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007 Normal programs

OBJECTIVES I

O You know what kind of problems arise when negative conditions
are incorporated into recursive definitions.

O You are able to reproduce the definition of stable models and to
prove simple properties about them.

O You can calculate stable models for simple normal logic programs
(at least by exhaustive generation of model candidates).

O You are able to formalize simple constraint programming problems
by describing their solutions in terms of rules.

4)

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Normal programs

4 N

TIME TO PONDERI

As demonstrated above, a normal logic program can have several
stable models, a unique stable model, or no stable models at all.

Problem. Design a propositional normal program P, that has exactly
n > 0 stable models.

How does the length of B,, measured in the number of atoms and
connectives, change as the function of n?

- J

© 2007 TKK / TCS

23

24

