2

coNP AND FUNCTION PROBLEMS

- ➤ The class of complement problems coNP
- ➤ The relationship of **coNP** and **NP**
- \blacktriangleright The class **coNP** \cap **NP**
- ► Function problems vs. decision problems
- ► Classes of function problems
- ► Total functions
- (C. Papadimitriou: *Computational complexity*, Chapter 10)

 \odot 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

coNP and function problems

1. The class of complement problems coNP

- > NP is the class of problems with succinct certificates.
- coNP is the class of problems with succinct disqualifications.
 Example. Consider the problem of VALIDITY: INSTANCE: A Boolean expression φ in CNF. QUESTION: Is φ valid?
- VALIDITY is in coNP: for an expression φ which is not valid, a falsifying truth assignment is a succinct disqualification.
- ➤ HAMILTON PATH COMPLEMENT and SAT COMPLEMENT are also in coNP.

 \blacktriangleright **P** \subseteq **coNP**

coNP-completeness

Definition. A language *L* is **coNP**-complete iff $L \in$ **coNP** and $L' \leq_L L$ holds for every language $L' \in$ **coNP**.

Proposition. HAMILTON PATH COMPLEMENT and VALIDITY are **coNP**-complete.

Proof. Every language $L \in \mathbf{coNP}$ is reducible to VALIDITY, because $\overline{L} \in \mathbf{NP}$ and, hence, there is a reduction R from \overline{L} to SAT such that for every string $x, x \in \overline{L}$ iff $R(x) \in SAT$. But then there is a reduction R' such that $x \in L$ iff $R(x) \notin SAT$ iff $R'(x) = \neg R(x) \in VALIDITY$.

Similarly for HAMILTON PATH COMPLEMENT. □

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

```
coNP and function problems
```

2. The Relationship of coNP and NP

Proposition. If $L \subset \Sigma^*$ is **NP**-complete, then its complement $\overline{L} = \Sigma^* - L$ is **coNP**-complete.

Further observations:

- > It is open whether NP = coNP.
- ▶ If P = NP, then NP = coNP (and P = coNP).
- ➤ It is possible that P ≠ NP but NP = coNP (however, it is strongly believed that NP ≠ coNP).
- ➤ The problems in coNP that are coNP-complete are the least likely problems to be in P and also in NP (see below).

6

Do coNP and NP coincide?

Proposition. If a **coNP**-complete problem is in **NP**, **NP** = **coNP**. Proof.

Suppose that L is a **coNP**-complete problem that is in **NP**.

(⊇) Consider $L' \in \mathbf{coNP}$. Then there is a reduction R from L' to L. Then $L' \in \mathbf{NP}$, because L' can be decided by a polynomial time NTM which on input x computes first R(x) and then starts the NTM for L.

(⊆) Consider $L' \in \mathbf{NP}$. Then $\overline{L'} \in \mathbf{coNP}$ and there is a reduction R from $\overline{L'}$ to L. Then $\overline{L'} \in \mathbf{NP}$ and hence $L' \in \mathbf{coNP}$. □

C 2005 TKK, Laboratory for Theoretical Computer Science

coNP and function problems

The primality problem PRIMES

T-79.5103 / Autumn 2005

INSTANCE: An integer N in binary representation. QUESTION: Is N a prime number?

- ▶ PRIMES \in coNP as any divisor acts as a succinct disqualification.
- ➤ Note that a O(√N) algorithm for PRIMES testing all relevant divisor candidates is only pseudopolynomial.
- ▶ PRIMES \in **NP** remains open as of 1994.
- The problem is solved in August 2002:
 M. Agrawal, N. Kayal, N. Saxena: *PRIMES is in* **P** !!

3. The Class $coNP \cap NP$

- ➤ Problems in coNP ∩ NP have both succinct certificates and disqualifications.
- ▶ $P \subseteq coNP \cap NP$ as $P \subseteq coNP$ and $P \subseteq NP$.
- ➤ If two problems in NP are *dual*, i.e. each is *reducible to the complement* of the other, then both are in coNP ∩ NP.

Example.

MAX FLOW(D): Has a network N a flow of at least K from s to t? MIN CUT(D): Given a network, is there a set of edges of capacity of at most B such that deleting these disconnects s from t?

Now by max flow-min cut theorem, N has a flow of value at least K iff it *does not have* a cut of capacity K - 1 or less.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

 \mathbf{coNP} and function problems

8

PRIMES has succinct certificates

Theorem. A number p > 1 is prime iff there is a number 1 < r < p such that $r^{p-1} = 1 \mod p$ and, furthermore, $r^{\frac{p-1}{q}} \neq 1 \mod p$ for all prime divisors q of p-1.

Corollary. PRIMES is in $NP \cap coNP$.

➤ The proof provides a succinct certificate for the primality of *p*:

$$C(p) = (r;q_1,C(q_1),\ldots,q_k,C(q_k))$$

where $C(q_i)$ is a *recursive* primality certificate for each prime divisor q_i of p-1.

▶ The recursion stops for prime divisors $q_i = 2$ for which $C(q_i) = (1)$.

T-79.5103 / Autumn 2005 coNP and function problems 9	T-79.5103 / Autumn 2005 coNP and function problems
	The relationship of SAT and FSAT
Verifying the certificate $C(p)$	FSAT: given a Boolean expression ϕ , if ϕ is satisfiable then return a
The following observations can be made:	satisfying truth assignment of ϕ otherwise return "no".
> The certificate $C(p)$ is polynomial in the length of p (in $\log p$) and	► If FSAT can solved in polynomial time, then so can SAT.
it can be checked by division and exponentiation.Ordinary multiplication and division are doable in polynomial time	 If SAT can be solved in polynomial time, then so can FSAT using the following algorithm given input φ with variables x₁,,x_n (φ[x = true] denotes φ where variable x is replaced by true):
in the length of the input (in binary representation).	$(\psi_x = \mathbf{u} \mathbf{u} \mathbf{e})$ denotes ψ where variable x is replaced by $\mathbf{u} \mathbf{u} \mathbf{e})$. if $\phi \notin SAT$ then return "no";
➤ Exponentiation r ^{p-1} can be done in polynomial time by repeated squaring r ² , r ⁴ ,r ^{2^l} (so that the powers 2 ^l sum up to p-1).	for all $x \in \{x_1, \dots, x_n\}$ do if $\phi[x = \mathbf{true}] \in SAT$ then $T(x) := \mathbf{true}; \ \phi := \phi[x = \mathbf{true}]$
The certificate $C(p)$ can be checked in polynomial time. \Box	else $T(x) := $ false ; $\phi := \phi[x = $ false]; return T ;
© 2005 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2005 coNP and function problems 10	© 2005 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2005 coNP and function problems
4. Function Problems vs. Decision Problems	The relationship of TSP(D) and TSP
We have studied decision problems but many problems in practice require a more complicated answer than "yes" / "no".	► If TSP can solved in polynomial time, then so can TSP(D).
Example. Find a satisfying truth assignment for a formula.	► If TSP(D) can solved in polynomial time, then so can TSP.
Example. Compute an optimal tour for TSP.	An optimal tour can be found using an algorithm which finds
 Such problems are called <i>function problems</i>. 	1. the cost $0 \leq C \leq 2^n$ of an optimal tour by binary search and
 Decision problems are useful surrogates of function problems only 	2. an optimal tour using the cost C computed in step 1.
in the context of <i>negative complexity results</i> .	(Here n is the length of the encoding of the problem instance.)
Example. SAT and TSP(D) are NP -complete. Then unless $\mathbf{P} = \mathbf{NP}$, there is no polynomial time algorithm for finding a satisfying truth assignment or an optimal tour.	 Both steps involve a polynomial number of calls to the polynomial time algorithm for TSP(D) (given such an algorithm exists).

11

12

An algorithm for TSP

An algorithm for TSP(D) is used as a subroutine: /* Find the cost C of an optimal tour by binary search*/ $C := 0; C_u := 2^n;$ while $(C_u > C)$ do if there is a tour of cost $\lfloor (C_u + C)/2 \rfloor$ or less then $C_u := \lfloor (C_u + C)/2 \rfloor$ else $C := \lfloor (C_u + C)/2 \rfloor + 1;$ /* Find an optimal tour */ For all intercity distances do set the distance to C + 1;if there is a tour of cost C or less, freeze the distance to C + 1else restore the original distance and add it to the tour; endfor

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

 ${\bf coNP}$ and function problems

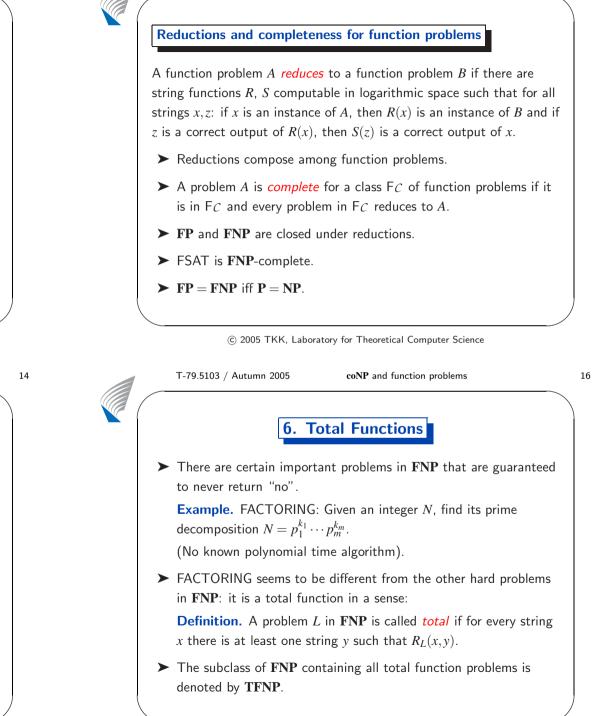
5. Classes of Function Problems

Definition. Let $L \in \mathbf{NP}$. Then there is a polynomial time decidable and polynomially balanced relation R_L such that for all strings x, there is a string y with $R_L(x,y)$ iff $x \in L$.

The *function problem* associated with L (denoted FL) is:

Given x, find a string y such that $R_L(x,y)$ if such a string y exists; otherwise return "no".

- ➤ The class of all function problems associated as above with languages in NP is called FNP.
- **FP** is the subclass of **FNP** solvable in polynomial time.
- FSAT is in FNP and FHORNSAT is in FP (but it is open whether TSP is in FNP).



T-79.5103 / Autumn 2005	coNP and function problems	17		03 / Autumn 2005	coNP and function problems	
Total functions—cont'd			Other to	tal functions		
There are also other problem time algorithm.	s in TFNP with no known polynomial				CYCLE is FNP -complete.	
Example. HAPPYNET:			► ANO	THER HAMILTON	CYCLE for cubic graphs is in ${f T}$	FNP.
	raph $G = (V, E)$ with integer weights w on		► EQUA	AL SUMS:		
edges. GOAL: Find a state of the gr	raph where all nodes are happy.				is a_1,\ldots,a_n such that $\sum_{i=1}^n a_i < 2^n$ at have the same sum.	<i>n</i> −1, f
► A state is a mapping S :	$V \mapsto \{-1, +1\}.$		► EQUA	AL SUMS in TFNP) .	
► A node <i>i</i> is happy in a st	tate S of $G = (V, E)$ if		The p	roof is based on th	ne observation that there are mo	ore subs
	$\sum_{[i,j]\in E} S(j)w[i,j] \ge 0.$		of $\{a_1$	$,\ldots,a_n\}$ than num	bers between 1 and $\sum_{i=1}^{n} a_i$. \Box	
© 2005 TKK, Labora T-79.5103 / Autumn 2005	atory for Theoretical Computer Science coNP and function problems	18	T-79.51	© 2005 TKK, Labor 03 / Autumn 2005	atory for Theoretical Computer Science coNP and function problems	
		18	T-79.51	_		
	coNP and function problems	18	T-79.51	03 / Autumn 2005		
T-79.5103 / Autumn 2005 Properties of HAPPYNET	coNP and function problems	18	► The d	03 / Autumn 2005	coNP and function problems	this cl
 T-79.5103 / Autumn 2005 Properties of HAPPYNET Every instance is guarant found using the following 	coNP and function problems	18	► The d e.g., V	03 / Autumn 2005 Learr lefinition of coNP a /ALIDITY.	coNP and function problems	
 T-79.5103 / Autumn 2005 Properties of HAPPYNET Every instance is guarant found using the following Start with any S and wh 	coNP and function problems teed to have a happy state which can be g algorithm: ile there is an unhappy node, flip it. blynomial but pseudopolynomial O(W)	18	 The de.g., N The c The b 	03 / Autumn 2005 Learn efinition of coNP a /ALIDITY. haracterization of t	coNP and function problems	and its
 T-79.5103 / Autumn 2005 Properties of HAPPYNET Every instance is guarant found using the following Start with any S and wh This algorithm in not po 	coNP and function problems teed to have a happy state which can be g algorithm: ile there is an unhappy node, flip it. blynomial but pseudopolynomial O(W) Il weights.	18	 The de.g., N The c The b 	03 / Autumn 2005 Learn efinition of coNP a /ALIDITY. haracterization of t	coNP and function problems ning Objectives and examples of languages from coNP based on disqualifications.	and its

© 2005 TKK, Laboratory for Theoretical Computer Science