
AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 1'

&

$

%

RELATIONS BETWEEN COMPLEXITY CLASSES

➤ Basic requirements for complexity classes

➤ Complexity classes

➤ Hierarchy theorems

➤ Reachability method

➤ Class inclusions

➤ Simulating nondeterministic space

➤ Closure under complement

(C. Papadimitriou: Computational complexity, Chapter 7)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 2'

&

$

%

1. Basic Requirements for Complexity Classes

A complexity class is specified by

➤ model of computation (multi-string TMs)

➤ mode of computation (deterministic, nondeterministic,. . .)

➤ resource (time, space, . . .)

➤ bound (function f)

A complexity class is the set of all languages decided by some

multi-string Turing machine M operating in the appropriate mode, and

such that, for any input x, M expends at most f (|x|) units of the

specified resource.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 3'

&

$

%

Reasonable bound functions

Definition. A function f : N → N is a proper complexity function if f

is nondecreasing and there is a k-string TM M f with input and output

such that on any input x,

1. M f (x) = ⊓ f (|x|) where ⊓ is a quasi-blank symbol,

2. M f halts after O(|x|+ f (|x|)) steps, and

3. M f uses O(f (|x|)) space besides its input.

➤ Examples of proper complexity functions f (n):

c, n, ⌈logn⌉, log2 n, n logn, n2, n3 +3n, 2n,
√

n, n!, . . .

➤ If f and g are proper, so are, e.g., f +g, f ·g, 2g.

➤ Only proper complexity functions will be used as bounds.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 4'

&

$

%

Precise Turing machines

Definition. Let M be a deterministic/nondeterministic multi-string

Turing machine (with or without input and output).

Machine M is precise if there are functions f and g such that for every

n ≥ 0, for every input x of length n, and for every computation of M,

1. M halts after precisely f (|x|) steps and

2. all of its strings (except those reserved for input and output

whenever present) are at halting of length precisely g(|x|).

(Precise bounds will be convenient in various simulation results).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 5'

&

$

%

Simulating TMs with precise TMs

Proposition. Let M be a deterministic or nondeterministic TM

deciding a language L within time/space f (n) where f is proper.

Then there is a precise TM M′ which decides L in time/space O(f (n)).

Proof sketch.

The simulating machine M′

1. computes a yardstick/alarm clock ⊓ f (|x|) using M f and

2. simulates M for exactly f (|x|) steps or

simulates M using exactly f (|x|) units of space.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 6'

&

$

%

2. Complexity Classes

➤ Given a proper complexity function f , we obtain following classes:

TIME(f) (deterministic time)

NTIME(f) (nondeterministic time)

SPACE(f) (deterministic space)

NSPACE(f) (nondeterministic space)

➤ The bound f can be a family of functions parameterized by a

non-negative integer k; meaning the union of all individual classes.

The most important are: TIME(nk) =
⋃

j>0 TIME(n j)

NTIME(nk) =
⋃

j>0 NTIME(n j)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 7'

&

$

%

Variety of complexity classes

P = TIME(nk)

NP = NTIME(nk)

PSPACE = SPACE(nk)

NPSPACE = NSPACE(nk)

EXP = TIME(2nk
)

L = SPACE(log(n))

NL = NSPACE(log(n))

The relationships of these classes will be studied in the sequel.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 8'

&

$

%

Complements of decision problems

➤ Given an alphabet Σ and a language L ⊆ Σ∗, the complement of L

L = Σ∗−L.

➤ For a decision problem A, the answer for the complement

“A COMPLEMENT” is “yes” iff the answer for A is “no”.

Example. SAT COMPLEMENT: given a Boolean expression φ in

CNF, is φ unsatisfiable?

Example. REACHABILITY COMPLEMENT: given a graph (V,E)

and nodes v,u ∈V , is it the case that there is no path from v to u?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 9'

&

$

%

Closure under Complement

➤ For any complexity class C, coC denotes the class

{L | L ∈C}.

➤ All deterministic time and space complexity classes are closed

under complement. Hence, e.g., P = coP.

Proof. Exchange “yes” and “no” states of the deciding machine.

➤ The same holds for nondeterministic space complexity classes

(to be shown in the sequel).

➤ An important open question: are nondeterministic time complexity

classes closed under complement? E.g., NP = coNP?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 10'

&

$

%

3. Hierarchy Theorems

➤ We derive a quantitative hierarchy result:

with sufficiently greater time allocation, Turing machines are able

to perform more complex computational tasks.

➤ For a proper complexity function f (n) ≥ n, define

H f = {M;x | M accepts input x after at most f (|x|) steps}.

➤ Thus H f is the time-bounded version of H, i.e. the language of

the HALTING problem.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 11'

&

$

%

Upper bound for H f

Lemma. H f ∈ TIME((f (n))3).

Proof sketch.

A 4-string machine U f deciding H f in time f (n)3 is based on

(i) the universal Turing machine U ,

(ii) the single-string simulator of a multi-string machine,

(iii) the linear speedup machine, and

(iv) the machine M f computing the yardstick of length f (n)

where n is the length of the input M;x.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 12'

&

$

%

Proof—cont’d.

The machine U f operates as follows:

1. M f computes the alarm clock ⊓ f (|x|) for M (string 4).

2. The description of M is copied on string 3 and string 2 initialized

to encode the initial state s and string 1 the input ⊲x.

3. Then U f simulates M and advances the alarm clock. If U f finds

out that M accepts input x within f (|x|) steps, then U f accepts,

but if the alarm clock expires, then U f rejects.

Observations:

➤ Since M is simulated using a single string, each simulation step

takes O(f (n)2) time.

➤ The total running time is O(f (n)3) for f (|x|) steps.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 13'

&

$

%

Lower bound for H f

Lemma. H f 6∈ TIME(f (⌊ n
2⌋))

Proof sketch.

➤ Suppose there is a TM MH f that decides H f in time f (⌊ n
2⌋).

➤ Consider D f (M): if MH f (M;M) = “yes” then “no” else “yes”.

Thus D f on input M runs in time f (⌊ 2|M|+1
2 ⌋) = f (|M|).

➤ If D f (D f) = “yes”, then D f ;D f 6∈ H f and D f fails to accept input

D f within f (|D f |) steps, i.e. D f (D f) = “no”, a contradiction.

➤ Hence, D f (D f) 6= “yes”. Then D f (D f) = “no” and

MH f (D f ,D f) = “yes”. Therefore, D f accepts input D f within

f (|D f |) steps, i.e., D f (D f) = “yes”, a contradiction again.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 14'

&

$

%

The time hierarchy theorem
.

Theorem. If f (n) ≥ n is a proper complexity function, then the class

TIME(f (n)) is strictly contained within TIME((f (2n+1))3).

➤ TIME(f (n)) ⊆ TIME((f (2n+1))3) as f is nondecreasing.

➤ By the first lemma: H f (2n+1) ∈ TIME((f (2n+1))3).

➤ By the second lemma:

H f (2n+1) 6∈ TIME(f (⌊ 2n+1
2 ⌋)) = TIME(f (n)).

Corollary. P is a proper subset of EXP.

➤ Since nk = O(2n), we have P ⊆ TIME(2n) ⊆ EXP.

➤ It follows by the time hierarchy theorem that

TIME(2n) ⊂ TIME((22n+1)3) ⊆ TIME(2n2
) ⊆ EXP.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 15'

&

$

%

The space hierarchy theorem

Theorem. If f (n) ≥ n is a proper complexity function, then the class

SPACE(f (n)) is a proper subset of SPACE(f (n) log f (n)).

However, counter-intuitive results are obtained if non-proper

complexity functions are allowed.

Theorem. (The Gap Theorem).

There is a recursive function f from the nonnegative integers to the

nonnegative integers such that TIME(f (n)) = TIME(2 f (n)).

Proof sketch.

The bound f can be defined so that no TM M computing on input x

with |x| = n halts after number of steps between f (n) and 2 f (n).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 16'

&

$

%

4. Reachability Method

Theorem. Let f (n) be a proper complexity function. Then

(a) SPACE(f (n)) ⊆ NSPACE(f (n)) and

TIME(f (n)) ⊆ NTIME(f (n)).

(b) NTIME(f (n)) ⊆ SPACE(f (n)).

(c) NSPACE(f (n)) ⊆ TIME(clogn+ f (n)).

Proofs.

(a) A TM is a NTM, too.

(b) Simulation of all choices within space f (n) (see below).

(c) Proof by reachability method (see below).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 17'

&

$

%

Proof of NTIME(f (n)) ⊆ SPACE(f (n))

➤ Let L ∈ NTIME(f (n)). Hence there is a precise nondeterministic

Turing machine N that decides L in time f (n).

➤ Let d be the degree on nondeterminism (maximal number of

possible moves for any state-symbol pair in ∆).

➤ Any computation of N is a f (n)-long sequence of nondeterministic

choices (represented by integers 0,1, . . . ,d −1).

➤ The simulating deterministic machine M considers all such

sequences of choices and simulates N on each.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 18'

&

$

%

Proof—cont’d.

➤ With sequence (c1,c2, . . . ,c f (n)) M simulates the actions that N

would have taken had N taken choice ci at step i.

➤ If a sequence leads N to halting with “yes”, then M does, too.

Otherwise it considers the next sequence. If all sequences are

exhausted without accepting, then M rejects.

➤ There is an exponential number of simulations to be tried but they

can be carried out in space f (n) by carrying them out one-by-one,

always erasing the previous simulation to reuse space.

➤ As f (n) is proper, the first sequence 0 f (n) can be generated in

space f (n).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 19'

&

$

%

Proof of NSPACE(f (n)) ⊆ TIME(clogn+ f (n))

The reachability method is used to prove the claim.

➤ Consider a k-string nondeterministic TM M with input and output

which decides a language L within space f (n).

➤ We develop a deterministic method for simulating the

nondeterministic computation of M on input x within time

clogn+ f (n) where n = |x| and c is a constant depending on M.

➤ The configuration graph G(M,x) of M is used:

nodes are all possible configurations of M and there is an edge

between two nodes (configurations) C1 and C2 iff C1
M→C2.

➤ Now x ∈ L iff there is a path from C0 = (s,⊲,x,⊲,ε, . . . ,⊲,ε) to

some configuration of the form C = (“yes”, . . .) in G(M,x).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 20'

&

$

%

Proof—cont’d.

➤ A configuration (q,w1,u1, . . . ,wk,uk) is a complete “snapshot” of a

computation.

➤ Since M is a machine with input and output deciding L:

– the output string can be neglected,

– for the input string, only the cursor position can change, and

– for all other k−2 strings, the length is at most f (n).

➤ A configuration can be represented as (q, i,w2,u2, . . . ,wk−1,uk−1)

where 1 ≤ i ≤ n gives the cursor position on the input string.

➤ How many possible configurations does M have? At most

|K|(n+1)(|Σ| f (n))2(k−2) ≤ |K|2n(|Σ|2(k−2)) f (n) ≤ nc f (n)
1 ≤ clogn+ f (n)

1

for some constant c1 depending on M.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 21'

&

$

%

Proof—cont’d.

➤ Hence, deciding whether x ∈ L holds can be done by solving a

reachability problem for a graph with at most clogn+ f (n)
1 nodes.

➤ The problem can be solved, say, with a quadratic algorithm in

time c2c2(logn+ f (n))
1 ≤ clogn+ f (n) with c = c2c2

1.

➤ The graph G(M,x) needs not to be represented explicitly

(e.g., as an adjacency matrix) for the reachability algorithm.

➤ The existence of an edge from C to C′ can be determined on the

fly by examining C, C′, and the description of M.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 22'

&

$

%

5. Class Inclusions

Corollary. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

Proof.

1. L = SPACE(logn) ⊆ NSPACE(logn) = NL follows by (a).

2. NL = NSPACE(logn) ⊆ TIME(clogn+logn) = TIME(n2logc) ⊆ P
follows by (c).

3. By (a) TIME(nk) ⊆ NTIME(nk) which implies P ⊆ NP.

4. By (b) NTIME(nk) ⊆ SPACE(nk) which implies NP ⊆ PSPACE.

5. By (a) and (c) SPACE(nk) ⊆ NSPACE(nk) ⊆ TIME(clogn+nk
) ⊆

TIME(2nk+c′
) ⊆ EXP.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 23'

&

$

%

Which inclusions are proper?

Corollary. The class L is a proper subset of PSPACE.

Proof. The space hierarchy theorem tells us L = SPACE(log(n)) ⊂
SPACE(log(n) log(log(n))) ⊆ SPACE(n2) ⊆ PSPACE. 2

It is believed that all inclusions of the complexity classes in

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP are proper.

However, we only know that

➤ at least one of the inclusions between L and PSPACE is proper

(but don’t know which) and

➤ at least one of the inclusions between P and EXP is proper

(but don’t know which).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 24'

&

$

%

6. Simulating Nondeterministic Space

➤ The question is how efficiently can we simulate nondeterministic

space by deterministic space?

➤ It follows by the previous theorem that

NSPACE(f (n)) ⊆ TIME(clogn+ f (n)) ⊆ SPACE(clogn+ f (n)).

But can we do better than this?

➤ Yes, in fact. Nondeterministic space can be simulated with

quadratic deterministic space (using a theorem that follows).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 25'

&

$

%

Savitch’s theorem

Theorem. REACHABILITY ∈ SPACE(log2 n).

Proof sketch.

➤ Given a graph G and nodes x,y and i ≥ 0, define PATH(x,y, i):

there is a path from x to y of length at most 2i.

➤ If G has n nodes, any simple path is at most n long and we can

solve reachability in G if we can compute whether

PATH(x,y,⌈logn⌉) holds for any given nodes x,y of G.

➤ This can be done using middle-first search.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 26'

&

$

%

Proof—cont’d.

➤ function path(x,y, i) /* middle-first search */

if i = 0 then

if x = y or there is an edge (x,y) in G then return “yes”

else for all nodes z do

if path(x,z, i−1) and path(z,y, i−1) then return “yes”;

return “no”

➤ Proof that path(x,y, i) correctly determines PATH(x,y, i):

If i = 0, then clearly path correctly determines PATH(x,y,0).

For i > 0, path(x,y, i) returns “yes” iff there is a node z with

path(x,z, i−1) and path(z,y, i−1) holding. By the inductive

hypothesis there are paths from x to z and from z to y both at

most 2i−1 long. Then there is a path from x to y at most 2i long.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 27'

&

$

%

Proof—cont’d.

➤ The algorithm is started with path(x,y,⌈logn⌉).

➤ O(log2 n) space bound can be achieved by handling recursion using

a stack containing a triple (x,y, i) for each active recursive call.

For each node z put (x,z, i−1) into the stack and call

path(x,z, i−1). If this fails, erase (x,z, i−1) and put (x,z′, i−1)

for the next z′ otherwise erase (x,z, i−1) and put (z,y, i−1).

➤ As there are at most logn recursive calls active with each taking

at most 3logn space, the O(log2 n) space bound is achieved.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 28'

&

$

%

Corollary. For any proper complexity function f (n) ≥ logn,

NSPACE(f (n)) ⊆ SPACE((f (n))2).

Proof.

➤ To simulate an f (n)-space bounded NTM M on input x, run the

previous algorithm on the configuration graph G(M,x).

➤ The edges of the graph G(M,x) are determined on the fly by

consulting the description of M.

➤ The configuration graph has at most clogn+ f (n)
1 ≤ c f (n) nodes.

➤ By Savitch’s theorem, the algorithm needs at most

(logc f (n))2 = f (n)2 log2 c = O(f (n)2) space.

Corollary. PSPACE = NPSPACE.

☞ Nondeterminism is less powerful with respect to space than time.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 29'

&

$

%

7. Closure under Complement

➤ A key result about reachability will be established:

the number of nodes reachable from a node x can be computed in

nondeterministic logn space!

➤ The complement (the number of nodes not reachable from x) can

be handled in nondeterministic logn space, too!

(This quantity can be obtained by a simple subtraction.)

➤ It is open (and doubtful) whether nondeterministic time

complexity classes are closed under complement.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 30'

&

$

%

Functions computed by NTMs

When does a NTM M compute a function F from strings to strings?

➤ On input x, each computation of M either

– outputs the correct answer F(x) or

– enters the rejecting “no” state.

➤ At least one computation must end up with F(x) which must be

unique for all such computations.

➤ Such a machine observes a space bound f (n) iff for any input x,

at halting all strings (except the ones reserved for input and

output) are of length at most f (|x|).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 31'

&

$

%

Immerman-Szelepscényi theorem

Theorem. Given a graph G and a node x, the number of nodes

reachable from x in G can be computed by a NTM within space logn.

Proof.

➤ Let us define S(k) as the set of nodes in G which are reachable

from x via paths of length k or less.

➤ The strategy is to compute values |S(1)|, |S(2)|, . . . , |S(n−1)|
iteratively and recursively, i.e. |S(i)| is computed from |S(i−1)|.

➤ Given that the number of nodes in G is n, the number of nodes

reachable from x in G is |S(n−1)|.

➤ Let G(v,u) mean that v = u or there is an arc from v to u in G.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 32'

&

$

%

Proof—cont’d.

The nondeterministic algorithm:

|S(0)| := 1;

for k := 1,2, ...,n−1 do

l := 0;

for each node u := 1,2, ...,n do

check whether u ∈ S(k) and set reply accordingly;

/* See below how this is implemented */

if reply = true then l := l +1;

end for;

|S(k)| := l

end for

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 33'

&

$

%

Proof–cont’d.

/* Check whether u ∈ S(k) and set reply */

m := 0; reply := f alse;

for each node v := 1,2, ...,n do

/* check whether v ∈ S(k−1) */

w0 := x; path := true

for p := 1,2, ...,k−1 do

guess a node wp; if not G(wp−1,wp) then path := f alse

end for

if path = true and wk−1 = v then

m := m+1; /* v ∈ S(k−1) holds */

if G(v,u) then reply := true

end if

end for

if m < |S(k−1)| then “give up” (end in “no” state)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 34'

&

$

%

Proof—cont’d.

➤ Variables can be implemented on a logn-space bounded NTM.

➤ The algorithm computes correctly |S(k)| (by induction on k):

– If k = 0, then |S(k)| = 1 as given by the algorithm.

– For k > 0, consider a computation that does not “give up”. We

need to show that counter l is incremented iff u ∈ S(k).

If counter l is incremented, then reply = true implying that

u ∈ S(k), i.e. there is a path (x =)w0, . . . ,wk−1(= v),u.

If u ∈ S(k), then there is some v ∈ S(k−1) such that G(v,u). But

as the computation does not “give up”, m = |S(k−1)| (which is

the correct value by induction) and therefore all v ∈ S(k−1) are

verified as such and, thus, reply is set to true.

– Moreover, clearly there is at least one accepting computation

where paths to the members of S(k−1) are correctly guessed.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 35'

&

$

%

Closure under Complement

Corollary. If f (n) ≥ logn is a proper complexity function, then

NSPACE(f (n)) = coNSPACE(f (n)).

Proof sketch.

➤ Suppose L ∈ NSPACE(f (n)) is decided by an f (n)-space bounded

NTM M. We build an f (n)-space bounded NTM M deciding L.

➤ On input x, M runs the previous algorithm on the configuration

graph G(M,x) associated with M and x.

➤ M rejects if it finds an accepting configuration in any S(k).

➤ Since G(M,x) has at most ng = c f (n) nodes, then M can accept if

|S(ng −1)| is computed without an accepting configuration.

➤ Due to bound ng, M needs at most logc f (n) = O(f (n)) space.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Relations between Complexity Classes 36'

&

$

%

Learning Objectives

➤ The definitions and background of major complexity classes: P,

NP, PSPACE, NPSPACE, EXP, L, and NL.

➤ The knowledge of basic relationships between complexity classes

(inclusions and proper inclusions).

➤ Savitch’s theorem and Immerman-Szelepscényi theorem.

c© 2005 TKK, Laboratory for Theoretical Computer Science

