TURING MACHINES

- ➤ Basics definitions
- ➤ Turing machines as algorithms
- ➤ Turing machines with multiple strings
- ➤ Linear speedup
- ➤ Space bounds

(C. Papadimitriou: Computational complexity, Chapters 2.1-2.5)

Additional references:

M. Sipser: Introduction to the Theory of Computation, Chapter 3.

P. Orponen: Tietojenkäsittelyteorian perusteet, Luku 4.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

1. Basic Definitions

- ➤ Turing machines are used as the formal model of algorithms.
- ➤ Turing machines can simulate arbitrary algorithms with inconsequential loss of efficiency using a single data structure: a string of symbols.

Definition. A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ with

- a finite set of states K,
- a finite set of symbols Σ (alphabet of M) so that $\sqcup, \triangleright \in \Sigma$,
- a transition function δ :

$$K \times \Sigma \rightarrow (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\rightarrow, \leftarrow, -\}$$

a halting state h, an accepting state "yes", a rejecting state "no", and cursor directions: \rightarrow (right), \leftarrow (left), and - (stay).

Example. Consider a Turing machine $M = (K, \Sigma, \delta, s)$ with $K = \{s, q\}$, $\Sigma = \{0, 1, \sqcup, \rhd\}$ and a transition function δ defined as follows:

$p \in K$	$\sigma\!\in\!\Sigma$	$\delta(p,\sigma)$
s,	0	$(s,0,\rightarrow)$
s,	1	$(s,1,\rightarrow)$
s,	Ш	(q,\sqcup,\leftarrow)
s,	\triangleright	$(s, \triangleright, \rightarrow)$
q,	0	(h, 1, -)
q,	1	$(q,0,\leftarrow)$
q,	\triangleright	$(h, \triangleright, \rightarrow)$

The machine computes n+1 for a natural number n in binary.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

T-79.5103 / Autumn 2005

Turing Machines

2

Transition functions

- \triangleright Function δ is the "program" of the machine.
- \blacktriangleright For the current state $q \in K$ and the current symbol $\sigma \in \Sigma$,
 - $-\delta(q,\sigma) = (p,\rho,D)$ where p is the new state,
 - ρ is the symbol to be overwritten on $\sigma,$ and
 - $-D \in \{\rightarrow, \leftarrow, -\}$ is the direction in which the cursor will move.
- For any states p and q, $\delta(q,\triangleright)=(p,\rho,D)$ with $\rho=\triangleright$ and $D=\rightarrow$.
- ➤ If the machine moves off the right end of the string, it reads (the string becomes longer but it cannot become shorter; thus it keeps track of the space used by the machine).

- \blacktriangleright The program starts with (i) initial state s,
 - (ii) the string initialized to $\triangleright x$ where x is a finitely long string in $(\Sigma \{\sqcup\})^*$ (x is the *input* of the machine) and
 - (iii) the cursor pointing to ▷.
- ➤ A machine has *halted* iff one of the 3 halting states (h, "yes", "no") has been reached.
- ➤ If "yes" has been reached, the machine *accepts* the input. If "no" has been reached, the machine *rejects* the input.
- ightharpoonup Output M(x) of a machine M on input x:
 - (i) If M accepts/rejects, then M(x) = "yes"/"no".
 - (ii) If h has been reached, M(x) = y
 - where $\triangleright y \sqcup \sqcup \ldots$ is the string of M at the time of halting.
 - (iii) If M never halts on input x, then $M(x) = \nearrow$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

Operational semantics

- ightharpoonup A configuration (q, w, u):
 - $q \in K$ is the current state and $w, u \in \Sigma^*$ where
 - (i) w is the string to the left of the cursor including the symbol scanned by the cursor and
 - (ii) u is the string to the right of the cursor.
- The relation $\stackrel{M}{\to}$ (*yields* in one step): $(q, w, u) \stackrel{M}{\to} (q', w', u')$ Let σ be the last symbol of w and $\delta(q, \sigma) = (p, \rho, D)$. Then q' = p, and w', u' are obtained according to (p, ρ, D) .

Example. If $D = \rightarrow$, then

- (i) w' is w with its last symbol replaced by ρ and the first symbol of u appended to it (\sqcup if u is empty) and
- (ii) u' is u with the first removed (or empty, if u is empty).

Configurations reached in several steps

- ➤ Yields in k steps: $(q, w, u) \xrightarrow{M}^k (q', w', u')$ iff there are configurations $(q_i, w_i, u_i), i = 1, \dots, k+1$ such that $-(q, w, u) = (q_1, w_1, u_1),$ $-(q_i, w_i, u_i) \xrightarrow{M} (q_{i+1}, w_{i+1}, u_{i+1}), i = 1, \dots, k$, and $-(q', w', u') = (q_{k+1}, w_{k+1}, u_{k+1})$
- ➤ Yields: $(q, w, u) \xrightarrow{M^*} (q', w', u')$ iff there is some $k \ge 0$ such that $(q, w, u) \xrightarrow{M^k} (q', w', u')$.
- ➤ Therefore $\stackrel{M}{\rightarrow}^*$ is the transitive and reflexive closure of $\stackrel{M}{\rightarrow}$.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

0

2. Turing Machines as Algorithms

Turing machines are natural for solving problems on strings:

- Let $L \subset (\Sigma \{\sqcup\})^*$ be a language. A Turing machine M decides L iff for every string $x \in (\Sigma - \{\sqcup\})^*$, if $x \in L$, M(x) = "yes" and if $x \notin L$, M(x) = "no".
- \blacktriangleright If L is decided by a Turing machine, L is a *recursive* language.
- ➤ A Turing machine M computes a (string) function $f: (\Sigma \{\sqcup\})^* \to \Sigma^*$ iff for every string $x \in (\Sigma \{\sqcup\})^*$, M(x) = f(x).
- \blacktriangleright If such an M exists, f is called a *recursive function*.

Example. Transition function δ for checking even parity of $x \in \{0,1\}^*$:

$p \in K$	$\sigma\!\in\!\Sigma$	$\delta(p,\sigma)$	$p \in K$	$\sigma\!\in\!\Sigma$	$\delta(p,\sigma)$
S,	\triangleright	$(s, \triangleright, \longrightarrow)$	t,	\triangleright	$(t, \triangleright, \longrightarrow)$
S,	0	$(s,0,\rightarrow)$	t,	0	(t,0, ightarrow)
S,	1	$(t,1,\rightarrow)$	t,	1	$(s,1,\rightarrow)$
S,	Ц	$(\text{``yes''}, \sqcup, -)$	t,	Ц	$(\text{``no"},\sqcup,-)$

The respective Turing machine M decides $101 \in \{0,1\}^*$ as follows:

$$\begin{array}{ccc} (s, \triangleright, 101) & \stackrel{M}{\longrightarrow} & (s, \triangleright 1, 01) \\ & \stackrel{M}{\longrightarrow} & (t, \triangleright 10, 1) \\ & \stackrel{M}{\longrightarrow} & (t, \triangleright 101, \epsilon) \\ & \stackrel{M}{\longrightarrow} & (s, \triangleright 101 \sqcup, \epsilon) \\ & \stackrel{M}{\longrightarrow} & (\text{"yes"}, \triangleright 101 \sqcup, \epsilon). \end{array}$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

10

Recursively enumerable languages

- ► A Turing machine *M* accepts *L* iff for every string $x \in (\Sigma \{ \sqcup \})^*$, if $x \in L$, then M(x) = "yes" but if $x \notin L$, $M(x) = \nearrow$.
- \blacktriangleright If L is accepted by some Turing machine, L is a recursively enumerable language.
- ➤ We will later encounter examples of r.e. languages.

Proposition. If L is recursive, then it is recursively enumerable.

The terms recursive and recursively enumerable suggest that Turing machines are equivalent in power with arbitrarily general (recursive) computer programs.

Solving problems using Turing machines

- ➤ Instances of the problem need to be represented by strings.
- ➤ Solving a decision problem amounts to deciding the language consisting of the encodings of the "yes" instances of the problem.
- ➤ An optimization problem is solved by a Turing machine that computes the appropriate function from strings to strings (where the output is similarly represented as a string).

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

12

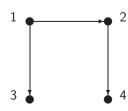
How does representation affect solvability?

➤ Any "finite" mathematical object can be represented by a finite string over an appropriate alphabet.

Example.

Graph:

Representations as a string:



" $\{(1,10),(1,11),(10,100)\}$ "

"(0110,0001,0000,0000)"

Representation vs. solvability?

All acceptable encodings are related polynomially: If A and B are both "reasonable" representations of the same set of instances, and representation A of an instance is a string with nsymbols, the representation B of the same instance has length at most p(n) for some polynomial p.

Turing Machines

- ➤ Exception: unary representation of numbers requires exponentially more symbols than the binary representation.
- ➤ A reasonably succinct input representation is assumed. In particular, numbers are always represented in binary.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

14

3. Turing Machines with Multiple Strings

- ➤ Turing machines with multiple strings and associated cursors are more convenient from the programmer's point of view.
- ➤ They can be simulated by an ordinary Turing machine with an inconsequential loss of efficiency.
- ➤ A k-string Turing machine with an integer parameter $k \ge 1$ is a quadruple $M = (K, \Sigma, \delta, s)$ where the transition function δ has been generalized to handle k strings simultaneously:

δ:
$$K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\to, \leftarrow, -\})^k$$

 \blacktriangleright This definition yields an ordinary Turing machine when k=1.

Generalized transitions

- Transitions are determined by $\delta(q,\sigma_1,\ldots,\sigma_k)=(p,\rho_1,D_1,\ldots,\rho_k,D_k).$ If M is in the state q, the cursor of the first string is scanning σ_1 , that of the second σ_2 and so on, then the next state is p, the first cursor will write ρ_1 and move D_1 and so on.
- \blacktriangleright A configuration is defined as a 2k+1-tuple $(q,w_1,u_1,\ldots,w_k,u_k)$.
- ➤ A k-string machine with input x starts from the configuration $(s, \triangleright, x, \triangleright, \varepsilon, \dots, \triangleright, \varepsilon)$.
- ▶ Relations \xrightarrow{M} , \xrightarrow{M} , \xrightarrow{M} , \xrightarrow{M} are defined in analogy to ordinary machines.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

16

➤ Output is defined as for ordinary machines:

If
$$(s, \triangleright, x, \triangleright, \varepsilon, \dots, \triangleright, \varepsilon) \xrightarrow{M^*} (\text{"yes"}, w_1, u_1, \dots, w_k, u_k)$$
, then $M(x) = \text{"yes"}$.

If
$$(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^*} (\text{"no"}, w_1, u_1, \ldots, w_k, u_k)$$
, then $M(x) = \text{"no"}$.

- If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M}^* (h, w_1, u_1, \ldots, w_k, u_k)$, then M(x) = y where y is $w_k u_k$ with the leading \triangleright and trailing \sqcup s removed. (*Output* read from the *last (kth) string.*)
- The *time required* by M on input x is t iff $(s,\triangleright,x,\triangleright,\epsilon,\ldots,\triangleright,\epsilon) \stackrel{M}{\longrightarrow}^t (H,w_1,u_1,\ldots,w_k,u_k)$ where $H \in \{\text{h, "yes", "no"}\}.$ If $M(x) = \nearrow$, then the time required is thought to be ∞ .

Complexity classes

- \triangleright Performance measured by the amount of time (or space) required on instances of size n using a function of n.
- Machine *M* operates within time f(n) if for any input string x, the time required by M on x is at most f(|x|).
- \blacktriangleright Function f(n) is a *time bound* for M.
- ▶ A *complexity class* **TIME**(f(n)) is a set of *languages* L decided by a multistring Turing machine operating within time f(n).
- ➤ Notice that worst-case inputs are taken into account.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

18

Multiple strings vs. a single string

Theorem. Given any k-string Turing machine M operating within time f(n), we can construct a Turing machine M' operating within time $O(f(n)^2)$ and such that for any input x, M(x) = M'(x).

Proof sketch:

- ► M' is based on an extended alphabet $\Sigma' = \Sigma \cup \underline{\Sigma} \cup \{\triangleright', \triangleleft\}$.
- \blacktriangleright M' represents a configuration of M by concatenation

$$(q, w_1, u_1, \dots, w_k, u_k) \mapsto (q, \triangleright, w_1' u_1 \triangleleft w_2' u_2 \triangleleft \dots w_k' u_k \triangleleft \triangleleft)$$

where each w'_i is w_i with the leading \triangleright replaced by \triangleright' and the last symbol σ_i by σ_i to keep track of cursor positions.

▶ Initial configuration: $(s, \triangleright, \underline{\triangleright'}x \triangleleft \underline{\triangleright'} \triangleleft \dots \underline{\triangleright'} \triangleleft \triangleleft)$

- \blacktriangleright The simulation of a step of M by M' takes place as follows:
 - 1. pass: symbols underlined (scanned) on the k strings
 - 2. pass: change in the underlined (scanned) symbols
- ➤ The strings of M have a total length of O(kf(n)). To simulate one step of M, M' needs $O(k^2f(n))$ steps.
- ➤ Since M makes at most f(n) steps, M' makes $O(f(n)^2)$ steps (k is fixed and independent of x).

Thesis: No conceivable "realistic" improvement on the Turing machine will increase the domain of the language such machines decide, or will affect their speed more than polynomially.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

20

4. Linear Speedup

- ➤ When using Turing machines, the rate of growth of the time/space requirements is important but the precise multiplicative and additive constants are not.
- ➤ In practice this also holds to some extent because of continuously improving computer hardware.

Theorem. Let $L \in \mathbf{TIME}(f(n))$. Then for any $\varepsilon > 0$, $L \in \mathbf{TIME}(f'(n))$ where $f'(n) = \varepsilon f(n) + n + 2$.

Proof sketch

- \blacktriangleright Let $M = (K, \Sigma, \delta, s)$ be a k-string machine deciding L in time f(n). We construct a k'-string machine $M' = (K', \Sigma', \delta', s')$ operating within time bound f'(n) and simulating M. (If k > 1, k' = k and if k = 1, then k' = 2).
- ➤ Performance savings are obtained by adding word length: Each symbol of M' encodes several symbols of M and each move of M' several moves of M.
- \blacktriangleright Given M and ϵ we take some integer m and use m-tuples of symbols of M in M'.
- \blacktriangleright The linear term (n+2) in the theorem is due to condensing input.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

22

Proof sketch — cont'd

- \blacktriangleright M' simulates m steps of M in at most a constant (6) number of steps in a stage.
- \blacktriangleright In such a stage M' reads the adjacent symbols (m-tuples) on both sides of the cursors (this takes 4 steps).
 - The state of M' records all symbols at or next to all cursors. Now M' can predict the next m moves of M which can be implemented in 2 steps.
- ➤ The time spent by M' on input x is |x| + 2 + 6 [f(|x|)/m].
- \triangleright The speedup is obtained if $m = \lceil 6/\epsilon \rceil$.
- Notice that a lot of new states have to be added: $|K|*m^k|\Sigma|^{3mk}$.

Consequences of the linear speedup theorem

- ▶ It holds for any time bound f(n) such that f(n) > n. (i) if f(n) = cn, then $f'(n) \approx n$ and (ii) if f(n) is superlinear, e.g., $f(n) = 20n^2 + 11n$, then $f'(n) \approx n^2$ (arbitrary linear speedup).
- ▶ If L is polynomially decidable, then $L \in \mathbf{TIME}(n^k)$ for some integer k > 0.

Definition. The set of all languages decidable by Turing machines in polynomial time P is defined as the union

$$\bigcup_{k>0}\mathbf{TIME}(n^k)$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

24

5. Space bounds

- > Strings cannot become shorter during computation.
- ➤ Thus the sum of lengths of the final strings provides a preliminary definition of the space consumed by a computation.
- ➤ There is an overcharge: sublinear space bounds are not covered! **Example.** The language of palindromes can be decided by a 3-string Turing machine in logarithmic space.
- ➤ This suggests us to exclude the effects of reading the input and writing the output as regards the consumption of space.

Turing machines with input and output

Definition. A k-string Turing machine (k > 2) with input and output is an ordinary k-string Turing machine with the following restrictions on the program δ :

If $\delta(q, \sigma_1, \dots, \sigma_k) = (p, \rho_1, D_1, \dots, \rho_k, D_k)$, then

- (a) $\rho_1 = \sigma_1$ (read-only input string).
- (b) $D_k \neq \leftarrow$ (write-only output string), and
- (c) if $\sigma_1 = \sqcup$, then $D_1 = \leftarrow$ (end of input respected).

Proposition. For any k-string Turing machine M operating within time bound f(n) there is a (k+2)-string Turing machine M' with input and output which operates within time bound O(f(n)).

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

26

Space consumption

Definition. Suppose that for a k-string Turing machine M and an input x, $(s, \triangleright, x, \triangleright, \varepsilon, \dots, \triangleright, \varepsilon) \xrightarrow{M}^* (H, w_1, u_1, \dots, w_k, u_k)$ where $H \in \{\text{"yes"}, \text{"no"}, h\}$ is a halting state.

Then the space required by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.

If *M* is a Turing machine *with input and output*, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.

Let $f: \mathbf{N} \mapsto \mathbf{N}$.

Turing machine M operates within space bound f(n) if for any input x, M requires space at most f(|x|).

Space complexity classes

Definition. A space complexity class SPACE(f(n)) is a set of languages L decidable by a Turing machine with input and output operating within space bound f(n).

Definition. The class **SPACE**(log(n)) is denoted by **L**.

Example. The language of palindromes belongs to L.

Theorem. Let $L \in \mathbf{SPACE}(f(n))$. Then for any $\varepsilon > 0$, $L \in \mathbf{SPACE}(2 + \varepsilon f(n)).$

Constants do not count for space as well.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Turing Machines

28

Learning Objectives

- \triangleright A deeper understanding why (k-string) Turing machines make a reasonable model of computation.
- ➤ You should know how time/space complexity classes are derived using bounds on computations.
- ➤ The idea that multiplicative/additive constants do not count.
- ➤ The definitions and background of complexity classes P and L.