

BOOLEAN LOGIC

- ➤ Syntax
- ➤ Semantics
- ➤ Normal forms
- > Satisfiability and validity
- ➤ Boolean functions and expressions
- ➤ Boolean circuits

(C. Papadimitriou: Computational complexity, Chapter 4)

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

Motivation

- ➤ Logic involves interesting computational problems.
- ➤ Logic is "the calculus of computer science": digital circuit design, programming language semantics, specification and verification, constraint programming, logic programming, databases, artificial intelligence, knowledge representation, machine learning, ...
- ➤ In computational complexity theory: Computational problems from logic are of central importance; they can be used to express computation at various levels.
 - This leads to important connections between complexity concepts and actual computational problems.

1. Syntax

- ➤ The syntax of Boolean logic (i.e. the set of well-formed Boolean expressions) is based on the following symbols:
 - Boolean *variables* (or *atoms*): $X = \{x_1, x_2, ...\}$.
 - Boolean *connectives*: \vee . \wedge . and \neg .
- ➤ The set of Boolean expressions (formulae) is the smallest set such that all Boolean variables are Boolean expressions and if ϕ_1 and ϕ_2 are Boolean expressions, so are $\neg \phi_1$, $(\phi_1 \land \phi_2)$, and $(\phi_1 \lor \phi_2)$.
- \blacktriangleright An expression of the form x_i or $\neg x_i$ is called a *literal* where x_i is a Boolean variable.

Example. $((x_1 \lor x_2) \land \neg x_3)$ is a Boolean expression but $((x_1 \lor x_2) \neg x_3)$ is not.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

2

Some notational conventions

- \blacktriangleright Simplified notation: $(((x_1 \lor \neg x_3) \lor x_2) \lor (x_4 \lor (x_2 \lor x_5)))$ is written as $x_1 \vee \neg x_3 \vee x_2 \vee x_4 \vee x_2 \vee x_5$ or $x_1 \vee \neg x_3 \vee x_2 \vee x_4 \vee x_5$.
- \triangleright Disjunctions and conjunctions involving n members:
 - $-\bigvee_{i=1}^n \varphi_i$ stands for $\varphi_1 \vee \cdots \vee \varphi_n$.
 - $-\bigwedge_{i=1}^n \varphi_i$ stands for $\varphi_1 \wedge \cdots \wedge \varphi_n$.
- > Frequently appearing abbreviations:
 - An implication $\phi_1 \rightarrow \phi_2$ stands for $\neg \phi_1 \lor \phi_2$.
 - An equivalence $\phi_1 \leftrightarrow \phi_2$ stands for $(\neg \phi_1 \lor \phi_2) \land (\neg \phi_2 \lor \phi_1)$.

2. Semantics

How to interpret Boolean expressions?

➤ Boolean expressions are propositions that are either true or false.

They speak about a world where certain atomic proposition
(Boolean variables) are either true or false.

This induces truth values for Boolean expressions as follows.

- ▶ A truth assignment T is mapping from a finite subset $X' \subset X$ to the set of truth values $\{\mathbf{true}, \mathbf{false}\}$.
- Let $X(\phi)$ be the set of Boolean variables appearing in ϕ . **Definition.** A truth assignment $T: X' \to \{\mathbf{true}, \mathbf{false}\}$ is appropriate to ϕ if $X(\phi) \subseteq X'$.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

6

Satisfaction relation

- ► Let a truth assignment $T: X' \to \{\mathbf{true}, \mathbf{false}\}$ be appropriate to ϕ , i.e., $X(\phi) \subseteq X'$.
- $ightharpoonup T \models \phi \ (T \ \textit{satisfies} \ \phi)$ is defined inductively as follows:

If ϕ is a variable from X', then $T \models \phi$ iff $T(\phi) = \mathbf{true}$.

If $\phi = \neg \phi_1$, then $T \models \phi$ iff $T \not\models \phi_1$.

If $\phi = \phi_1 \wedge \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ and $T \models \phi_2$.

If $\phi = \phi_1 \lor \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ or $T \models \phi_2$.

Example. Let $T(x_1) =$ true, $T(x_2) =$ false.

Then $T \models x_1 \lor x_2$ but $T \not\models (x_1 \lor \neg x_2) \land (\neg x_1 \land x_2)$.

Logical equivalence

Definition. Expressions ϕ_1 and ϕ_2 are logically *equivalent* $(\phi_1 \equiv \phi_2)$ iff for all truth assignments T appropriate to both of them,

$$T \models \phi_1 \text{ iff } T \models \phi_2.$$

Example.

$$\begin{split} (\varphi_1 \lor \varphi_2) &\equiv (\varphi_2 \lor \varphi_1) \\ ((\varphi_1 \land \varphi_2) \land \varphi_3) &\equiv (\varphi_1 \land (\varphi_2 \land \varphi_3)) \\ \neg \neg \varphi &\equiv \varphi \\ ((\varphi_1 \land \varphi_2) \lor \varphi_3) &\equiv ((\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)) \\ \neg (\varphi_1 \land \varphi_2) &\equiv (\neg \varphi_1 \lor \neg \varphi_2) \\ (\varphi_1 \lor \varphi_1) &\equiv \varphi_1 \end{split}$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

8

3. Normal Forms

Theorem. Every Boolean expression is equivalent to one in conjunctive (disjunctive) normal form CNF (DNF).

➤ These forms are defined by

CNF:
$$(l_{11} \lor \cdots \lor l_{1n_1}) \land \cdots \land (l_{m1} \lor \cdots \lor l_{mn_m})$$

DNF:
$$(l_{11} \wedge \cdots \wedge l_{1n_1}) \vee \cdots \vee (l_{m1} \wedge \cdots \wedge l_{mn_m})$$

where each l_{ii} is a literal (Boolean variable or its negation).

- ➤ A disjunction $l_1 \lor \cdots \lor l_n$ of literals is called a *clause*.
- \blacktriangleright A conjunction $l_1 \land \cdots \land l_n$ of literals is called an *implicant*.
- ➤ We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants.

Example.
$$(\neg x_1 \lor \neg x_1 \lor x_2) \equiv (\neg x_1 \lor x_2)$$
.

CNF/DNF transformation

Any Boolean expression can be transformed into CNF/DNF as follows.

 $\bullet \ \ \mathsf{Remove} \, \leftrightarrow \mathsf{and} \, \to :$

$$\alpha \leftrightarrow \beta \quad \rightsquigarrow \quad (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha) \quad (1)$$

$$\alpha \rightarrow \beta \quad \rightsquigarrow \quad \neg \alpha \lor \beta$$

• Push negations in front of Boolean variables:

$$\neg \neg \alpha \qquad \sim \quad \alpha$$

$$\neg(\alpha \lor \beta) \quad \leadsto \quad \neg\alpha \land \neg\beta \quad \text{(4)}$$

$$\neg(\alpha \land \beta) \quad \rightsquigarrow \quad \neg\alpha \lor \neg\beta \quad (5)$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

10

CNF/DNF transformation—cont'd

The next phase depends on the normal form being pursued:

• For a CNF, move ∧ connectives outside ∨ connectives:

$$\alpha \vee (\beta \wedge \gamma) \quad \rightsquigarrow \quad (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \quad (6)$$

$$(\alpha \wedge \beta) \vee \gamma \quad \rightsquigarrow \quad (\alpha \vee \gamma) \wedge (\beta \vee \gamma) \quad (7)$$

• For a DNF, move ∨ connectives outside ∧ connectives:

$$\alpha \wedge (\beta \vee \gamma) \quad \rightsquigarrow \quad (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \quad (8)$$

$$(\alpha \vee \beta) \wedge \gamma \quad \rightsquigarrow \quad (\alpha \wedge \gamma) \vee (\beta \wedge \gamma) \quad (9)$$

Note: Normal forms can be exponentially bigger than the original expression in the worst case.

Example. Consider deriving a CNF for $(x_1 \land \neg x_1) \lor ... \lor (x_n \land \neg x_n)$.

Example

Transform $(x_1 \lor x_2) \rightarrow (x_2 \leftrightarrow x_3)$ into CNF.

$$(x_1 \lor x_2) \to (x_2 \leftrightarrow x_3)$$
 (1)

$$\neg(x_1 \lor x_2) \lor (x_2 \leftrightarrow x_3) \quad (2)$$

$$\neg(x_1 \lor x_2) \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2)) \quad (4)$$

$$(\neg x_1 \land \neg x_2) \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2))$$
 (7)

$$(\neg x_1 \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2))) \land (\neg x_2 \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2)))$$
 (6)

$$((\neg x_1 \lor (\neg x_2 \lor x_3)) \land (\neg x_1 \lor (\neg x_3 \lor x_2)))$$

$$\wedge (\neg x_2 \vee ((\neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_2))) \quad (6)$$

$$((\neg x_1 \lor (\neg x_2 \lor x_3)) \land (\neg x_1 \lor (\neg x_3 \lor x_2)))$$

$$\wedge ((\neg x_2 \vee (\neg x_2 \vee x_3)) \wedge (\neg x_2 \vee (\neg x_3 \vee x_2))) \quad \textbf{(6)}$$

$$(\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3 \lor x_2)$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

12

4. Satisfiability and Validity

- ➤ A Boolean expression ϕ is *satisfiable* iff there is a truth assignment T appropriate to it such that $T \models \phi$.
- ➤ A Boolean expression ϕ is *valid/tautology* (denoted by $\models \phi$) iff for every truth assignment T appropriate to it, $T \models \phi$.
- ➤ The interconnection of satisfiability and validity:

 $\models \phi$ iff $\neg \phi$ is unsatisfiable.

 \blacktriangleright Moreover, for any Boolean expressions ψ_1 and ψ_2

 $\psi_1 \equiv \psi_2$ iff $\models \psi_1 \leftrightarrow \psi_2$ iff $\neg (\psi_1 \leftrightarrow \psi_2)$ is unsatisfiable.

Satisfiability forms a fundamental computational problem.

Satisfiability Problem

- **SAT** problem: Given φ in CNF, is φ satisfiable? **Example.** $(x_1 \vee \neg x_2) \wedge \neg x_1$ is satisfiable but $(x_1 \vee \neg x_2) \wedge \neg x_1 \wedge x_2$ is unsatisfiable.
- ➤ SAT can be solved in $O(n^22^n)$ time (e.g., truth table method).
- ➤ SAT \in **NP** but SAT \in **P** remains open!

A nondeterministic Turing machine for $\varphi \in SAT$: for all variables x in φ do choose nondeterministically: $T(x) := \mathbf{true}$ or $T(x) := \mathbf{false}$; if $T \models \varphi$ then return "yes" else return "no"

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

Boolean Logic

14

Horn clauses

- An interesting special case of SAT concerns *Horn clauses*, i.e., clauses (disjunction of literals) with *at most one positive literal*. **Example.** $\neg x_1 \lor x_2 \lor \neg x_3$ and $\neg x_1 \lor \neg x_3$, x_2 are Horn clauses but $\neg x_1 \lor x_2 \lor x_3$ is not.
- ➤ A Horn clause with a positive literal is called an *implication* and can be written as $(x_1 \land x_3) \rightarrow x_2$ (or $\rightarrow x_2$ when there are no negative literals).
- ➤ HORNSAT problem:

 Given a conjunction of Horn clauses, is it satisfiable?

Polynomial Time Algorithm for HORNSAT

Algorithm *hornsat*(S)

/* Determines whether $S \in \mathsf{HORNSAT}$ */

 $T := \emptyset / * T$ is the set of true atoms */

repeat

if there is an implication $(x_1 \wedge x_2 \wedge \cdots \wedge x_n) \rightarrow y$ in S such that $\{x_1, \dots, x_n\} \subseteq T$ but $y \notin T$ **then** $T := T \cup \{y\}$

until T does not change

if for all purely negative clauses $\neg x_1 \lor \cdots \lor \neg x_n$ in S, there is some literal $\neg x_i$ such that $x_i \not\in T$ **then** return S is satisfiable

else return S is not satisfiable

 \Leftrightarrow HORNSAT \in **P**.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

16

5. Boolean Functions and Expressions

➤ An *n*-ary Boolean function is a mapping $\{\mathbf{true}, \mathbf{false}\}^n \rightarrow \{\mathbf{true}, \mathbf{false}\}.$

Example. The connectives \lor , \land , \rightarrow , and \leftrightarrow can be viewed as binary Boolean functions and \neg is a unary function.

- ➤ Similarly, any Boolean expression ϕ can be interpreted as an n-ary Boolean function f_{ϕ} where $n = |X(\phi)|$.
- A Boolean expression ϕ with variables x_1, \dots, x_n expresses the n-ary function f if for any n-tuple of truth values $\mathbf{t} = (t_1, \dots, t_n)$,

$$f(\mathbf{t}) = \begin{cases} \mathbf{true}, & \text{if } T \models \emptyset. \\ \mathbf{false}, & \text{if } T \not\models \emptyset. \end{cases}$$

where T satisfies $T(x_i) = t_i$ for every i = 1, ..., n.

Proposition. Any n-ary Boolean function f can be expressed as a Boolean expression ϕ_f involving variables x_1, \ldots, x_n .

- ➤ The idea: model the rows of the truth table giving true as a disjunction of conjunctions.
- \blacktriangleright Let F be the set of all n-tuples $\mathbf{t} = (t_1, \dots, t_n)$ with $f(\mathbf{t}) = \mathbf{true}$.
- \triangleright For each \mathbf{t} , let $D_{\mathbf{t}}$ be a conjunction of literals x_i if $t_i =$ true and $\neg x_i$ if $t_i =$ false.
- \blacktriangleright Let $\phi_f = \bigvee_{t \in F} D_t$
- \blacktriangleright Note that ϕ_f may get big in the worst case: $O(n2^n)$.

Not all Boolean functions can be expressed concisely.

Example.

x_1	x_2	f
0	0	0
0	1	1
1	0	1
1	1	0

$$\phi_f = (\neg x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2).$$

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

18

6. Boolean Circuits

A more economical way to represent Boolean functions?

Syntax:

- \blacktriangleright A graph C = (V, E) where $V = \{1, 2, \dots, n\}$ is the set of gates and C must be acyclic $(i < j \text{ for all edges } (i, j) \in E)$.
- \blacktriangleright All gates *i* have a sort $s(i) \in \{$ **true**, **false**, \land , \lor , $\neg \} \cup \{x_1, x_2, \ldots\}$.
 - − If $s(i) \in \{$ **true**, **false** $\} \cup \{x_1, x_2, ...\}$, the indegree of i is 0 (inputs).
 - If $s(i) = \neg$, the indegree of i 1.
 - − If $s(i) \in \{ \lor, \land \}$, the indegree of *i* is 2.
- ➤ Node *n* is the output of the circuit.

Semantics

A truth assignment is a function $T: X(C) \to \{\mathbf{true}, \mathbf{false}\}$ where X(C)is the set of variables appearing in a circuit C.

The truth value T(i) for each gate i is defined inductively:

- If s(i) =true, T(i) =true and if s(i) =false, T(i) =false.
- If $s(i) \in X(C)$, then T(i) = T(s(i)).
- If $s(i) = \neg$, then T(i) =true if T(i) =false, otherwise T(i) =false where (i,i) is the unique edge entering i.
- If $s(i) = \land$, then T(i) =true if T(i) = T(i') =true else T(i) =**false** where (j,i) and (j',i) are the two edges entering i.
- If $s(i) = \vee$, then T(i) =true if T(i) =true or T(i') =true else T(i) =**false** where (j,i) and (j',i) are the two edges to i.
- T(C) = T(n), i.e. the *value of the circuit C*.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

20

Boolean circuits vs. Boolean expressions

- \triangleright For each Boolean circuit C, there is a corresponding Boolean expression ϕ_C .
- ➤ For each Boolean expression ϕ , there is a corresponding Boolean circuit C_{ϕ} such that for any T appropriate for both,

$$T(C_{\phi}) = \mathbf{true} \text{ iff } T \models \phi.$$

Idea: just introduce a new gate for each subexpression of ϕ .

➤ Notice that Boolean circuits allow shared subexpressions but Boolean expressions do not.

Boolean Logic

Computational problems related with Boolean circuits

➤ CIRCUIT SAT:

Given a circuit C, is there a truth assignment $T: X(C) \rightarrow \{ true, false \}$ such that T(C) = true ?

- ightharpoonup CIRCUIT SAT \in NP.
- ➤ CIRCUIT VALUE: Given a circuit C with no variables, is it the case that $T(C) = \mathbf{true}$?
- ightharpoonup CIRCUIT VALUE \in **P**. (No truth assignment is needed as $X(C) = \emptyset$).

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

Boolean Logic

22

21

Circuits computing Boolean functions

- \blacktriangleright A Boolean circuit with variables x_1, \dots, x_n computes an *n*-ary Boolean function f if for any n-tuple of truth values $\mathbf{t} = (t_1, ..., t_n), \ f(\mathbf{t}) = T(C) \text{ where } T(x_i) = t_i \text{ for } i = 1, ..., n.$
- \blacktriangleright Any *n*-ary Boolean function f can be computed by a Boolean circuit involving variables x_1, \ldots, x_n .
- ➤ Not every Boolean function has a concise circuit computing it.

Theorem. For any $n \ge 2$ there is an *n*-ary Boolean function f such that no Boolean circuit with $\frac{2^n}{2n}$ or fewer gates can compute it.

However, all natural families of Boolean functions seem to need only a linear number of gates to compute!

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005 Boolean Logic

23

Learning Objectives

- ➤ You should deeply understand the syntax and semantics of Boolean expressions — including their use in practice.
- ➤ The relationship/difference between Boolean expressions and circuits.
- ➤ Knowing the idea of representing Boolean functions in terms of Boolean expressions and circuits.
- ➤ Four computational problems related with Boolean logic and circuits: SAT, HORNSAT, CIRCUIT SAT, and CIRCUIT VALUE.

© 2005 TKK, Laboratory for Theoretical Computer Science