
AB
T-79.5103 / Autumn 2005 Reductions and Completeness 1'

&

$

%

REDUCTIONS AND COMPLETENESS

➤ Reductions between problems

➤ Examples of reductions

➤ Composing reductions

➤ Completeness and hard problems

➤ Table method

➤ Computation as a Boolean circuit

➤ Capturing nondeterministic computation

(C. Papadimitriou: Computational complexity, Chapters 8.1–8.2)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 2'

&

$

%

1. Reductions between Problems

➤ A complexity class is an infinite collection of languages.

Example. The class NP contains languages such as TSP(D),

SAT, HORNSAT, REACHABILITY, . . .

➤ Not all decision problems seem to be equally hard to solve; can

problems be somehow ordered by difficulty?

➤ Such an ordering relation is definable using a notion of a reduction:

A is at least as hard as B if B reduces to A.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 3'

&

$

%

Basic requirements for reductions

➤ A problem B reduces to A if there is a transformation R which for

every input x of B produces an equivalent input R(x) of A.

➤ Here equivalent means that the “yes”/“no” answer for R(x)

considered as A’s input is the correct answer to x as an input of B,

i.e., x ∈ B iff R(x) ∈ A.

➤ To solve B on input x we need to compute R(x) and solve A on it:

input x =⇒

Algorithm for B:

Reduction

R

R(x)
=⇒

Algorithm

for A
=⇒ Answer

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 4'

&

$

%

Limiting resources in reductions

➤ The notion of a reduction seems reasonable to capture that A is at

least as hard as B except when R is very hard to compute

(e.g., when reducing TSP(D) to HORNSAT).

➤ Possible limits on resources in reductions:

– Cook reductions (polynomial-time Turing reductions)

– Karp reductions (polynomial-time many-one reductions)

– Log-space reductions (used here)

Definition. A language L1 is reducible to L2 (L1 ≤L L2) iff there is a

function R from strings to strings computable by a deterministic

Turing machine in space O(logn) such that for all inputs x,

x ∈ L1 iff R(x) ∈ L2.

The function R is called a reduction from L1 to L2.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 5'

&

$

%

Time efficiency of reductions

Proposition. If R is a reduction computed by a deterministic TM M,

then for all inputs x, M halts after a polynomial number of steps.

Proof sketch.

➤ As M works in space O(logn), there are O(nclogn) possible

configurations for M on input x where |x| = n.

➤ Since M is deterministic and halts on every input, it cannot repeat

any configuration. Hence M halts in at most

c1nclogn = c1nnlogc = O(nk)

steps for some k.

Note that as output string R(x) is computed in a polynomial number

of steps, its length is also polynomial w.r.t. |x|.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 6'

&

$

%

2. Examples of Reductions

We will consider a number of reductions, i.e.

1. from HAMILTON PATH to SAT,

2. from REACHABILITY to CIRCUIT VALUE,

3. from CIRCUIT SAT to SAT, and

4. from CIRCUIT VALUE to CIRCUIT SAT.

In each case, we present a reduction R from the former language

(say L1) to the latter language (say L2) such that for every string x

based on the alphabet of L1,

(i) x ∈ L1 iff R(x) ∈ L2 and

(ii) R(x) can be computed in O(logn) space.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 7'

&

$

%

Reducing HAMILTON PATH to SAT

Definition. The problem HAMILTON PATH is defined as follows:

INSTANCE: A graph G.

QUESTION: Is there a path in G that visits every node exactly once?

➤ To show that SAT is at least as hard as HAMILTON PATH we

must establish a reduction R from HAMILTON PATH to SAT.

➤ For a graph G, the outcome R(G) is a conjunction of clauses such

that G has a Hamilton path iff R(G) is satisfiable.

➤ Suppose G has n nodes, 1,2, . . . ,n.

➤ Then R(G) has n2 Boolean variables xi j where 1 ≤ i, j ≤ n and

xi j denotes that the ith node on the path is j.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 8'

&

$

%

Reducing a graph G to a Boolean formula R(G) in CNF

Definition. For a graph G with n nodes, the formula R(G) is the

conjunction of the following clauses:

1. For each node j: x1 j ∨·· ·∨ xn j (node j appears on the path).

2. For all j, i,k where i 6= k: ¬xi j ∨¬xk j

(node j cannot be the ith and kth node simultaneously).

3. For all i: xi1 ∨·· ·∨ xin (some node is the ith node).

4. For all i, j,k where j 6= k: ¬xi j ∨¬xik

(no two nodes can be ith simultaneously).

5. For each pair (i, j) not an edge in G and for all k = 1, . . . ,n−1:

¬xki ∨¬x(k+1) j

(node j cannot come right after node i in the path).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 9'

&

$

%

Proof of correspondence

(⇐) Let R(G) have a satisfying truth assignment T .

– By clauses (1,2) for every node j there is unique i such that

T (xi j) = true.

– By clauses (3,4) for every i there is unique node j such that

T (xi j) = true.

– Thus T represents a permutation π(1), . . . ,π(n) of the nodes

where π(i) = j iff T (xi j) = true

– By clauses (5) for all k, there is an edge (π(k),π(k +1)) in G.

Hence (π(1), . . . ,π(n)) a Hamilton path.

(⇒) Let G have a Hamilton path (π(1), . . . ,π(n)) where π is a

permutation. Then R(G) is satisfied by a truth assignment T defined

by T (xi j) = true if π(i) = j else T (xi j) = false.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 10'

&

$

%

Proof of logarithmic space consumption

We show that R(G) can be computed in space O(logn).

Given G as an input, a TM M outputs R(G) as follows:

• M first outputs clauses (1-4) not depending on G one by one using

three counters i, j,k.

• Each counter is represented in binary within logn space.

• M outputs clauses (5) by considering each pair (i, j) in turn:

if (i, j) is not an edge in G (M checks this first), then M outputs

clauses ¬xki ∨¬x(k+1) j one by one for all k = 1, . . . ,n−1.

• Again space is needed only for the counters i, j,k, i.e. at most

3logn in total.

Hence, R(G) can be computed in space O(logn).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 11'

&

$

%

Reducing REACHABILITY to CIRCUIT VALUE

For a graph G, the outcome R(G) is a variable-free circuit such that

the output of R(G) is true iff there is a path from 1 to n in G.

➤ The gates of R(G) are of the following two forms:

– gi jk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n and

– hi jk with 1 ≤ i, j,k ≤ n.

➤ Now gi jk is supposed to be true iff there is a path in G from i to j

not using any intermediate node bigger than k;

and hi jk is supposed to be true iff there is a path in G from i to j

not using any intermediate node bigger than k but using k.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 12'

&

$

%

The structure of the circuit R(G)

➤ For k = 0, the gate gi jk is an input gate in R(G):

gi j0 is a true gate if i = j or (i, j) is an edge in G and

a false gate otherwise.

➤ For k = 1,2, . . . ,n, there are the following gates in R(G):

lgik(k−1)∨ lgk j(k−1)∨

l∧ hi jk

�
��

@
@I lgi j(k−1)∨ lhi jk∧

l∨ gi jk

�
��

@
@I

➤ The gate g1nn is the output of R(G).

☞ The circuit R(G) is acyclic and variable-free.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 13'

&

$

%

Correct value assignment for hi jk and gi jk

The correctness is proved by induction on k = 0,1, . . . ,n.

➤ The base case k = 0 is covered by the definition of input gates.

➤ For k > 0, the circuit assigns hi jk = gik(k−1)∧gk j(k−1).

By the inductive hypothesis (IH) hi jk is true iff there is a path

from i to k and from k to j not using any intermediate node

bigger than k−1 iff there is a path from i to j not using any

intermediate node bigger than k but going through k.

➤ For k > 0, the circuit assigns gi jk = gi j(k−1) ∨hi jk.

By IH gi jk is true iff there is a path from i to j not using any

node bigger than k−1; or a path not using any node bigger than

k but going through k iff there is a path from i to j not using any

intermediate node bigger than k.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 14'

&

$

%

Correctness of the reduction

➤ In fact, the circuit R(G) implements the Floyd-Warshall algorithm

for REACHABILITY.

➤ The output of R(G) is true iff g1nn is true iff

there is a path from 1 to n in G without any intermediate nodes

bigger than n iff

there is a path from 1 to n in G.

➤ The circuit R(G) can be computed in O(logn) space using only

three counters i, j,k.

➤ Note that R(G) is a monotone circuit (no NOT gates).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 15'

&

$

%

Reducing CIRCUIT SAT to SAT

Given a Boolean circuit C, the result R(C) is a Boolean formula in

CNF such that C is satisfiable iff R(C) is satisfiable.

Definition. The formula R(C) uses all variables of C and it includes

for each gate g of C a new variable g and the following clauses.

1. If g is a variable gate x: (g∨¬x),(¬g∨ x). [g ≡ x]

2. If g is a true (resp. false) gate: g (resp. ¬g).

3. If g is a NOT gate with a predecessor h: (¬g∨¬h),(g∨h). [g ≡ ¬h]

4. If g is an AND gate with predecessors h,h′:

(¬g∨h),(¬g∨h′),(g∨¬h∨¬h′). [g ≡ (h∧h′)]

5. If g is an OR gate with predecessors h,h′:

(¬g∨h∨h′),(g∨¬h′),(g∨¬h). [g ≡ (h∨h′)]

6. If g is also the output gate: g.

We skip the correctness proof which is straightforward.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 16'

&

$

%

Reducing CIRCUIT VALUE to CIRCUIT SAT

➤ CIRCUIT VALUE is a special case of CIRCUIT SAT:

all inputs of CIRCUIT VALUE are also inputs of CIRCUIT SAT

and for those CIRCUIT VALUE and CIRCUIT SAT coincide.

➤ Thus CIRCUIT SAT is a generalization of CIRCUIT VALUE.

➤ There is a trivial reduction, i.e. identity function I(x) = x, from

CIRCUIT VALUE to CIRCUIT SAT.

➤ Since we have already a reduction R from CIRCUIT SAT to SAT,

we obtain a reduction from CIRCUIT VALUE to SAT as R′ = I ·R.

➤ More formally put, L1 ≤L L2 implies L3 ≤L L2 for any L3 ⊆ L1.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 17'

&

$

%

3. Composing Reductions

➤ So far, we have established a chain of reductions, i.e.

REACHABILITY ≤L CIRCUIT VALUE ≤L CIRCUIT SAT ≤L SAT.

➤ But do reductions compose, i.e., is ≤L transitive?

For instance, does REACHABILITY ≤L SAT hold?

Proposition. If R is a reduction from language L1 to L2 and R′ is a

reduction from language L2 to L3, then the composition R ·R′ is a

reduction from L1 to L3.

➤ As R,R′ are reductions, x ∈ L1 iff R(x) ∈ L2 iff R′(R(x)) ∈ L3.

➤ It remains to show that R′(R(x)) can be computed in O(logn)

space where n = |x|.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 18'

&

$

%

Logarithmic space consumption

➤ To construct a machine M for the composition R ·R′ working in

space O(logn) requires care as the intermediate result computed

by MR cannot be stored (possibly longer than logn).

➤ A solution: simulate MR′ on in-

put R(x) by remembering the

cursor position i of the input

string of MR′ which is the output

string of MR. Only the index i is

stored (in binary) and the sym-

bol currently scanned but not

the whole string.

x

↑

MR

↓

R(x)

↑

MR′

↓

R′(R(x))

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 19'

&

$

%

Space consumption—cont’d

➤ Initially i = 1 and it is easy to simulate the first move of MR′

(scanning ⊲).

➤ If MR′ moves right, simulate MR to generate the next output

symbol and increment i by one.

➤ If MR′ moves left, decrement i by one and run MR on x from the

beginning , counting symbols output and stopping when the ith

symbol is output.

➤ The space required for simulating MR on x as well as MR′ on R(x)

is O(logn) where n = |x|.

➤ The space needed for bookkeeping the output of MR on x is

O(logn) as |R(x)| = O(nk) as we need only indices stored in binary.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 20'

&

$

%

4. Completeness and Hard Problems

➤ The reducibility relation ≤L orders problems with respect to their

difficulty as it is reflexive and transitive (a preorder).

➤ Maximal elements in this order are particularly interesting.

Definition. Let C be a complexity class and let L be a language

in C. Then L is C-complete if for every L′ ∈ C, L′ ≤L L.

➤ A language L is called C-hard if any language L′ ∈ C is reducible

to L but it is not known whether L ∈ C holds.

➤ The main complexity classes (P,NP,PSPACE,NL, . . .) have

natural complete problems (as we shall see).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 21'

&

$

%

The role of completeness in complexity theory

➤ Complete problems are a central concept and methodological tool

in complexity theory.

➤ The complexity of a problem is categorized by showing that it is

complete for a complexity class.

➤ Complete problems capture the essence of a class.

➤ Completeness can be used to give a negative complexity result:

A complete problem is the least likely among all problems in C to

belong to a weaker class C′ ⊆ C.

(If it does, then the whole class C coincides with the weaker class

C′ as long as C′ is closed under reductions; see below.)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 22'

&

$

%

Closure under reductions

➤ A class C′ is closed under reductions if whenever L is reducible to

L′ and L′ ∈ C′, L ∈ C′.

Proposition. P,NP,coNP,L,NL,PSPACE,EXP are all closed

under reductions.

➤ For example, if a P-complete problem L is in NL, then P = NL.

Proof. We know that NL ⊆ P.

Let L′ ∈ P. As L is P-complete, then L′ is reducible to L. Since

NL is closed under reductions, L′ ∈ NL. Hence, P ⊆ NL.

➤ Similarly, if an NP-complete problem is in P, then P = NP.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 23'

&

$

%

Proving the equality of complexity classes

Proposition. If two complexity classes C and C′ are

1. both closed under reductions and

2. there is a language L which is complete for C and C′,

then C = C′.

Proof.

(⊆) Since L is complete for C, all languages in C reduce to L ∈ C′. As

C′ is closed under reductions, C ⊆ C′.

(⊇) Follows by symmetry.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 24'

&

$

%

5. Table Method

➤ How to establish that a problem is a complete one for a class?

➤ Finding the first complete problem is the most problematic (then

things become more straightforward as we shall see).

➤ To establish the first one we need capture in a problem the

essence of the computation mode and resource bound for the class

in question.

➤ Below we do this for the classes P and NP using the so-called

table method in which logic plays a major role.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 25'

&

$

%

Computation table

➤ Consider a polynomial time TM M = (K,Σ,δ,s) deciding a

language L based on Σ.

➤ Its computation on input x can be thought of as a |x|k ×|x|k

computation table T where |x|k is the time bound for M.

➤ Each row in the table is a time step of the computation ranging

from 0 to |x|k −1.

➤ Each column is a position in the string (same range).

➤ The entry (i, j) in T , (i.e. Ti, j) represents the contents of position

j of the string of M at time i (after i steps of M on x).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 26'

&

$

%

Example

i/ j 0 1 2 3 . . . |x|k −1

0 ⊲ 0s 1 1 . . . ⊔

1 ⊲ 0q 1 1 . . . ⊔

2 ⊲ 1 1q 1 . . . ⊔
...

...

|x|k −1 ⊲ “yes” ⊔ ⊔ . . . ⊔

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 27'

&

$

%

Computation table—cont’d

Some standardizing assumptions are made:

➤ M has only one string.

➤ M halts on any input x after at most |x|k −2 steps

(k is chosen so that this is guaranteed for |x| ≥ 2).

➤ Strings in the table are padded with ⊔s to be of same length (|x|k).

➤ If at time i the state is q and the cursor is scanning jth symbol σ,

then the entry Ti, j is σq (rather than σ);

except for “yes”/“no” for which the entry is “yes”/“no”.

➤ The cursor starts at the first symbol of input (not at ⊲).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 28'

&

$

%

Computation table—cont’d

➤ The cursor never visits the leftmost ⊲ which is achieved by

merging two moves of M if M is about to visit the leftmost ⊲.

☞ The first symbol of each row is always ⊲ (never ⊲q).

➤ If M halts before its time bound |x|k expires (Ti, j = “yes”/“no” for

some i < |x|k −1 and j), then all subsequent rows will be identical.

➤ The table is accepting iff T|x|k−1, j = “yes” for some j.

Proposition.

M accepts input x iff the computation table of M on x is accepting.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 29'

&

$

%

6. Computation as a Boolean Circuit

Any deterministic polynomial time computation can captured as a

problem of determining the value of a Boolean circuit!

Theorem. CIRCUIT VALUE is P-complete.

➤ As CIRCUIT VALUE ∈ P, to establish P-completeness it is enough

to show that for every language L ∈ P, there is a reduction R from

L to CIRCUIT VALUE.

➤ For an input x, the result R(x) is to be a variable-free circuit such

that x ∈ L iff the value of R(x) is true.

➤ In the sequel, we consider a TM M deciding L in time nk.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 30'

&

$

%

Reduction from L ∈ P to CIRCUIT VALUE

Consider the computation table T of M on input x:

➤ When i = 0 or j = 0 or j = |x|k −1, the value of Ti, j is known a

priori: in the first case x or ⊔s, in the second ⊲, and ⊔ in the third.

➤ Any other entry Ti, j depends only on the contents of the same or

adjacent positions Ti−1, j−i, Ti−1, j and Ti−1, j+1 at time i−1:

Ti−1, j−1 Ti−1, j Ti−1, j+1

Ti, j

➤ The idea is to encode this relationship using a Boolean circuit.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 31'

&

$

%

A binary encoding for T

➤ Let Γ denote the set of all symbols appearing in the table T .

Encode each symbol σ ∈ Γ as a bit vector (s1,s2, . . . ,sm) where

s1,s2, . . . ,sm ∈ {0,1} and m = ⌈log |Γ|⌉.

➤ The computation table can be thought of as a table of binary

entries Si, j,l with 0 ≤ i, j ≤ nk −1 and 1 ≤ l ≤ m.

➤ Thus each Si, j,l depends only on 3m entries

Si−1, j−1,l′ , Si−1, j,l′ , and Si−1, j+1,l′

where 1 ≤ l′ ≤ m

➤ So there are Boolean functions F1, . . . ,Fm with 3m inputs each

such that for all i, j > 0,

Si, j,l = Fl(Si−1, j−1,1, . . . ,Si−1, j−1,m,Si−1, j,1, . . .Si−1, j+1,m).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 32'

&

$

%

A binary encoding for T—cont’d

➤ Since every Boolean function can be represented by a Boolean

circuit, there is a Boolean circuit C

Si−1, j−1,1 . . .Si−1, j+1,m

· · ·
A
A
A

�
�

�
C

· · ·

Si, j,1 . . .Si, j,m

with 3m inputs and m outputs that computes the binary encoding

of Ti, j given the binary encodings of Ti−1, j−1, Ti−1, j, and Ti−1, j+1

for all i = 1, . . . |x|k and for all j = 1, . . . |x|k −2.

➤ Note that C depends only on M and has a fixed constant size

independent of the length of input x.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 33'

&

$

%

The definition of the reduction

➤ The reduction R(x) of x consists of (|x|k −1)× (|x|k −2) copies of

circuit C one for each entry Ti, j that is not on the top row or the

two extreme columns (call this Ci, j)

➤ For i ≥ 1, the input gates of Ci, j are identified by the output gates

of Ci−1, j−1,Ci−1, j,Ci−1, j+1.

➤ The sorts (true/false) of the input gates of R(x) correspond to the

known values of the first row and the first and last column.

➤ The output gate of R(x) is the first output of C|x|k−1,1

(assuming that M halts always with cursor in the second string

position and the first bit of “yes” is 1 and that of “no” is 0).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 34'

&

$

%

Correctness of the reduction

➤ The value of R(x) is true iff x ∈ L:

Suppose that the value of R(x) is true.

It can be shown by induction on i that the output values of Ci, j

give the binary encoding of the ith row of T .

As R(x) is true, then the entry T|x|k−1,1 is “yes”. Hence, the table

is accepting and so is M implying x ∈ L.

If x ∈ L, the table is accepting and the value of R(x) is true.

➤ The circuit R(x) can be computed in logarithmic space:

Input gates can be constructed by counting up to |x|k and

inspecting input x (O(logn) space).

Other gates can be generated by manipulating indices in O(logn)

space as the size of C is fixed and independent of |x|.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 35'

&

$

%

Other P-complete problems

➤ Note that NOT gates can be eliminated from variable-free circuits:

Move NOTs downwards by applying De Morgan’s laws until input

gates are reached where ¬true is changed to false and vice versa.

➤ The result is a circuit representing a monotone Boolean function.

Corollary. MONOTONE CIRCUIT VALUE is P-complete.

Corollary. HORNSAT is P-complete.

(See tutorials.)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 36'

&

$

%

7. Capturing nondeterministic computation

Any nondeterministic polynomial time computation can captured as a

circuit satisfiability problem!

Theorem. CIRCUIT SAT is NP-complete.

Proof.

➤ CIRCUIT SAT is in NP.

➤ Let L ∈ NP. We’ll describe a reduction R which for each string x

constructs a Boolean circuit R(x) such that

x ∈ L iff R(x) is satisfiable.

➤ Let M be a single-string NTM that decides L in time nk.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 37'

&

$

%

Standardizing choices made by M

➤ It is assumed that M has exactly two nondeterministic choices

(δ1,δ2 ∈ ∆) at each step of computation.

The cases that |∆| > 2 or |∆| < 2 can be avoided by adding new

states to M or by assuming that choices coincide (δ1 = δ2).

➤ Under this assumption, a sequence of nondeterministic choices c
can be represented as a bit string (c0,c1, . . . ,c|x|k−2) ∈ {0,1}|x|

k−1.

➤ If we fix the sequence of choices c, then the computation of M

becomes effectively deterministic.

➤ Let us define the computation table T (M,x,c) corresponding to

the machine M, an input x, and a sequence of choices c.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 38'

&

$

%

A binary encoding for T (M,x,c)

➤ The top row and extreme columns are predetermined as before.

➤ All other entries Ti, j depend only on Ti−1, j−1, Ti−1, j, Ti−1, j+1, and

the choice ci−1 at the previous step. There is a Boolean circuit C

Si−1, j−1,1 . . .Si−1, j+1,m

· · ·
A
A
A

�
�

�
C

ci−1

· · ·

Si, j,1 . . .Si, j,m

with 3m+1 inputs and m outputs that computes the binary

encoding of Ti, j given the binary encodings of Ti−1, j−1, Ti−1, j,

Ti−1, j+1 and the previous choice ci−1.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 39'

&

$

%

Correctness of the reduction

➤ The circuit R(x) is constructed as in the deterministic case but

circuitry for c must be incorporated.

➤ The circuit R(x) can be computed in logarithmic space as C has a

fixed constant size independent of |x|.

➤ Moreover, the circuit R(x) is satisfiable iff there is a sequence of

choices c such that the computation table is accepting iff x ∈ L.

Corollary. (Cook’s theorem) SAT is NP-complete.

Proof. Let L ∈ NP. Hence, L is reducible to CIRCUIT SAT as

CIRCUIT SAT is NP-complete. But CIRCUIT SAT is reducible to

SAT. Hence, L is reducible to SAT as reductions compose.

On the other hand, SAT ∈ NP so that SAT is NP-complete.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 Reductions and Completeness 40'

&

$

%

Learning Objectives

➤ The idea of reducing one problem, or language, into another.

➤ You should know the basic properties of L-reductions (e.g.

compositionality) and be able to construct reductions on your own.

➤ The definitions of C-hard and C-complete problems/languages for

a complexity class C.

➤ Understanding the role of complete problems in complexity theory.

➤ Fundamental completeness results regarding CIRCUIT VALUE,

HORNSAT, CIRCUIT SAT, and SAT.

c© 2005 TKK, Laboratory for Theoretical Computer Science

