T-79.5102 / Autumn 2007 Translation into propositional logic

-

Lecture 12: Translation into Propositional Logic'

1. Level numbers and stability
2. Translation into atomic programs

3. Reachability benchmark

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

0 The goal is to combine the knowledge representation capabilities

of normal programs with the efficiency of SAT solvers.

O To realize this setting, we provide a faithful and polynomial-time

translation Trat from normal programs into atomic programs
having rules of the form a« ~C only.

O Such a transformation is inherently non-modular but Trat(P) is

always tight so that P =, Comp(Trar(P)).

O This leads to an alternative strategy for computing stable models

with SAT solvers along with approaches based on loop formulas.

T-79.5102 / Autumn 2007

4)

1. LEVEL NUMBERS AND STABILITYI

O The tightness condition for a normal program P and a supported
model M = Comp(P) involves a function A : M — N such that

A(B) < A(a)

for every rule a+ B € PM such that BC M.

Translation into propositional logic

0 Note that a«< B € PM and B C M imply that there is a supporting
rule a <« B, ~C € SuppR(P,M) for a € M.

O However, the function A above is not unique. E.g., the function
N (a) = A(a) + 1 satisfies this condition whenever A does.

O In the sequel, we provide sufficient conditions for a unique level
numbering A M — N that captures the stability of M.

J

© 2007 TKK / TCS

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Level Numberings I

Definition. Let M be a supported model of a normal program P.
A function A : M — N is a level numbering for M iff for all a € M,

Translation into propositional logic

A(a) =min{A(B) | a«+ B, ~C € SuppR(P,M)}
where A(B) = max{A(b) | be B} +1, and in particular, A(0) = 1.

Example. Consider a positive normal program P={a«—b. b—a. }
and its supported models M1 = 0 and My = {a,b}:

1. There is a trivial level numbering A1: My — N for My,

2. The requirements for a level numbering A2 : My — N are:
)\2(3.) =)\z(b) +1 and)\g(b) =)\2(8.) + 1.

N = There is no such level numbering Aa.)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

4)

Properties of Level Numberings (I)I

Proposition. If P is a normal program, M € SuppM(P) a supported
model, and A is a level numbering for M, then M € SM(P).

Proof. To prove the critical half M C LM(PM) of stability, it is shown
by induction on A(@) that a€ M implies a < LM(PM).

1. If a€ M has the smallest value n of A(a), we have A(a) = A(B) for
some a <« B, ~C € SuppR(P,M). The definition of A(B) implies
B=0and A(@) =n=1. Thus ais a fact in P™ and a€ LM(PV).

2. For a€ M such that A(a) > 1, we note that A(a) = A(B) for some
a+ B, ~C € SuppR(P,M). It follows that a+~ B< P¥ and M |= B.
The definition of A(B) implies A(b) < A(@) for every b € B. Thus
B C LM(PM) by the inductive hypothesis and a € LM(PM) holds

since a<— Be PM. O

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Properties of Level Numberings (II)I

Proposition. A level numbering A for M € SuppM(P) is unique.

Proof. Suppose that A is not unique, i.e., there is a different level

1. Suppose that A(a) = 1. It follows that A(B) =1 for some
a« B, ~C € SuppR(P,M). Thus B =0 must be the case, and
N(B) =1 and N'(a) = 1 by the definition of level numberings.

2. Then assume A(a) > 1. The definition of A(a) implies that
A(a) = A(B) for some rule a < B, ~C € SuppR(P,M). Since
A(b) < A(a) for each b € B by definition, we obtain A’(B) = A(B)
by the inductive hypothesis. Thus A'(a) < A(a). Assuming
N(a) < A(a) suggests a rule a« B', ~C' € SuppR(P,M) with

numbering A’ for M. We prove by induction on A(a) that A'(a) = A(a).

N(B') <N(B) and A(B') =N (B') < A(a), a contradiction. O

~

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

4)

Assigning Level Numbers to Atoms'

O A concrete level numbering can be obtained from the construction

of the least model LM(P) for a positive program P.

O Recall that if P is finite, then Ifp(Tp) = Tp 11 for some i € N
where the operator Tp is defined by

Tp(A)={ala~—BePand BC A}

Definition. The level number #a of an atom a€ LM(P) is the least
number n € N such thatae (Tp T N)\ (Tp T N—1).

Example. For a positive program consisting of
a. a<—c¢c b—a c<—ab d<dec

we have LM(P) = {a,b,c} and the corresponding level numbers are

#a=1, #b=2, and #c=3. The number #d is undefined (d ¢ LM(P)).

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

4 N

Properties of Level Numberings (III)I

Proposition. If P is a normal program and M € SM(P), then
#:M — N as defined for M = LM(PV) is a level numbering for M.

Proof. Now M = Ifp(Tpm) since M € SM(P).
(i) We define M =Tpm T fori > 0.

(i) Then the level number #a of an atom a€ M = LM(PM) is the
least number i € N such that a € M;\ Mi_1 by definition.

(iii) Next we prove by induction on i that for each a € M;,
#a=min{#B|a«— B, ~C € SuppR(P,M)}
where #B =max{#b|be B} + 1.

- J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

Proof by Induction'

The base case i =0 is trivial, since Mg = 0.

Then consider any a € M; when i > 0. The case a € M;_1 is covered by
inductive hypothesis, so let a€ M;\ Mj_j. It follows that #a=1i > 0.

1. Now there is @« B,~C € SuppR(P,M) such that a+ B < PM and
BCMi_1. Thus#B=max{#b|beB}+1<i.

2. Assuming #B < i implies #b <i—1 for all be B, BC Mj_», and
a e Mj_1, a contradiction. Hence #B =1.

3. Thus my = min{#B | a— B, ~C € SuppR(P,M)} <i = #a.

4. Assuming my < i implies #B' < i for some other supporting rule
a«— B, ~C' € SuppR(P,M) and a€ Mj_1, a contradiction.

It follows that my =i = #a as was to be shown.]

4)

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

Characterization of Stable Models.

Theorem. For a normal logic program P and an interpretation
M C Hb(P), M € SM(P) if and only if

M € SuppM(P) and there is a level numbering A for M.

Example. Recall the supported models M1 =0 and Mz = {a,b} of the
normal program P={a<—b. b—a }.

1. Now My is stable since #; : M1 — N is trivially a level numbering.
2. The model M3 is not stable because the set of equations

th(a) =#(b)+1

#H(b) =#(a) +1

for a level numbering #, has no solution.

4 N

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007 Translation into propositional logic

4)

2. TRANSLATION INTO ATOMIC PROGRAMSI

O An atomic normal program Trat(P) =

TrSUPP(P) U TI'CTR(P) U Trmax (P) U TI'|V||N(P)
is utilized as an intermediary representation.

0 Level numbers have to be captured using binary counters which are
represented by vectors C[1...n] =cy,...,Cy of propositional atoms.

O The logarithm OP = [log,(|Hb(P)|+2)] gives an upper bound for
the number of bits needed in such counters.

O A number of primitive operations involving binary counters of n
bits are formalized as subprograms to be described next.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007

Primitives for Binary Counters'

1. The program SEL(c[1...n]) selects a value for c[1...n]:

Translation into propositional logic

Ol ~CL. O« ~CL ... Che ~Ch G ~Cn.

2. The program NXT(c[1...n],d[1...n]) sets the value of d[1...n] as
the successor of the value of c[1...n] in binary representation.

3. The program FIX(c[1...n],v) sets a fixed value Vv for c[1...n].

4. The program LT(c[1...n],d[1...n]) checks whether the value of
c[1...n] is lower than that of d[1...n].

5. The program EQ(c[1...n],d[1...n]) tests whether the values of
c[1...n] and d[1...n] are the same.

Remark. The activation of these primitives can be controlled with

additional negative conditions.

J

© 2007 TKK / TCS

11

12

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Translation Trsypp(P)

Definition. A rule r =a <« B, ~C € P is translated into
{a+— ~bt(r). bt(r) < ~bt(r). bt(r) «— ~B,~C. }.
An atom a € Hb(P) is translated into @« ~a.

Remark. The intuitive reading of bt(r) is that the body of r is true.

M € SuppM(P) if and only if
N=Mu{a|aeHb(P)\M} U
{bt(r) | r € SuppR(P,M)} U {bt(r) | r € P\ SuppR(P, M)}

belongs to SM(Trsupp(P)).

_

Theorem. For a normal program P and an interpretation M C Hb(P),

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Translation TrcTr(P)

O The goal of Trcrr(P) is to select/set values for counters.

O Additional counters nxt(a) and ctr(r) of 0P bits are associated
with atoms a € Hb(P) and rules r € P, respectively.

Definition. An atom a < Hb(P) is translated into subprograms
SEL(a[1...0P],~a) and NXT(a[1...0OP],nxt(a)[1...0OP],~a).
A rule r =a+« B, ~C € P is translated into a subprogram

FIX(ctr(r)[1...0P],1,~bt(r)), if B=0, and

SEL (ctr(r)[1...0OP],~bt(r)), otherwise.

Let Ext(a[l...0P],V) be the resulting set of true atoms describing the
bit statuses of a[1...[P] when the counter has a value 0 <v < 2P,

_

J

© 2007 TKK / TCS

13

14

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Translation Tryax (P)

Definition. An atom b € B appearinginr=a«~—B,~CcPis
translated into following set of rules:
LT (ctr(r)[1...0OP],nxt(b)[1...0P],~bt(r)) U
EQ(ctr(r)[1...0P],nxt(b)[1...0OP],~bt(r)) U
{L — ~bt(r), ~lt(ctr(r),nxt(b))} U

Moreover, a rule r =a+« B, ~C € P is translated into
L« ~bt(r),~max(r).

Remark. The intuitive reading of max(r) is that the value of
ctr(r)[1...0P] equals to the intended maximum.

{max(r) « ~bt(r), ~eq(ctr(r),nxt(b))}.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Translation Tryn(P)

Definition. A rule r =a« B, ~C € Defp(a) is translated into
LT (ctr(r)[1...0P],a1...0P],~bt(r)) U

EQ(ctr(r)[1...00P],a[1...0P], ~bt(r)) U
{L — ~bt(r), ~t(ctr(r),a)} U

Moreover, an atom a € Hb(P) is translated into L < ~a, ~min(a).

Remark. The intuitive reading of min(a) is that the value of
a[l...0P] equals to the intended minimum.

_

{min(a) < ~bt(r), ~eq(ctr(r),a)}.

© 2007 TKK / TCS

15

16

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Recall the normal program P with rulesr; =a«bandr,=b«+ a.

O In addition to subprograms, the rules for a and rj are:

a«— ~bt(ry). ri) « ~bt(ry). bt(ry) < ~b. b« ~h.
1« th(rl) (rl),nxt())
1 «— th(l'l) ~lt(c (1),&)

max(ri) «— ~bt(ry),~eq(ctr(r1), nxt(b)).
min(@) — ~bt(r),~eq(ctr(r1),a).

1~ th(l'l), Nmax(rl)

1 «— ~a, ~min(a).

O Rules for b and ry are symmetric.

O The only stable model is N = {a@,b,bt(r1),bt(rz)}.

_

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Correctness of Trar(P)

Definition. Let P be a normal program, M € SuppM(P), # a level
numbering #: M — {1,...,2"P} for M, and e: 2"(P) _, 2Hb(TraT(P)) 5
function determined by an interpretation €M) which is the union of
1. Mu{a|ae Hb(P)\M},
2. {bt(r) | r € SuppR(P,M)} U {bt(r) | r € P\ SuppR(P,M)},
{max(r) | r € SuppR(P,M)} U {min(a) |ae M},

Ext(a[l...OP],#a) UExt(nxt(a)[1...0OP],#a+1) for each a€ M,

AR

Ext(ctr(r)[1...0OP],#B) where #B = max{#b | b € B} + 1 for each
r=a« B, ~C € SuppR(P,M) and

in addition, any sets of atoms made true by comparisons involved in
the subprograms LT(...) and EQ(...) of Trat(P).

© 2007 TKK / TCS

17

18

T-79.5102 / Autumn 2007 Translation into propositional logic

-

Properties of Trat(P)

Theorem. Let P be a normal program.

1. If M € SM(P), then N = e(M) € SM(Trar(P)).

Proof. A detailed proof can be found from a research report,

T. Janhunen: " Translatability and intranslatability results for certain

Corollary. For a normal program P, P =, Trar(P).

Proposition. For a normal program P, the translation Trat(P) can be
computed in time linear with respect to ||P|| x OP.

_

2. 1f N € SM(Trar(P)), then M = NN Hb(P) € SM(P) and N = e(M).

classes of logic programs” [TKK/TCS, A82, 2003]. a

J

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

3. REACHABILITY BENCHMARK I

O The translations Trat(P) and Comp(P) are implemented as
translators | p2at omi ¢ and | p2sat to be used with | par se.

O In the implementation, the translation Trat(P) was optimized in a
number of ways. For instance, SCCs are fully exploited.

O The benchmark is to compute all subgraphs (Vj,E) of a directed
graph Dp = (Vn,En) where Vh = {1,...,n},

ECE,={(i,j)|0<i<n 0<j<n andi#j},
and all nodes of Vj; are mutually reachable in (V,,E).

0 The experiments reported in the sequel were run on a 1.67 GHz
CPU having 1GBs of main memory.

© 2007 TKK / TCS

19

20

T-79.5102 / Autumn 2007 Translation into propositional logic

Computing All Solutions'

Number of Vertices 1 2 3 4 5
snodel s 0.004 0.003 0.003 0.033 12
cnodel s 0.031 0.030 0.124 293 -
| p2at oni c+smodel s 0.004 0.008 0.013 0.393 353
| p2sat +chaf f 0.011 0.009 0.023 1.670 -
| p2sat +r el sat 0.004 0.005 0.018 0.657 1879
wf +I p2sat +rel sat 0.009 0.013 0.018 0.562 1598
Models 1 1 18 1606 565080
SCCs Swith |§ >1 0 0 3 4 5
Rules (I parse) 3 14 39 84 155
Rules (I p2at omi c) 3 18 240 664 1920
Clauses (I p2sat) 4 36 818 2386 7642
Clauses (W +I p2sat) 2 10 553 1677 5971

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

Computing Only One Solution'

Number of Vertices 8 9 10
smodel s 0.009 0.013 0.022
cnodel s 0.046 0.042 0.055
| p2at oni c+smodel s >10* >10* >10%
| p2sat +chaf f 0771 326 254

| p2sat +r el sat 251 >10* >104
W +| p2sat +rel sat 2.80 4830 >10%
assat 0.023 0.028 0.037

© 2007 TKK / TCS

21

22

T-79.5102 / Autumn 2007 Translation into propositional logic

-

OBJECTIVES I

O You are aware of SAT solvers as potential search engines for ASP
and know some systems based on this architecture:

1. assat: http://assat.cs. ust. hk/
2. cnodel s: http://ww. cs. ut exas. edu/ user s/ tag/ cnodel s/
3. Ip2sat: http://www tcs. hut.fi/Software/l p2sat/

O You have tried out one of the SAT-based ASP solvers in practice.

0 You know that there is a faithful and polynomial time
transformation from normal programs into propositional logic.

O You are able to identify the effects of the major sources of
non-modularity in the transformation.

© 2007 TKK / TCS

T-79.5102 / Autumn 2007 Translation into propositional logic

-

TIME TO PONDERI

Recall the characterization of a stable model M € SM(P) in terms of a
level numbering #: M — N,

Can you think of any optimizations of Trat(P), e.g., when the normal
program P under consideration

O contains only binary rules of the form a«— B, ~C where |B| <2,
O contains only unary rules of the form a+« B, ~C where |B| <1, or
O contains only atomic rules of the form a« ~C 7

Do syntactic restrictions of this kind essentially reduce the expressive

power of normal programs?

_

© 2007 TKK / TCS

23

24

