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RELATIONS BETWEEN COMPLEXITY CLASSESI

Basic requirements for complexity classes

Complexity classes
Hierarchy theorems
Reachability method
Class inclusions

Simulating nondeterministic space

o o o o o o o

Closure under complement

(C. Papadimitriou: Computational complexity, Chapter 7)
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1. Basic Requirements for Complexity CIassesI

A complexity class is specified by

O model of computation (multi-string TMs)

O mode of computation (deterministic, nondeterministic,. . . )
O resource (time, space, ...)

O bound (function f)

A complexity class is the set of all languages decided by some
multi-string Turing machine M operating in the appropriate mode, and
such that, for any input X, M expends at most f(|X|) units of the
specified resource.
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Reasonable bound functions'

Definition. A function f : N — N is a proper complexity function if f

is nondecreasing and there is a k-string TM M; with input and output
such that on any input X,

1. M¢(x) =N X) where M is a quasi-blank symbol,
. Mg halts after O(|x| + f(|X|)) steps, and

. Mg uses O(f(|x|)) space besides its input.

O w N

Examples of proper complexity functions f(n):

¢, n, [logn], log?n, nlogn, n?, n®+43n, 27, \/n, nl, ...

O

If f and g are proper, so are, e.g., f+g, f-g, 29.
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[0 Only proper complexity functions will be used as bounds.
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Precise Turing machines.

Definition. Let M be a deterministic/nondeterministic multi-string

Turing machine (with or without input and output).

Machine M is precise if there are functions f and g such that for every
n> 0, for every input X of length n, and for every computation of M,

1. M halts after precisely f(|x|) steps and

2. all of its strings (except those reserved for input and output
whenever present) are at halting of length precisely g(|x|).

(Precise bounds will be convenient in various simulation results).
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Simulating TMs with precise TMsI

Proposition. Let M be a deterministic or nondeterministic TM

deciding a language L within time/space f(n) where f is proper.

Then there is a precise TM M’ which decides L in time/space O(f(n)).

Proof sketch.
The simulating machine M’
1. computes a yardstick/alarm clock Mf(X) using M¢ and

2. simulates M for exactly f(|x|) steps or
simulates M using exactly f(|X|) units of space.

\_ /
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2. Complexity CIassesI

0 Given a proper complexity function f, we obtain following classes:

TIME(T) (deterministic time)

NTIME(f)  (nondeterministic time)
SPACE(f) (deterministic space)
NSPACE(f) (nondeterministic space)

0 The bound f can be a family of functions parameterized by a
non-negative integer k; meaning the union of all individual classes.

The most important are:  TIME(n¥) = ;o TIME(n))
NTIME(n*) = Uj-oNTIME(n})
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Variety of complexity classesI

P = TIME(nX)

NP = NTIME(nY)
PSPACE = SPACE(n)
NPSPACE = NSPACE(n¥)
EXP = TIME(2")

L = SPACE(log(n))
NL = NSPACE(log(n))

The relationships of these classes will be studied in the sequel.

\_ /
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Complements of decision problems.

O Given an alphabet Z and a language L C 2*, the complement of L
L=3"—L.

O For a decision problem A, the answer for the complement
“A COMPLEMENT" is "yes" iff the answer for A is “no”.

Example. SAT COMPLEMENT: given a Boolean expression @ in
CNF, is @ unsatisfiable?

Example. REACHABILITY COMPLEMENT: given a graph (V,E)
and nodes V,u €V, is it the case that there is no path from v to u?

. /
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Closure under Complement. Upper bound for H; I

U For any complexity class C, coC denotes the class Lemma. H € TIME((f(n))3).
{LILeC}. Proof sketch.
00 All deterministic time and space complexity classes are closed A 4-string machine U; deciding Hy in time f(n)3 is based on
under complement. Hence, e.g., P = coP. ) ) ] ]
o _ (i) the universal Turing machine U,
Proof. Exchange “yes” and “no” states of the deciding machine.
o ) (ii) the single-string simulator of a multi-string machine,
0 The same holds for nondeterministic space complexity classes
(to be shown in the sequel). (iii) the linear speedup machine, and
00 An important open question: are nondeterministic time complexity (iv) the machine Ms computing the yardstick of length f(n)
classes closed under complement? E.g., NP = coNP? where nis the length of the input M;x.
© 2005 TKK, Laboratory for Theoretical Computer Science © 2005 TKK, Laboratory for Theoretical Computer Science
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4 N </ N

Proof—cont'd.

The machine U; operates as follows:

3. Hierarchy Theorems'
1. M¢ computes the alarm clock Mf(X) for M (string 4).

[0 We derive a quantitative hierarchy result: 2. The description of M is copied on string 3 and string 2 initialized
with sufficiently greater time allocation, Turing machines are able to encode the initial state s and string 1 the input >X.
to perform more complex computational tasks. 3. Then Us simulates M and advances the alarm clock. If Us finds
0 For a proper complexity function f(n) > n, define out that M accepts input X within f(|X|) steps, then Us accepts,

but if the alarm clock expires, then Us rejects.
Ht = {M;Xx| M accepts input X after at most f(|x|) steps}. ob .
servations:

0 Thus Hs is the time-bounded version of H, i.e. the language of

[0 Since M is simulated using a single string, each simulation step
the HALTING problem.

takes O(f(n)?) time.

0 The total running time is O(f(n)%) for f(|x|) steps.

- / . /
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Lower bound for H; I

Lemma. Hf ¢ TIME(f([3]))

Proof sketch.

O Suppose there is a TM My, that decides Hy in time f([5]).
O Consider D¢(M): if My, (M;M) = "yes” then “no” else "yes".
. — 2M[+1
Thus Dt on input M runs in time f(L%j) = f(|M|)).

O If D¢(D¢) = "yes", then D¢;Dt & Ht and D+ fails to accept inpu

Dt within f(|D¢|) steps, i.e. D¢(D¢) = “no”, a contradiction.

O Hence, D¢(D¢) # “yes". Then D¢(Df) = “no” and
My, (D¢,Df) = "yes". Therefore, D¢ accepts input D¢ within
f(|D¢|) steps, i.e., Df(Df) = "yes",

a contradiction again.

~

t
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The time hierarchy theorem I

Theorem. If f(n) > nis a proper complexity function, then the class
TIME(f(n)) is strictly contained within TIME((f(2n+1))3).

O TIME(f(n)) CTIME((f(2n+1))3) as f is nondecreasing.
O By the first lemma: Hy(any1) € TIME((f(2n+1))3).

O By the second lemma:

Hane1) & TIME((|2532])) = TIME(f(n)).
Corollary. P is a proper subset of EXP.
0 Since nK=0(2"), we have P C TIME(2") C EXP.

O It follows by the time hierarchy theorem that
TIME(2") € TIME((22"1)3) C TIME(2") C EXP.

~
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The space hierarchy theorem I

Theorem. If f(n) > nis a proper complexity function, then the class
SPACE(f(n)) is a proper subset of SPACE(f(n)logf(n)).

However, counter-intuitive results are obtained if non-proper
complexity functions are allowed.

Theorem. (The Gap Theorem).

There is a recursive function f from the nonnegative integers to the
nonnegative integers such that TIME(f(n)) = TIME(2f(").

Proof sketch.

The bound f can be defined so that no TM M computing on input X

with [X| = N halts after number of steps between f(n) and 2f(".

\_ /
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4. Reachability Method'

Theorem. Let f(n) be a proper complexity function. Then

(a) SPACE(f(n)) C NSPACE(f(n)) and
TIME(f(n)) € NTIME(f(n)).

(b) NTIME(f(n)) C SPACE(f(n)).
(c) NSPACE(f(n)) C TIME(coon+f(n)).
Proofs.

(a) A TMis a NTM, too.

(b) Simulation of all choices within space f(n) (see below).

(c) Proof by reachability method (see below).

. /
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/

Proof of NTIME(f(n)) C SPACE(f(n))

Turing machine N that decides L in time f(n).

O Let d be the degree on nondeterminism (maximal number of
possible moves for any state-symbol pair in A).

choices (represented by integers 0,1,...,d —1).

[0 The simulating deterministic machine M considers all such
sequences of choices and simulates N on each.

\_

O Let LeNTIME(f(n)). Hence there is a precise nondeterministic

O Any computation of N is a f(n)-long sequence of nondeterministic

~

/
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Proof—cont'd.

0 With sequence (C1,C2,...,Cfm)) M simulates the actions that N
would have taken had N taken choice ¢ at step i.

00 If a sequence leads N to halting with “yes”, then M does, too.

Otherwise it considers the next sequence. If all sequences are
exhausted without accepting, then M rejects.

always erasing the previous simulation to reuse space.

O As f(n) is proper, the first sequence 07"V can be generated in
space f(n).

\

[0 There is an exponential number of simulations to be tried but they
can be carried out in space f(n) by carrying them out one-by-one,

~

/
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Proof of NSPACE(f(n)) C TIME(c'®™f(M)

The reachability method is used to prove the claim.

[0 Consider a k-string nondeterministic TM M with input and output
which decides a language L within space f(n).

[0 We develop a deterministic method for simulating the
nondeterministic computation of M on input X within time
doan+f(M where n= || and C is a constant depending on M.

O The configuration graph G(M,X) of M is used:
nodes are all possible configurations of M and there is an edge
between two nodes (configurations) C; and Cy iff C; M Co.

00 Now x € L iff there is a path from Cp = (S,>,X,>,€,...,>,€) to

some configuration of the form C = (“yes”,...) in G(M,X).

\_ /
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4 N

Proof—cont'd.

O A configuration (g,w1,Us,...,Wk,Ug) is a complete “snapshot” of a
computation.
[J Since M is a machine with input and output deciding L:

— the output string can be neglected,
— for the input string, only the cursor position can change, and
— for all other k— 2 strings, the length is at most f(n).

O A configuration can be represented as (q,i, Wz, Uz, ..., Wgk_1,Ux_1)
where 1 <i < n gives the cursor position on the input string.

0 How many possible configurations does M have? At most

IK|(n+ 1)(|Z]F(M)2k-2) < K |2n(|5[2k-2))f(0) < pef (W < oot 1)

for some constant ¢; depending on M.

. /
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Proof—cont'd.

Relations between Complexity Classes

U Hence, deciding whether X € L holds can be done by solving a

logn+f(n)

reachability problem for a graph with at most ¢; nodes.

[0 The problem can be solved, say, with a quadratic algorithm in
time pca P9 () < dogn+(n) \yith ¢ = cyc2.

0 The graph G(M,X) needs not to be represented explicitly
(e.g., as an adjacency matrix) for the reachability algorithm.

0 The existence of an edge from C to C' can be determined on the
fly by examining C, C’, and the description of M.

\_ /
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5. Class IncIusionsI

Corollary. L € NL C P C NP C PSPACE C EXP.
Proof.

Relations between Complexity Classes

1. L = SPACE(logn) € NSPACE(logn) = NL follows by (a).

2. NL = NSPACE(logn) C TIME(c'®9"+09n) — TIME(n?'%9¢) C P
follows by (c).

3. By (a) TIME(nX) € NTIME(nX) which implies P C NP.
4. By (b) NTIME(n*) C SPACE(n*) which implies NP C PSPACE.

5. By (a) and (c) SPACE(nK) C NSPACE(nk) C TIME(c'9m+n) ¢
TIME(2™) C EXP.

\ /
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Which inclusions are proper? I

Corollary. The class L is a proper subset of PSPACE.

Proof. The space hierarchy theorem tells us L = SPACE(log(n)) C
SPACE log(n)log(log(n))) € SPACE(n?) C PSPACE. O

It is believed that all inclusions of the complexity classes in
L € NL C P CNP CPSPACE C EXP are proper.

However, we only know that

[ at least one of the inclusions between L and PSPACE is proper
(but don't know which) and

O at least one of the inclusions between P and EXP is proper

(but don’t know which).

\

/
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6. Simulating Nondeterministic Space'

0 The question is how efficiently can we simulate nondeterministic
space by deterministic space?

O It follows by the previous theorem that
NSPACE(f(n)) C TIME(c'®9™ () € SPACE(¢'o9™+ (),
But can we do better than this?

O Yes, in fact. Nondeterministic space can be simulated with
quadratic deterministic space (using a theorem that follows).

\

~

/
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Savitch’s theorem I

Theorem. REACHABILITY € SPACE(log?n).

Relations between Complexity Classes

Proof sketch.

O Given a graph G and nodes X,y and i > 0, define PATH (X,y,i):
there is a path from X to y of length at most 2'.

00 If G has n nodes, any simple path is at most n long and we can
solve reachability in G if we can compute whether
PATH (x,y, [logn]) holds for any given nodes X,y of G.

[0 This can be done using middle-first search.

\_ /
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4 N

Proof—cont'd.

O function path(x,y,i) /* middle-first search */
if i =0 then
if X=1y or there is an edge (X,y) in G then return “yes"
else for all nodes z do
if path(x,zi—1) and path(zy,i —1) then return "yes";
return “no”

O Proof that path(x,y,i) correctly determines PATH (X,y,i):

If i =0, then clearly path correctly determines PATH(x,y,0).

For i >0, path(x,y,i) returns “yes" iff there is a node z with
path(x,z,i —1) and path(zy,i — 1) holding. By the inductive
hypothesis there are paths from X to z and from z to y both at
most 21~1 long. Then there is a path from X to y at most 2' long.

\ /
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4 N

Proof—cont'd.
[0 The algorithm is started with path(x,y, [logn]).

0 O(Iog2 Nn) space bound can be achieved by handling recursion using
a stack containing a triple (X,Y,i) for each active recursive call.
For each node z put (X,zi— 1) into the stack and call
path(x,zi—1). If this fails, erase (x,z,i —1) and put (x,Z,i—1)
for the next Z otherwise erase (x,z,i—1) and put (zy,i—1).

O As there are at most logn recursive calls active with each taking
at most 3logn space, the O(log?n) space bound is achieved.

\_ /
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¢ N

orollary. For any proper complexity function f(n) > logn,
NSPACE(f(n)) C SPACE((f(n))?).
Proof.

00 To simulate an f(n)-space bounded NTM M on input X, run the
previous algorithm on the configuration graph G(M,Xx).

[0 The edges of the graph G(M,X) are determined on the fly by
consulting the description of M.

logn+-f(n)

[0 The configuration graph has at most ¢; < cfM nodes.

0 By Savitch's theorem, the algorithm needs at most
(logc'™)2 = f(n)2log?c = O(f(n)?) space.

Corollary. PSPACE = NPSPACE.

|:| Nondeterminism is less powerful with respect to space than time.

© 2005 TKK, Laboratory for Theoretical Computer Science
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Immerman-Szelepscényi theorem I
7. Closure under Complement' ,
Theorem. Given a graph G and a node X, the number of nodes

reachable from X in G can be computed by a NTM within space logn.
Proof.

0 A key result about reachability will be established:
the number of nodes reachable from a node X can be computed in

nondeterministic logn space! [0 Let us define S(K) as the set of nodes in G which are reachable

O The complement (the number of nodes not reachable from X) can from X via paths of length k or less.

be handled in nondeterministic logn space, too! 00 The strategy is to compute values |1)[,|S2)],...,|S(n—1)|
(This quantity can be obtained by a simple subtraction.) iteratively and recursively, i.e. |S(i)| is computed from |§(i —1)|.

O It is open (and doubtful) whether nondeterministic time O Given that the number of nodes in G is n, the number of nodes
complexity classes are closed under complement. reachable from x in G is [S(n—1)|.

00 Let G(V,u) mean that v=u or there is an arc from v to u in G.

\_ / \_ /

© 2005 TKK, Laboratory for Theoretical Computer Science © 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005 Relations between Complexity Classes 30 T-79.5103 / Autumn 2005 Relations between Complexity Classes

4 N de N
Functions computed by NTMSI Proof—cont'd.

The nondeterministic algorithm:

When does a NTM M compute a function F from strings to strings? IS(0)] = 1;
O On input X, each computation of M either for k:=1,2,....n—1do
— outputs the correct answer F(X) or l:=0;
— enters the rejecting “no” state. for each node u:=1,2,...,ndo

check whether u € S(k) and set reply accordingly;

O At least one computation must end up with F(X) which must be /% See below how this is implemented */

unique for all such computations.

if reply=truethen | :=1+1;
O Such a machine observes a space bound f(n) iff for any input X, end for;
at halting all strings (except the ones reserved for input and IS(K)| =1
output) are of length at most f(|x]). end for

- / . /
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/Proof—cont'd. \

/* Check whether u € S(k) and set reply */
m:=0; reply:= false
for each node v:=1,2,...,n do
/* check whether ve S(k—1) */
Wo := X; path:=true
for p:=12,...k—1do
guess a node Wp; if not G(wp_1,wWp) then path:= false
end for
if path=true and wyx_1 =V then
m:=m+1; /*ve Sk—1) holds */
if G(v,u) then reply:=true
end if
end for

Relations between Complexity Classes

if m< |S(k—1)| then “give up” (end in "no” state)
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/Proof—cont’d. \

0 Variables can be implemented on a logn-space bounded NTM.

Relations between Complexity Classes

O The algorithm computes correctly |S(K)| (by induction on k):
- If k=0, then |S(k)| =1 as given by the algorithm.
— For k> 0, consider a computation that does not “give up”. We
need to show that counter | is incremented iff u € §K).
If counter | is incremented, then reply =true implying that
ue Sk, i.e. there is a path (x=)wp,...,W_1(=V),u.
If ue Sk), then there is some ve S(k— 1) such that G(v,u). But
as the computation does not “give up”, m= |S(k—1)| (which is
the correct value by induction) and therefore all ve S(k—1) are
verified as such and, thus, reply is set to true.

— Moreover, clearly there is at least one accepting computation

\ where paths to the members of S(k— 1) are correctly guessed. /
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/Closure under Complement.

Corollary. If f(n) >logn is a proper complexity function, then
NSPACE(f(n)) = coNSPACE(f(n)).

Proof sketch.

\

00 Suppose L € NSPACE(f(n)) is decided by an f(n)-space bounded
NTM M. We build an f(n)-space bounded NTM M deciding L.

00 On input X, M runs the previous algorithm on the configuration
graph G(M,x) associated with M and X.

[0 M rejects if it finds an accepting configuration in any S(k).

0 Since G(M,x) has at most ng = c(" nodes, then M can accept if
|S(ng —1)| is computed without an accepting configuration.

\D Due to bound ng, M needs at most logc!(™ = O(f(n)) space. J
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Relations between Complexity Classes

Learning Objectives I

[0 The definitions and background of major complexity classes: P,
NP, PSPACE, NPSPACE, EXP, L, and NL.

0 The knowledge of basic relationships between complexity classes
(inclusions and proper inclusions).

O Savitch's theorem and Immerman-Szelepscényi theorem.

. /
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