BOOLEAN LOGIC

- Syntax
- Semantics
- Normal forms
> Satisfiability and validity
- Boolean functions and expressions
- Boolean circuits
(C. Papadimitriou: Computational complexity, Chapter 4)
(c) 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005
Boolean Logic

Motivation

Logic involves interesting computational problems.

- Logic is "the calculus of computer science":
digital circuit design, programming language semantics, specification and verification, constraint programming, logic programming, databases, artificial intelligence, knowledge representation, machine learning, ...

In computational complexity theory:
Computational problems from logic are of central importance; they can be used to express computation at various levels.
This leads to important connections between complexity concepts and actual computational problems.

1. Syntax

The syntax of Boolean logic (i.e. the set of well-formed Boolean expressions) is based on the following symbols:

- Boolean variables (or atoms): $X=\left\{x_{1}, x_{2}, \ldots\right\}$.
- Boolean connectives: \vee, \wedge, and \neg.
- The set of Boolean expressions (formulae) is the smallest set such that all Boolean variables are Boolean expressions and if ϕ_{1} and ϕ_{2} are Boolean expressions, so are $\neg \phi_{1},\left(\phi_{1} \wedge \phi_{2}\right)$, and $\left(\phi_{1} \vee \phi_{2}\right)$.
> An expression of the form x_{i} or $\neg x_{i}$ is called a literal where x_{i} is a Boolean variable.

Example. $\left(\left(x_{1} \vee x_{2}\right) \wedge \neg x_{3}\right)$ is a Boolean expression but $\left(\left(x_{1} \vee x_{2}\right) \neg x_{3}\right)$ is not.
(c) 2005 TKK, Laboratory for Theoretical Computer Science

Some notational conventions

Simplified notation: $\left(\left(\left(x_{1} \vee \neg x_{3}\right) \vee x_{2}\right) \vee\left(x_{4} \vee\left(x_{2} \vee x_{5}\right)\right)\right)$ is written as $x_{1} \vee \neg x_{3} \vee x_{2} \vee x_{4} \vee x_{2} \vee x_{5}$ or $x_{1} \vee \neg x_{3} \vee x_{2} \vee x_{4} \vee x_{5}$.

- Disjunctions and conjunctions involving n members:
- $\bigvee_{i=1}^{n} \varphi_{i}$ stands for $\varphi_{1} \vee \cdots \vee \varphi_{n}$.
- $\bigwedge_{i=1}^{n} \varphi_{i}$ stands for $\varphi_{1} \wedge \cdots \wedge \varphi_{n}$.
- Frequently appearing abbreviations:
- An implication $\phi_{1} \rightarrow \phi_{2}$ stands for $\neg \phi_{1} \vee \phi_{2}$.
- An equivalence $\phi_{1} \leftrightarrow \phi_{2}$ stands for $\left(\neg \phi_{1} \vee \phi_{2}\right) \wedge\left(\neg \phi_{2} \vee \phi_{1}\right)$.

2. Semantics

How to interpret Boolean expressions?

- Boolean expressions are propositions that are either true or false.

They speak about a world where certain atomic proposition (Boolean variables) are either true or false.

This induces truth values for Boolean expressions as follows.

- A truth assignment T is mapping from a finite subset $X^{\prime} \subset X$ to the set of truth values $\{$ true, false $\}$.
- Let $X(\phi)$ be the set of Boolean variables appearing in ϕ.

Definition. A truth assignment $T: X^{\prime} \rightarrow\{$ true,false $\}$ is appropriate to ϕ if $X(\phi) \subseteq X^{\prime}$.
© 2005 TKK, Laboratory for Theoretical Computer Science

Satisfaction relation

- Let a truth assignment $T: X^{\prime} \rightarrow\{$ true,false $\}$ be appropriate to ϕ, i.e., $X(\phi) \subseteq X^{\prime}$.
> $T \models \phi(T$ satisfies $\phi)$ is defined inductively as follows:
If ϕ is a variable from X^{\prime}, then $T \models \phi$ iff $T(\phi)=$ true.
If $\phi=\neg \phi_{1}$, then $T \models \phi$ iff $T \not \vDash \phi_{1}$.
If $\phi=\phi_{1} \wedge \phi_{2}$, then $T \models \phi$ iff $T \models \phi_{1}$ and $T \models \phi_{2}$.
If $\phi=\phi_{1} \vee \phi_{2}$, then $T \models \phi$ iff $T \models \phi_{1}$ or $T \models \phi_{2}$.
Example. Let $T\left(x_{1}\right)=$ true, $T\left(x_{2}\right)=$ false.
Then $T \models x_{1} \vee x_{2}$ but $T \nLeftarrow\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \wedge x_{2}\right)$.

Logical equivalence

Definition. Expressions ϕ_{1} and ϕ_{2} are logically equivalent $\left(\phi_{1} \equiv \phi_{2}\right)$ iff for all truth assignments T appropriate to both of them,

$$
T \models \phi_{1} \text { iff } T \models \phi_{2} .
$$

Example.

$\left(\phi_{1} \vee \phi_{2}\right) \equiv\left(\phi_{2} \vee \phi_{1}\right)$
$\left(\left(\phi_{1} \wedge \phi_{2}\right) \wedge \phi_{3}\right) \equiv\left(\phi_{1} \wedge\left(\phi_{2} \wedge \phi_{3}\right)\right)$
$\neg \neg \phi \equiv \phi$
$\left(\left(\phi_{1} \wedge \phi_{2}\right) \vee \phi_{3}\right) \equiv\left(\left(\phi_{1} \vee \phi_{3}\right) \wedge\left(\phi_{2} \vee \phi_{3}\right)\right)$
$\neg\left(\phi_{1} \wedge \phi_{2}\right) \equiv\left(\neg \phi_{1} \vee \neg \phi_{2}\right)$
$\left(\phi_{1} \vee \phi_{1}\right) \equiv \phi_{1}$
(c) 2005 TKK, Laboratory for Theoretical Computer Science

Theorem. Every Boolean expression is equivalent to one in conjunctive (disjunctive) normal form CNF (DNF).
> These forms are defined by
CNF: $\left(l_{11} \vee \cdots \vee l_{1 n_{1}}\right) \wedge \cdots \wedge\left(l_{m 1} \vee \cdots \vee l_{m n_{m}}\right)$
DNF: $\left(l_{11} \wedge \cdots \wedge l_{1 n_{1}}\right) \vee \cdots \vee\left(l_{m 1} \wedge \cdots \wedge l_{m n_{m}}\right)$
where each $l_{i j}$ is a literal (Boolean variable or its negation).

- A disjunction $l_{1} \vee \cdots \vee l_{n}$ of literals is called a clause.
$>$ A conjunction $l_{1} \wedge \cdots \wedge l_{n}$ of literals is called an implicant.
- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants.
Example. $\left(\neg x_{1} \vee \neg x_{1} \vee x_{2}\right) \equiv\left(\neg x_{1} \vee x_{2}\right)$.

CNF/DNF transformation

Any Boolean expression can be transformed into CNF/DNF as follows.

- Remove \leftrightarrow and \rightarrow :

$$
\begin{array}{ll}
\alpha \leftrightarrow \beta & \leadsto \\
\alpha \rightarrow \beta & \leadsto \alpha \vee \beta) \wedge(\neg \beta \vee \alpha) \tag{2}
\end{array}
$$

- Push negations in front of Boolean variables:
$\neg \neg \alpha \quad \sim \quad \alpha$
$\neg(\alpha \vee \beta) \leadsto \neg \alpha \wedge \neg \beta$
$\neg(\alpha \wedge \beta) \quad \neg \alpha \vee \neg \beta$
[登 The result is a mixed conjunction and disjunction of literals.

CNF/DNF transformation-cont'd

The next phase depends on the normal form being pursued:

- For a CNF, move \wedge connectives outside \vee connectives:
$\alpha \vee(\beta \wedge \gamma) \leadsto(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$
$(\alpha \wedge \beta) \vee \gamma \leadsto(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$
- For a DNF, move \vee connectives outside \wedge connectives:

$$
\begin{array}{lll}
\alpha \wedge(\beta \vee \gamma) & \leadsto & (\alpha \wedge \beta) \vee(\alpha \wedge \gamma) \\
(\alpha \vee \beta) \wedge \gamma & \leadsto & (\alpha \wedge \gamma) \vee(\beta \wedge \gamma) \tag{9}
\end{array}
$$

Note: Normal forms can be exponentially bigger than the original expression in the worst case.
Example. Consider deriving a CNF for $\left(x_{1} \wedge \neg x_{1}\right) \vee \ldots \vee\left(x_{n} \wedge \neg x_{n}\right)$.

Example

Transform $\left(x_{1} \vee x_{2}\right) \rightarrow\left(x_{2} \leftrightarrow x_{3}\right)$ into CNF.

$$
\begin{align*}
& \left(x_{1} \vee x_{2}\right) \rightarrow\left(x_{2} \leftrightarrow x_{3}\right) \quad(1) \tag{1}\\
& \neg\left(x_{1} \vee x_{2}\right) \vee\left(x_{2} \leftrightarrow x_{3}\right) \quad(2) \tag{2}\\
& \neg\left(x_{1} \vee x_{2}\right) \vee\left(\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)\right) \quad \text { (4) } \\
& \left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)\right) \quad(7) \tag{7}\\
& \left(\neg x_{1} \vee\left(\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)\right)\right) \wedge\left(\neg x_{2} \vee\left(\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)\right)\right) \\
& \left(\left(\neg x_{1} \vee\left(\neg x_{2} \vee x_{3}\right)\right) \wedge\left(\neg x_{1} \vee\left(\neg x_{3} \vee x_{2}\right)\right)\right) \\
& \wedge\left(\neg x_{2} \vee\left(\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)\right)\right) \quad \text { (6) } \\
& \left(\left(\neg x_{1} \vee\left(\neg x_{2} \vee x_{3}\right)\right) \wedge\left(\neg x_{1} \vee\left(\neg x_{3} \vee x_{2}\right)\right)\right) \\
& \quad \wedge\left(\left(\neg x_{2} \vee\left(\neg x_{2} \vee x_{3}\right)\right) \wedge\left(\neg x_{2} \vee\left(\neg x_{3} \vee x_{2}\right)\right)\right) \quad \text { (6) }
\end{align*}
$$

$\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{2}\right)$
© 2005 TKK, Laboratory for Theoretical Computer Science

- A Boolean expression ϕ is satisfiable iff there is a truth assignment T appropriate to it such that $T \models \phi$.
- A Boolean expression ϕ is valid/tautology (denoted by $\models \phi$) iff for every truth assignment T appropriate to it, $T \models \phi$.
> The interconnection of satisfiability and validity:

$$
\models \phi \text { iff } \neg \phi \text { is unsatisfiable. }
$$

Moreover, for any Boolean expressions ψ_{1} and ψ_{2},

$$
\psi_{1} \equiv \psi_{2} \text { iff } \models \psi_{1} \leftrightarrow \psi_{2} \text { iff } \neg\left(\psi_{1} \leftrightarrow \psi_{2}\right) \text { is unsatisfiable. }
$$

[2] Satisfiability forms a fundamental computational problem.

Polynomial Time Algorithm for HORNSAT

Satisfiability Problem

SAT problem: Given φ in CNF, is φ satisfiable?
Example. $\left(x_{1} \vee \neg x_{2}\right) \wedge \neg x_{1}$ is satisfiable
but $\left(x_{1} \vee \neg x_{2}\right) \wedge \neg x_{1} \wedge x_{2}$ is unsatisfiable.
$>$ SAT can be solved in $\mathrm{O}\left(n^{2} 2^{n}\right)$ time (e.g., truth table method).
> SAT $\in \mathbf{N P}$ but $S A T \in \mathbf{P}$ remains open!
A nondeterministic Turing machine for $\varphi \in$ SAT:
for all variables x in φ do
choose nondeterministically: $T(x):=$ true or $T(x):=$ false;
if $T \models \varphi$ then return "yes" else return "no"
© 2005 TKK, Laboratory for Theoretical Computer Science

Horn clauses

- An interesting special case of SAT concerns Horn clauses, i.e., clauses (disjunction of literals) with at most one positive literal.
Example. $\neg x_{1} \vee x_{2} \vee \neg x_{3}$ and $\neg x_{1} \vee \neg x_{3}, x_{2}$ are Horn clauses but $\neg x_{1} \vee x_{2} \vee x_{3}$ is not.
- A Horn clause with a positive literal is called an implication and can be written as $\left(x_{1} \wedge x_{3}\right) \rightarrow x_{2}$
(or $\rightarrow x_{2}$ when there are no negative literals).
- HORNSAT problem:

Given a conjunction of Horn clauses, is it satisfiable?

Algorithm hornsat (S)

/* Determines whether $S \in$ HORNSAT */
$T:=\emptyset /^{*} T$ is the set of true atoms */
repeat
if there is an implication $\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right) \rightarrow y$ in S such that $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq T$ but $y \notin T$ then $T:=T \cup\{y\}$
until T does not change
if for all purely negative clauses $\neg x_{1} \vee \cdots \vee \neg x_{n}$ in S,
there is some literal $\neg x_{i}$ such that $x_{i} \notin T$ then
return S is satisfiable
else return S is not satisfiable
[远 HORNSAT $\in \mathbf{P}$.
(c) 2005 TKK, Laboratory for Theoretical Computer Science

5. Boolean Functions and Expressions

> An n-ary Boolean function is a mapping
$\{\text { true, false }\}^{n} \rightarrow\{$ true, false $\}$.
Example. The connectives $\vee, \wedge, \rightarrow$, and \leftrightarrow can be viewed as binary Boolean functions and \neg is a unary function.
> Similarly, any Boolean expression ϕ can be interpreted as an n-ary Boolean function f_{ϕ} where $n=|X(\phi)|$.
> A Boolean expression ϕ with variables x_{1}, \ldots, x_{n} expresses the n-ary function f if for any n-tuple of truth values $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$,

$$
f(\mathbf{t})= \begin{cases}\text { true }, & \text { if } T \models \phi . \\ \text { false, } & \text { if } T \not \models \phi .\end{cases}
$$

where T satisfies $T\left(x_{i}\right)=t_{i}$ for every $i=1, \ldots, n$.

Proposition. Any n-ary Boolean function f can be expressed as a
Boolean expression ϕ_{f} involving variables x_{1}, \ldots, x_{n}
> The idea: model the rows of the truth table giving true as a disjunction of conjunctions.
$>$ Let F be the set of all n-tuples $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ with $f(\mathbf{t})=$ true.
$>$ For each \mathbf{t}, let $D_{\mathbf{t}}$ be a conjunction of literals x_{i} if $t_{i}=$ true and $\neg x_{i}$ if $t_{i}=$ false.
$>$ Let $\phi_{f}=\bigvee_{\mathbf{t} \in F} D_{\mathbf{t}}$
> Note that ϕ_{f} may get big in the worst case: $\mathrm{O}\left(n 2^{n}\right)$.
[2马 Not all Boolean functions can be expressed

Example.

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	0

$\phi_{f}=\left(\neg x_{1} \wedge x_{2}\right) \vee$ $\left(x_{1} \wedge \neg x_{2}\right)$. concisely.
© 2005 TKK, Laboratory for Theoretical Computer Science

6. Boolean Circuits

A more economical way to represent Boolean functions?

Syntax:

- A graph $C=(V, E)$ where $V=\{1,2, \ldots, n\}$ is the set of gates and C must be acyclic ($i<j$ for all edges $(i, j) \in E$).
> All gates i have a sort $s(i) \in\{$ true, false, $, \wedge, \vee, \neg\} \cup\left\{x_{1}, x_{2}, \ldots\right\}$.
- If $s(i) \in\{$ true, false $\} \cup\left\{x_{1}, x_{2}, \ldots\right\}$, the indegree of i is 0 (inputs).
- If $s(i)=\neg$, the indegree of $i 1$.
- If $s(i) \in\{\vee, \wedge\}$, the indegree of i is 2 .
- Node n is the output of the circuit.

Semantics

A truth assignment is a function $T: X(C) \rightarrow\{$ true, false $\}$ where $X(C)$ is the set of variables appearing in a circuit C.
The truth value $T(i)$ for each gate i is defined inductively:

- If $s(i)=$ true, $T(i)=$ true and if $s(i)=$ false, $T(i)=$ false.
- If $s(i) \in X(C)$, then $T(i)=T(s(i))$.
- If $s(i)=\neg$, then $T(i)=$ true if $T(j)=$ false, otherwise $T(i)=$ false where (j, i) is the unique edge entering i.
- If $s(i)=\wedge$, then $T(i)=$ true if $T(j)=T\left(j^{\prime}\right)=$ true else $T(i)=$ false where (j, i) and $\left(j^{\prime}, i\right)$ are the two edges entering i.
- If $s(i)=\vee$, then $T(i)=$ true if $T(j)=$ true or $T\left(j^{\prime}\right)=$ true else $T(i)=$ false where (j, i) and $\left(j^{\prime}, i\right)$ are the two edges to i.
- $T(C)=T(n)$, i.e. the value of the circuit C.
© 2005 TKK, Laboratory for Theoretical Computer Science

- For each Boolean circuit C, there is a corresponding Boolean expression ϕ_{C}.
> For each Boolean expression ϕ, there is a corresponding Boolean circuit C_{ϕ} such that for any T appropriate for both,

$$
T\left(C_{\phi}\right)=\text { true iff } T \models \phi .
$$

Idea: just introduce a new gate for each subexpression of ϕ.
Notice that Boolean circuits allow shared subexpressions but Boolean expressions do not.

Computational problems related with Boolean circuits

- CIRCUIT SAT:

Given a circuit C, is there a truth assignment
$T: X(C) \rightarrow\{$ true, false $\}$ such that $T(C)=$ true?
> CIRCUIT SAT $\in \mathbf{N P}$.

- CIRCUIT VALUE:

Given a circuit C with no variables, is it the case that $T(C)=$ true?CIRCUIT VALUE $\in \mathbf{P}$.
(No truth assignment is needed as $X(C)=\emptyset$).
(c) 2005 TKK, Laboratory for Theoretical Computer Science

Circuits computing Boolean functions

A Boolean circuit with variables x_{1}, \ldots, x_{n} computes an n-ary Boolean function f if for any n-tuple of truth values $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right), f(\mathbf{t})=T(C)$ where $T\left(x_{i}\right)=t_{i}$ for $i=1, \ldots, n$.

- Any n-ary Boolean function f can be computed by a Boolean circuit involving variables x_{1}, \ldots, x_{n}.
- Not every Boolean function has a concise circuit computing it.

Theorem. For any $n \geq 2$ there is an n-ary Boolean function f such that no Boolean circuit with $\frac{2^{n}}{2 n}$ or fewer gates can compute it.
However, all natural families of Boolean functions seem to need only a linear number of gates to compute!

Learning Objectives

You should deeply understand the syntax and semantics of Boolean expressions - including their use in practice.The relationship/difference between Boolean expressions and circuits.- Knowing the idea of representing Boolean functions in terms of Boolean expressions and circuits.
- Four computational problems related with Boolean logic and circuits: SAT, HORNSAT, CIRCUIT SAT, and CIRCUIT VALUE.

