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Le
ture 12: Translation into Propositional Logi


1. Level numbers and stability2. Translation into atomi
 programs3. Rea
hability ben
hmark
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Motivation

➤ The goal is to 
ombine the knowledge representation 
apabilitiesof normal programs with the e�
ien
y of SAT solvers.

➤ To realize this setting, we provide a faithful and polynomial-timetranslation TrAT from normal programs into atomi
 programshaving rules of the form a←∼C only.

➤ Su
h a transformation is inherently non-modular but TrAT(P) isalways tight so that P≡v Comp(TrAT(P)).

➤ This leads to an alternative strategy for 
omputing stable modelswith SAT solvers along with approa
hes based on loop formulas.
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1. LEVEL NUMBERS AND STABILITY
➤ The tightness 
ondition for a normal program P and a supportedmodel M |= Comp(P) involves a fun
tion λ : M→ N su
h that

λ(B) < λ(a)for every rule a← B ∈ PM su
h that B⊆M.
➤ Note that a← B ∈ PM and B⊆M imply that there is a supportingrule a← B,∼C ∈ SuppR(P,M) for a ∈M.
➤ However, the fun
tion λ above is not unique. E.g., the fun
tion

λ′(a) = λ(a)+1 satis�es this 
ondition whenever λ does.

➤ In the sequel, we provide su�
ient 
onditions for a unique levelnumbering λ : M→ N that 
aptures the stability of M.
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Level Numberings

De�nition. Let M be a supported model of a normal program P.A fun
tion λ : M→ N is a level numbering for M i� for all a ∈M,

λ(a) = min{λ(B) | a← B,∼C ∈ SuppR(P,M)}where λ(B) = max{λ(b) | b ∈ B}+1, and in parti
ular, λ( /0) = 1.

Example. Consider a positive normal program P = {a← b. b← a. }and its supported models M1 = /0 and M2 = {a,b}:1. There is a trivial level numbering λ1 : M1→ N for M1.2. The requirements for a level numbering λ2 : M2→ N are:

λ2(a) = λ2(b)+1 and λ2(b) = λ2(a)+1.

=⇒ There is no su
h level numbering λ2.
© 2007 TKK / TCS
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Properties of Level Numberings (I)

Proposition. If P is a normal program, M ∈ SuppM(P) a supportedmodel, and λ is a level numbering for M, then M ∈ SM(P).Proof. To prove the 
riti
al half M ⊆ LM(PM) of stability, it is shownby indu
tion on λ(a) that a ∈M implies a ∈ LM(PM).1. If a ∈M has the smallest value n of λ(a), we have λ(a) = λ(B) forsome a← B,∼C ∈ SuppR(P,M). The de�nition of λ(B) implies

B = /0 and λ(a) = n = 1. Thus a is a fa
t in PM and a ∈ LM(PM).2. For a ∈M su
h that λ(a) > 1, we note that λ(a) = λ(B) for some

a← B,∼C ∈ SuppR(P,M). It follows that a← B ∈ PM and M |= B.The de�nition of λ(B) implies λ(b) < λ(a) for every b ∈ B. Thus

B⊆ LM(PM) by the indu
tive hypothesis and a ∈ LM(PM) holdssin
e a← B ∈ PM. 2
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Properties of Level Numberings (II)

Proposition. A level numbering λ for M ∈ SuppM(P) is unique.Proof. Suppose that λ is not unique, i.e., there is a di�erent levelnumbering λ′ for M. We prove by indu
tion on λ(a) that λ′(a) = λ(a).1. Suppose that λ(a) = 1. It follows that λ(B) = 1 for some

a← B,∼C ∈ SuppR(P,M). Thus B = /0 must be the 
ase, and
λ′(B) = 1 and λ′(a) = 1 by the de�nition of level numberings.2. Then assume λ(a) > 1. The de�nition of λ(a) implies that
λ(a) = λ(B) for some rule a← B,∼C ∈ SuppR(P,M). Sin
e
λ(b) < λ(a) for ea
h b ∈ B by de�nition, we obtain λ′(B) = λ(B)by the indu
tive hypothesis. Thus λ′(a)≤ λ(a). Assuming
λ′(a) < λ(a) suggests a rule a← B′,∼C′ ∈ SuppR(P,M) with
λ′(B′) < λ′(B) and λ(B′) = λ′(B′) < λ(a), a 
ontradi
tion. 2
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Assigning Level Numbers to Atoms
➤ A 
on
rete level numbering 
an be obtained from the 
onstru
tionof the least model LM(P) for a positive program P.
➤ Re
all that if P is �nite, then lfp(TP) = TP ↑ i for some i ∈Nwhere the operator TP is de�ned by

TP(A) = {a | a← B ∈ P and B⊆ A}.De�nition. The level number #a of an atom a ∈ LM(P) is the leastnumber n ∈ N su
h that a ∈ (TP ↑ n)\ (TP ↑ n−1).Example. For a positive program 
onsisting of
a. a← c. b← a. c← a, b. d← d, c.we have LM(P) = {a,b,c} and the 
orresponding level numbers are

#a = 1, #b = 2, and #c = 3. The number #d is unde�ned (d 6∈ LM(P)).
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Properties of Level Numberings (III)

Proposition. If P is a normal program and M ∈ SM(P), then

# : M→ N as de�ned for M = LM(PM) is a level numbering for M.Proof. Now M = lfp(TPM ) sin
e M ∈ SM(P).(i) We de�ne Mi = TPM ↑ i for i≥ 0.(ii) Then the level number #a of an atom a ∈M = LM(PM) is theleast number i ∈ N su
h that a ∈Mi \Mi−1 by de�nition.(iii) Next we prove by indu
tion on i that for ea
h a ∈Mi,

#a = min{#B | a← B,∼C ∈ SuppR(P,M)}where #B = max{#b | b ∈ B}+1.

© 2007 TKK / TCS
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Proof by Indu
tion

The base 
ase i = 0 is trivial, sin
e M0 = /0.Then 
onsider any a ∈Mi when i > 0. The 
ase a ∈Mi−1 is 
overed byindu
tive hypothesis, so let a ∈Mi \Mi−1. It follows that #a = i > 0.1. Now there is a← B,∼C ∈ SuppR(P,M) su
h that a← B ∈ PM and

B⊆Mi−1. Thus #B = max{#b | b ∈ B}+1≤ i.2. Assuming #B < i implies #b < i−1 for all b ∈ B, B⊆Mi−2, and

a ∈Mi−1, a 
ontradi
tion. Hen
e #B = i.3. Thus ma = min{#B | a← B,∼C ∈ SuppR(P,M)} ≤ i = #a.4. Assuming ma < i implies #B′ < i for some other supporting rule

a← B′,∼C′ ∈ SuppR(P,M) and a ∈Mi−1, a 
ontradi
tion.It follows that ma = i = #a as was to be shown. 2
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Chara
terization of Stable ModelsTheorem. For a normal logi
 program P and an interpretation

M ⊆ Hb(P), M ∈ SM(P) if and only if

M ∈ SuppM(P) and there is a level numbering λ for M.

Example. Re
all the supported models M1 = /0 and M2 = {a,b} of thenormal program P = {a← b. b← a. }.1. Now M1 is stable sin
e #1 : M1→ N is trivially a level numbering.2. The model M2 is not stable be
ause the set of equations






#2(a) = #2(b)+1

#2(b) = #2(a)+1for a level numbering #2 has no solution.
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2. TRANSLATION INTO ATOMIC PROGRAMS
➤ An atomi
 normal program TrAT(P) =

TrSUPP(P)∪TrCTR(P)∪TrMAX(P)∪TrMIN(P)is utilized as an intermediary representation.
➤ Level numbers have to be 
aptured using binary 
ounters whi
h arerepresented by ve
tors c[1 . . .n] = c1, . . . ,cn of propositional atoms.

➤ The logarithm ∇P = ⌈log2(|Hb(P)|+2)⌉ gives an upper bound forthe number of bits needed in su
h 
ounters.
➤ A number of primitive operations involving binary 
ounters of nbits are formalized as subprograms to be des
ribed next.
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Primitives for Binary Counters

1. The program SEL(c[1 . . .n]) sele
ts a value for c[1 . . .n]:

c1←∼c1. c1←∼c1. . . . cn←∼cn. cn←∼cn.2. The program NXT(c[1 . . .n],d[1 . . .n]) sets the value of d[1 . . .n] asthe su

essor of the value of c[1 . . .n] in binary representation.3. The program FIX(c[1 . . .n],v) sets a �xed value v for c[1 . . .n].4. The program LT(c[1 . . .n],d[1 . . .n]) 
he
ks whether the value of

c[1 . . .n] is lower than that of d[1 . . .n].5. The program EQ(c[1 . . .n],d[1 . . .n]) tests whether the values of

c[1 . . .n] and d[1 . . .n] are the same.Remark. The a
tivation of these primitives 
an be 
ontrolled withadditional negative 
onditions.
© 2007 TKK / TCS
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Translation TrSUPP(P)

De�nition. A rule r = a← B,∼C ∈ P is translated into

{a←∼bt(r). bt(r)←∼bt(r). bt(r)←∼B,∼C. }.An atom a ∈Hb(P) is translated into a←∼a.Remark. The intuitive reading of bt(r) is that the body of r is true.Theorem. For a normal program P and an interpretation M ⊆ Hb(P),

M ∈ SuppM(P) if and only if

N = M∪{a | a ∈ Hb(P)\M} ∪

{bt(r) | r ∈ SuppR(P,M)}∪{bt(r) | r ∈ P\SuppR(P,M)}belongs to SM(TrSUPP(P)).
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Translation TrCTR(P)

➤ The goal of TrCTR(P) is to sele
t/set values for 
ounters.

➤ Additional 
ounters nxt(a) and ctr(r) of ∇P bits are asso
iatedwith atoms a ∈Hb(P) and rules r ∈ P, respe
tively.De�nition. An atom a ∈ Hb(P) is translated into subprograms
SEL(a[1 . . .∇P],∼a) and NXT(a[1 . . .∇P],nxt(a)[1 . . .∇P],∼a).A rule r = a← B,∼C ∈ P is translated into a subprogram







FIX(ctr(r)[1 . . .∇P],1,∼bt(r)), if B = /0, and
SEL(ctr(r)[1 . . .∇P],∼bt(r)), otherwise.Let Ext(a[1 . . .∇P],v) be the resulting set of true atoms des
ribing thebit statuses of a[1 . . .∇P] when the 
ounter has a value 0≤ v < 2∇P.
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Translation TrMAX(P)

De�nition. An atom b ∈ B appearing in r = a← B,∼C ∈ P istranslated into following set of rules:

LT(ctr(r)[1 . . .∇P],nxt(b)[1 . . .∇P],∼bt(r)) ∪

EQ(ctr(r)[1 . . .∇P],nxt(b)[1 . . .∇P],∼bt(r)) ∪

{⊥←∼bt(r),∼lt(ctr(r),nxt(b))} ∪

{max(r)←∼bt(r),∼eq(ctr(r),nxt(b))}.Moreover, a rule r = a← B,∼C ∈ P is translated into

⊥←∼bt(r),∼max(r).Remark. The intuitive reading of max(r) is that the value of

ctr(r)[1 . . .∇P] equals to the intended maximum.
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Translation TrMIN(P)
De�nition. A rule r = a← B,∼C ∈ DefP(a) is translated into

LT(ctr(r)[1 . . .∇P],a[1 . . .∇P],∼bt(r)) ∪

EQ(ctr(r)[1 . . .∇P],a[1 . . .∇P],∼bt(r)) ∪

{⊥←∼bt(r),∼lt(ctr(r),a)} ∪

{min(a)←∼bt(r),∼eq(ctr(r),a)}.Moreover, an atom a ∈ Hb(P) is translated into ⊥←∼a,∼min(a).Remark. The intuitive reading of min(a) is that the value of

a[1 . . .∇P] equals to the intended minimum.
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Example

Re
all the normal program P with rules r1 = a← b and r2 = b← a.

➤ In addition to subprograms, the rules for a and r1 are:

a←∼bt(r1). bt(r1)←∼bt(r1). bt(r1)←∼b. b←∼b.

⊥←∼bt(r1),∼lt(ctr(r1),nxt(b)).

⊥←∼bt(r1),∼lt(ctr(r1),a).

max(r1)←∼bt(r1),∼eq(ctr(r1),nxt(b)).

min(a)←∼bt(r1),∼eq(ctr(r1),a).

⊥←∼bt(r1),∼max(r1). ⊥←∼a,∼min(a).

➤ Rules for b and r2 are symmetri
.

➤ The only stable model is N = {a,b,bt(r1),bt(r2)}.
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Corre
tness of TrAT(P)

De�nition. Let P be a normal program, M ∈ SuppM(P), # a levelnumbering # : M→ {1, . . . ,2∇P} for M, and e : 2Hb(P)→ 2Hb(TrAT(P)) afun
tion determined by an interpretation e(M) whi
h is the union of1. M∪{a | a ∈ Hb(P)\M},2. {bt(r) | r ∈ SuppR(P,M)}∪{bt(r) | r ∈ P\SuppR(P,M)},3. {max(r) | r ∈ SuppR(P,M)}∪{min(a) | a ∈M},4. Ext(a[1 . . .∇P],#a)∪Ext(nxt(a)[1 . . .∇P],#a+1) for ea
h a ∈M,5. Ext(ctr(r)[1 . . .∇P],#B) where #B = max{#b | b ∈ B}+1 for ea
h
r = a← B,∼C ∈ SuppR(P,M) andin addition, any sets of atoms made true by 
omparisons involved inthe subprograms LT(. . .) and EQ(. . .) of TrAT(P).
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Properties of TrAT(P)

Theorem. Let P be a normal program.1. If M ∈ SM(P), then N = e(M) ∈ SM(TrAT(P)).2. If N ∈ SM(TrAT(P)), then M = N ∩Hb(P) ∈ SM(P) and N = e(M).Proof. A detailed proof 
an be found from a resear
h report,T. Janhunen: �Translatability and intranslatability results for 
ertain
lasses of logi
 programs� [TKK/TCS, A82, 2003℄. 2Corollary. For a normal program P, P≡v TrAT(P).Proposition. For a normal program P, the translation TrAT(P) 
an be
omputed in time linear with respe
t to ||P||×∇P.
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3. REACHABILITY BENCHMARK

➤ The translations TrAT(P) and Comp(P) are implemented astranslators lp2atomic and lp2sat to be used with lparse.

➤ In the implementation, the translation TrAT(P) was optimized in anumber of ways. For instan
e, SCCs are fully exploited.

➤ The ben
hmark is to 
ompute all subgraphs 〈Vn,E〉 of a dire
tedgraph Dn = 〈Vn,En〉 where Vn = {1, . . . ,n},

E ⊆ En = {〈i, j〉 | 0 < i≤ n, 0 < j ≤ n, and i 6= j},and all nodes of Vn are mutually rea
hable in 〈Vn,E〉.

➤ The experiments reported in the sequel were run on a 1.67 GHzCPU having 1GBs of main memory.

© 2007 TKK / TCS
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Computing All SolutionsNumber of Verti
es 1 2 3 4 5

smodels 0.004 0.003 0.003 0.033 12

cmodels 0.031 0.030 0.124 293 -

lp2atomic+smodels 0.004 0.008 0.013 0.393 353

lp2sat+chaff 0.011 0.009 0.023 1.670 -

lp2sat+relsat 0.004 0.005 0.018 0.657 1879

wf+lp2sat+relsat 0.009 0.013 0.018 0.562 1598Models 1 1 18 1606 565080SCCs S with |S|> 1 0 0 3 4 5Rules (lparse) 3 14 39 84 155Rules (lp2atomic) 3 18 240 664 1920Clauses (lp2sat) 4 36 818 2386 7642Clauses (wf+lp2sat) 2 10 553 1677 5971
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Computing Only One Solution

Number of Verti
es 8 9 10

smodels 0.009 0.013 0.022

cmodels 0.046 0.042 0.055

lp2atomic+smodels >104 >104 >104
lp2sat+chaff 0.771 32.6 254
lp2sat+relsat 2.51 >104 >104
wf+lp2sat+relsat 2.80 4830 >104
assat 0.023 0.028 0.037
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OBJECTIVES

➤ You are aware of SAT solvers as potential sear
h engines for ASPand know some systems based on this ar
hite
ture:1. assat: http://assat.cs.ust.hk/2. cmodels: http://www.cs.utexas.edu/users/tag/cmodels/3. lp2sat: http://www.tcs.hut.fi/Software/lp2sat/
➤ You have tried out one of the SAT-based ASP solvers in pra
ti
e.

➤ You know that there is a faithful and polynomial timetransformation from normal programs into propositional logi
.

➤ You are able to identify the e�e
ts of the major sour
es ofnon-modularity in the transformation.
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TIME TO PONDERRe
all the 
hara
terization of a stable model M ∈ SM(P) in terms of alevel numbering # : M→ N.Can you think of any optimizations of TrAT(P), e.g., when the normalprogram P under 
onsideration

➤ 
ontains only binary rules of the form a← B,∼C where |B| ≤ 2,

➤ 
ontains only unary rules of the form a← B,∼C where |B| ≤ 1, or

➤ 
ontains only atomi
 rules of the form a←∼C ?Do synta
ti
 restri
tions of this kind essentially redu
e the expressivepower of normal programs?
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