NP-COMPLETE PROBLEMS

- ► Characterizing NP
- ► Variants of satisfiability
- ► Graph-theoretic problems
- Coloring problems
- ► Sets and numbers
- Pseudopolynomial algorithms
- (C. Papadimitriou: Computational complexity, Chapter 9)

 \odot 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

1. Characterizing NP

Definition.

- A relation R ⊆ Σ* × Σ* is *polynomially decidable* iff there is a deterministic TM deciding the language {x; y | (x, y) ∈ R} in polynomial time.
- 2. A relation R is *polynomially balanced* if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$.

Proposition. Let $L \subseteq \Sigma^*$ be a language.

Now $L \in \mathbf{NP}$ iff there is a polynomially balanced and polynomially decidable relation R such that $L = \{x \in \Sigma^* \mid (x, y) \in R \text{ for some } y \in \Sigma^*\}.$

Proof

1

2

(\Leftarrow) Suppose there is such a relation *R*. Then *L* is decided by a NTM that on input *x*, guesses a *y* of length at most $|x|^k$ and uses the machine for *R* to decide in polynomial time whether $(x, y) \in R$.

(⇒) Suppose that $L \in \mathbf{NP}$, i.e. there is a NTM N deciding L in time $|x|^k$ for some k.

Define a relation R as follows: $(x, y) \in R$ iff y is the encoding of an accepting computation of N on input x. Now R is polynomially

- balanced (each computation of N is polynomially bounded) and
- decidable (since it can be checked in linear time whether y encodes an accepting computation of N on x).
- As N decides L, $L = \{x \mid (x, y) \in R \text{ for some } y\}$. \Box

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

4

Succinct certificates

A problem is in **NP** if any "yes" instance x of the problem has at least one **succinct certificate**, or polynomial witness, y. **NP** contains a huge number of practically important, natural computational problems:

- A typical problem is to construct a mathematical object satisfying certain specifications (path, solution of equations, routing, VLSI layout,...). This is the certificate.
- The decision version of the problem is determine whether at least one such an object exists for the input.
- ➤ The object is usually not very large compared to the input.
- The specifications of the object are usually simple enough to be checkable in polynomial time.

6

Boundary between NP and P

- \blacktriangleright Most problems arising in computational practice are in NP.
- > Computational complexity theory provides us tools to study which problems in NP belong to P and which do not.
- > NP-completeness is a basic tool in this respect:

Showing that a problem is NP-complete implies that the problem is among the least likely to be in **P**.

(If an NP-complete problem is in P, then NP = P.)

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

NP-completeness and algorithm design techniques

When a problem is known to be NP-complete, further efforts are usually directed to:

- (i) Attacking special cases
- (ii) Approximation algorithms
- (iii) Studying average case performance
- (iv) Randomized algorithms
- (v) (Exponential) algorithms that are practical for small instances
- (vi) Local search methods

2. Variants of Satisfiability \blacktriangleright Many problems if generalized enough become NP-complete. \blacktriangleright Often it is important to find the dividing line between **P** and NP-completeness. > One basic technique is to investigate the set of instances produced by a reduction R involved in the **NP**-completeness proof in order to capture another NP-complete problem. ► Next we consider variants of SAT such as 3SAT, 2SAT, MAX2SAT, and NAESAT and analyze their computational complexities. © 2005 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2005 NP-complete problems

kSAT problems

Definition. kSAT, where k > 1 is an integer, is the set of Boolean expressions $\phi \in SAT$ (in CNF) whose all clauses have exactly k literals.

Proposition. 3SAT is NP-complete.

Proof.

- ► 3SAT is in NP as a special case of SAT which is in NP.
- ► CIRCUIT SAT was shown to be NP-complete and a reduction from CIRCUIT SAT to SAT has already been presented.
- ➤ Consider now the clauses in the reduction. They have all at most 3 literals. Each clause with one or two literals can be modified to an equivalent clause with exactly 3 literals by duplicating literals.
- ► Hence, we can reduce CIRCUIT SAT to 3SAT.

8

Narrowing NP-complete languages

- > An NP-complete languages can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.
- ➤ The following result is a typical example.

Proposition. 3SAT remains NP-complete even if each variable is restricted to appear at most three times in a Boolean expression $\phi \in 3SAT$ and each literal at most twice in ϕ .

Proof. This is shown by a reduction where any instance ϕ of 3SAT is rewritten to eliminate the forbidden features.

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005
Proof
► Consider a variable :
(i) Replace the first and so on where
(ii) Add clauses $(\neg x_1$
\blacktriangleright Let ϕ' be the express
\blacktriangleright It follows that ϕ' has
► Now φ is satisfiable
For each r appearing

NP-complete problems

- ble x appearing k > 3 times in ϕ .
 - first occurrence of x in ϕ by x_1 , the second by x_2 , here x_1, \ldots, x_k are new variables.
 - $(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), \dots, (\neg x_k \lor x_1)$ to ϕ .
- pression ϕ modified systematically in this way.
- has the desired syntactic properties.
- able iff ϕ' is satisfiable:

For each x appearing k > 3 times in ϕ , the truth values of x_1, \ldots, x_k are the same in each truth assignment satisfying ϕ' . \Box

Boundary between P and NP-completeness

- ► The boundary is between 2SAT and 3SAT.
- \blacktriangleright For an instance ϕ of 2SAT, there is a polynomial time algorithm which is based on reachability in a graph associated with ϕ .

Definition. Let ϕ be an instance of 2SAT.

Define a graph $G(\phi)$ as follows:

- The variables of ϕ and their negations form the vertices of $G(\phi)$.
- There is an arc (α, β) iff there is a clause $\overline{\alpha} \lor \beta$ or $\beta \lor \overline{\alpha}$ in ϕ ,

i.e., if (α, β) is an arc, so is $(\overline{\beta}, \overline{\alpha})$ where $\overline{\alpha}$ is the complement of α .

Theorem. Let ϕ be an instance of 2SAT.

Then ϕ is unsatisfiable iff there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

© 2005 TKK, Laboratory for Theoretical Computer Science

The case of not-all-equal SAT (NAESAT)

For each $\varphi\in\mathsf{NAESAT}\subset\mathsf{3SAT}$, there is a truth assignment so that the three literals in each clause of φ do not have the same truth value.

Theorem. NAESAT is **NP**-complete.

Proof.

- CIRCUIT SAT was shown to be NP-complete and a reduction R from CIRCUIT SAT to SAT has already been presented.
- For all one- and two-literal clauses in the reduced circuit R(C), add the same literal, say z, to make them 3-literal clauses.

Claim: it holds for the resulting Boolean expression $R_z(C)$ in 3CNF:

 $R_z(C) \in \mathsf{NAESAT}$ iff $R(C) \in \mathsf{SAT}$ iff $C \in \mathsf{CIRCUIT}$ SAT.

(The latter iff-relationship is already known.)

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

14

 (\Rightarrow) If a truth assignment T satisfies $R_z(C)$ in the sense of NAESAT, so does the complementary truth assignment \overline{T} .

Thus z is **false** in either T or \overline{T} which implies that R(C) is satisfied by T or \overline{T} . Thus C is satisfiable.

(\Leftarrow) If C is satisfiable, then there is a truth assignment T satisfying R(C). Let us then extend T for $R_z(C)$ by assigning T(z) = **false**.

In no clause of $R_z(C)$ all literals are **true** (they cannot be all **false**):

- (i) Clauses for true/false/NOT/variable gates contain z that is false.
- (ii) For AND gates the clauses are: (¬g ∨ h ∨ z), (¬g ∨ h' ∨ z),
 (g ∨ ¬h ∨ ¬h') where in the first two z is **false**, and in the third all three cannot be true as then the first two would be not true.
- (iii) The case of OR gates is very similar. \square

3. Graph-Theoretic Problems

- ▶ In this section, we will consider only undirected graphs G = (V, E) and their properties which lead to computational problems.
- ➤ For instance, consider the problem of finding an *independent* subset *I* of *V*: for all *i*, *j* ∈ *I* there is no edge [*i*, *j*] ∈ *E*.

INDEPENDENT SET:

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Is there an independent set $I \subseteq V$ with |I| = K.

Theorem. INDEPENDENT SET is NP-complete. (See tutorials.)

The subclass of graphs needed in the reduction implies the following:

Corollary. 4-DEGREE INDEPENDENT SET is NP-complete.

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

Graph problems: CLIQUE and NODE COVER

The problems in graph theory are often closely related; suggesting even trivial reductions between problems.

Example. Consider the following two graph theoretic problems:

CLIQUE:

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Is there a clique $C \subseteq V$ with |C| = K? (A set $C \subseteq V$ is clique iff for all $i, j \in I$, $[i, j] \in E$)

NODE COVER:

INSTANCE: An undirected graph G = (V, E) and an integer B. QUESTION: Is there a set $C \subseteq V$ with $|C| \leq B$ such that for all $[i, j] \in E$, $i \in C$ or $j \in C$?

Trivial reductions for CLIQUE and NODE COVER

- ➤ Independent sets are closely related to cliques and node covers: A set I ⊆ V of vertices is
 - 1. an independent set of G iff it is a clique of the *complement* graph \overline{G} , and
 - 2. an independent set of G iff V I is a node cover of G.
- ▶ Thus an instance G;K of INDEPENDENT SET can be reduced to
 - an instance \overline{G} ; K of CLIQUE, and
 - an instance G; |V| K of NODE COVER.

Corollary. CLIQUE and NODE COVER are NP-complete.

T-79.5103 / Autumn 2005

NP-complete problems

Graph problems: MIN CUT and MAX CUT

- ➤ A cut in an undirected graph G = (V,E) is a partition of the nodes into two nonempty sets S and V - S.
- > The size of a cut is the number of edges between S and V-S.
- ► The problem of finding a cut with the smallest size is in **P**:
 - (i) The smallest cut that separates two given nodes *s* and *t* equals to the maximum flow from *s* to *t*.
 - (ii) Minimum cut: find the maximum flow between a fixed *s* and all other nodes and choose the smallest value found.
- ➤ However, the problem of deciding whether there is a cut of a size greater than or equal to K (MAX CUT) is much harder:

Theorem. MAX CUT is NP-complete.

Reduction from NAESAT to MAX CUT

The $\mathbf{NP}\text{-}\text{completeness}$ of MAX CUT is shown for graphs with multiple edges between nodes by a reduction from NAESAT.

▶ For a conjunction of clauses $\phi = C_1 \land \ldots \land C_m$, we construct a graph G = (V, E) so that

G has a cut of size 5m iff ϕ is satisfied in the sense of NAESAT.

- The nodes of *G* are $x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n$ where x_1, \ldots, x_n are the variables in ϕ .
- The edges in G include a triangle [α, β, γ] for each clause α∨β∨γ and n_i copies of the edge [x_i, ¬x_i] where n_i is the number of occurrences of x_i or ¬x_i in the clauses.

T-79.5103 / Autumn 2005

NP-complete problems

20

Correctness of the reduction

- Suppose there is a cut (S, V S) of size 5m or more.
- All variables can be assumed separate from their negations: If both x_i, ¬x_i are on the same side, they contribute at most 2n_i edges to the cut and, hence, changing the one with fewer neighbors does not decrease the size of the cut.
- \blacktriangleright Let S be the set of true literals and V S those false.
- The total number of edges in the cut joining opposite literals is 3m. The remaining 2m are coming from triangles meaning that all m triangles are cut, i.e. φ is satisfied in the sense of NAESAT.
- ➤ Conversely, a satisfying truth assignment (in the sense of NAESAT) gives rise to a cut of size 5m. □

 $[\]textcircled{C}$ 2005 TKK, Laboratory for Theoretical Computer Science

^{© 2005} TKK, Laboratory for Theoretical Computer Science

Graph problems: MAX BISECTION

- In applications of graph partitioning, the sizes of S and V S cannot be arbitrarily small or large.
 MAX BISECTION is the problem of determining whether there is
 - a cut (S, V S) with size of K or more such that |S| = |V S|.
- ► Is MAX BISECTION easier than MAX CUT?

Lemma. MAX BISECTION is NP-complete.

Proof. Reducing MAX CUT to MAX BISECTION by modifying input:

Add |V| disconnected new nodes to G. Now every cut of G can be made a bisection by appropriately splitting the new nodes.

Now G = (V, E) has a cut (S, V - S) with size of K or more iff the modified graph has a cut with size of K or more with |S| = |V - S|. \Box

 \odot 2005 TKK, Laboratory for Theoretical Computer Science

NP-complete problems

Graph problems: BISECTION WIDTH

T-79.5103 / Autumn 2005

- ➤ However, the respective minimization problem, i.e. MIN CUT with the bisection requirement, is NP-complete.
- ► BISECTION WIDTH: is there a bisection of size K or less?

Theorem. BISECTION WIDTH is NP-complete.

Proof. A reduction from MAX BISECTION:

A graph G = (V, E) where |V| = 2n for some n has a bisection of size Kor more iff the complement \overline{G} has a bisection of size $n^2 - K$ or less. \Box

General instructions how to establish NP-completeness

Designing an NP-completeness proof for a given problem Q

- ▶ Work on small instances of Q to develop gadgets/primitives.
- ► Look at known NP-complete problems.
- > Design a reduction *R* from a known NP-complete problem to *Q*.
- ► Typical ingredients of a reduction:

choices + consistency + constraints.

➤ The key question is how to express these in Q?

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005	NP-complete problems
Graph problems: HAMILT	ON PATH
Theorem. HAMILTON PATH	is NP -complete.
Proof.	
► Reduction from 3SAT to I	HAMILTON PATH:
given a formula ϕ in CNF C_1, \ldots, C_m each with three has a Hamilton path iff ϕ	with variables x_1, \ldots, x_n and clauses e literals, we construct a graph $R(\phi)$ that is satisfiable.
► Choice gadgets select a tr	with assignment for variables x_i .
 Consistency gadgets (XOF the same truth value and 	R) enforce that all occurrences of x_i have all occurrences of $\neg x_i$ the opposite.
► Constraint gadgets guarar	ntee that all clauses are satisfied.

Reduction from 3SAT to HAMILTON PATH

The graph $R(\phi)$ is constructed as follows:

- \blacktriangleright The *choice gadgets* of variables x_i are connected in series.
- A constraint gadget (triangle) for each clause with an edge identified with each literal *l* in the clause.
 - If l is x_i , then XOR to **true** edge of choice gadget of x_i .
 - If it is $\neg x_i$, then XOR to **false** edge of choice gadget of x_i .
- All nodes of the triangles, the end node of choice gadgets and a new node 3 form a clique. Add a node 2 connected to 3.

Basic idea: each side of the constraint gadget is traversed by the Hamilton path iff the corresponding literal is **false**. Hence, at least one literal in any clause is **true** since otherwise all sides for its triangle should be traversed which is impossible (implying no Hamilton path).

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

Correctness of the reduction

> If there is a Hamilton path, ϕ is satisfiable:

The path starts at 1, makes a truth assignment, traverses the triangles in some order and ends up in 2. The truth assignment satisfies ϕ as there are no triangle where all sides are traversed, i.e., all literals **false**.

> If ϕ is satisfiable, there is a Hamilton path:

From a satisfying truth assignment, we construct a Hamilton path by starting at 1, traversing choice gadgets according to the truth assignment, the rest is a big clique for which a trivial path can be found leading to 3 and then to 2. \Box

Travelling salesperson (TSP) revisited

Corollary. TSP(D) is NP-complete.

Proof: A reduction from HAMILTON PATH to TSP(D). Given a graph G with n nodes, construct a distance matrix d_{ij} and a budget B so that there is a tour of length B or less iff G has a Hamilton path.

- There are *n* cities and the distance $d_{ij} = 1$ if there is $[i, j] \in G$ and $d_{ij} = 2$ otherwise. The budget B = n + 1.
- If there is a tour of length n+1 or less, then there is at most one pair (π(i),π(i+1)) in it with cost 2, i.e., a pair for which [π(i),π(i+1)] is not an edge. Removing it gives a Hamilton path.
- ➤ If G has a Hamilton path, then its cost is n-1 and it can be made a tour with additional cost of 2. □

© 2005 TKK, Laboratory for Theoretical Computer Science

Determining the complexity of 3-COLORING

Theorem. 3-COLORING is **NP**-complete.

Proof. A reduction from NAESAT to 3-COLORING.

- For a conjunction clauses $\phi = C_1 \wedge ... \wedge C_m$ with variables $x_1, ..., x_n$, construct a graph $G(\phi)$ that can be colored with $\{0, 1, 2\}$ iff there is a truth assignment satisfying all clauses in the way of NAESAT.
- ➤ Choice gadgets: For each variable x_i, we introduce a triangle [a, x_i, ¬x_i], i.e. all triangles share a node a.
- ► Constraints: For each clause C_i : a triangle $[C_{i1}, C_{i2}, C_{i3}]$ where each C_{ij} is further connected to the node with the *j*th literal in C_i .

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

Correctness of the reduction

(⇒) Suppose *G* can be colored with $\{0,1,2\}$ and *a* has color 2. This induces a truth assignment *T* via the colors of the nodes x_i : if the color is 1, then $T(x_i) =$ **true** else $T(x_i) =$ **false**.

If we assume that T assigns all literals of some clause C_i to true/false, then color 1/0 cannot be used for coloring $[C_{i1}, C_{i2}, C_{i3}]$, a contradiction. Thus ϕ is satisfied in the sense of NAESAT.

(\Leftarrow) Assume that ϕ is satisfied by *T* in the sense of NAESAT. Then we can extract a coloring for *G* from *T* as follows:

- 1. Node a is colored with color 2.
- 2. If $T(x_i) = \mathbf{true}$, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.
- 3. From each $[C_{i1}, C_{i2}, C_{i3}]$, color two literals having opposite truth values with 0 (**true**) and 1 (**false**). Color the third with 2. \Box

5. Sets and Numbers

TRIPARTITE MATCHING:

INSTANCE: Three sets *B* (boys), *G* (girls), and *H* (homes) each containing *n* elements and a ternary relation $T \subseteq B \times G \times H$. QUESTION: Is there a set of *n* triples in *T* no two of which have a component in common?

Theorem. TRIPARTITE MATCHING is **NP**-complete.

Proof. By a reduction from 3SAT. Each variable x has a combined choice and consistency gadget and each clause c a dedicated pair of a boy b_c and a girl g_c and three triples (b_c, g_c, h_l) where h_l ranges over the three homes corresponding to the occurrences of literals in the clause (appearing in the combined gadgets).

C 2005 TKK, Laboratory for Theoretical Computer Science

NP-complete problems

32

The combined gadget for choice and consistency

The gadget for a variable x involves k boys and k girls forming a k circle and 2k homes where k is either the number of occurrences of x or its negation whichever is larger. (Recall that k can be assumed to be 1 or 2). The case k = 2 is given alongside.

- ➤ Each occurrence of x is represented by homes h_{2i-1} and those of ¬x by homes h_{2i}.
- ► Exactly two kinds of matchings possible:
 - " $T(x) = \mathbf{true}$ ": b_i with g_i and h_{2i} .
 - "T(x) =**false**": b_i with g_{i-1} (g_k if i = 1) and h_{2i-1} .

Correctness of the reduction

- Note that " $T(x) = \mathbf{true}$ " matching leaves the homes for x unoccupied and " $T(x) = \mathbf{false}$ " those for $\neg x$ unoccupied.
- ➤ For a clause c, the dedicated b_c and g_c are matched to a home that is left unoccupied when the variables are assigned truth values meaning that it corresponds to a **true** literal satisfying c.
- ➤ One more detail needs to be settled: there are more homes H than boys B and girls G (but |B| = |G|).
- ➤ Add l = |H| |B| new boys and l new girls. The *i*th such girl participates in |H| triples with the *i*th boy and every home.
- ► Now a tripartite matching exists iff the set of clauses is satisfiable.

© 2005 TKK, Laboratory for Theoretical Computer Science

NP-complete problems

1
(

Other problems involving sets

T-79.5103 / Autumn 2005

1. SET COVERING:

INSTANCE: A family $F = \{S_1, \dots, S_n\}$ of subsets of a finite set U and an integer B.

QUESTION: Is there a set of B sets in F whose union is U?

2. SET PACKING:

INSTANCE: A family $F = \{S_1, \dots, S_n\}$ of subsets of a finite set U and an integer K.

QUESTION: Is there a set of K pairwise disjoint sets in F?

3. EXACT COVER BY 3-SETS:

INSTANCE: A family $F = \{S_1, ..., S_n\}$ of subsets of a finite set U such that |U| = 3m for some integer m and for all $i |S_i| = 3$. QUESTION: Is there a set of m sets in F that are disjoint and have U as their union?

Classifications obtained by generalization

Corollary. SET COVERING, SET PACKING, and EXACT COVER BY 3-SETS are all **NP**-complete.

- ➤ TRIPARTITE MATCHING can be reduced to EXACT COVER BY 3-SETS by noticing that it is a special case where U is partitioned in three sets B, G, H with |B| = |G| = |H|and $F = \{\{b, g, h\} \mid (b, g, h) \in T\}.$
- EXACT COVER BY 3-SETS can be reduced to SET COVERING as a special case where the universe has 3m elements, all sets in F have 3 elements and the budget B = m.
- ► EXACT COVER BY 3-SETS can be reduced to SET PACKING as a special case where the universe has 3m elements, all sets in F have 3 elements and limit K = m. □

C 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

 $NP\text{-}complete \ problems$

36

35

A number problem: INTEGER PROGRAMMING

INSTANCE: a system of linear inequalities with integer coefficients. QUESTION: Is there an integer solution of the system?

Corollary. INTEGER PROGRAMMING is NP-complete.

Proof. SET COVERING reducible to INTEGER PROGRAMMING:

Given a family $F = \{S_1, ..., S_n\}$ of subsets of a finite set $U = \{u_1, ..., u_m\}$ and a integer *B*, construct a system:

 $0 \le x_1 \le 1, \dots, 0 \le x_n \le 1 \qquad a_{11}x_1 + \dots + a_{1n}x_n \ge 1$ $\Sigma_{i=1}^n x_i \le B \qquad \qquad \vdots$

```
a_{m1}x_1 + \cdots + a_{mn}x_n \geq 1
```

where $a_{ij} = 1$ if *i*th element of *U* is in the set S_j , otherwise $a_{ij} = 0$. (The idea: $x_i = 1$ if S_i in the cover and otherwise $x_i = 0$.) \Box

Further problems involving numbers

- 1. LINEAR PROGRAMMING (i.e. INTEGER PROGRAMMING where non-integer solutions are allowed) is in **P**.
- 2. KNAPSACK:

INSTANCE: A set of *n* items with each item *i* having a value v_i and a weight w_i (both positive integers) and integers *W* and *K*. QUESTION: Is there a subset *S* of the items such that $\sum_{i \in S} w_i < W$ but $\sum_{i \in S} v_i > K$?

Theorem. KNAPSACK is NP-complete.

T-79.5103 / Autumn 2005

Proof. We show that a simple special case of KNAPSACK is **NP**-complete where $v_i = w_i$ for all *i* and W = K:

INSTANCE: A set of integers w_1, \ldots, w_n and an integer K. QUESTION: Is there a subset S of the integers with $\sum_{i \in S} w_i = K$?

C 2005 TKK, Laboratory for Theoretical Computer Science

NP-complete problems

Reduction from EXACT COVER BY 3-SETS

The reduction is based on the set $U =$	\rightarrow	0	1	 0	0
$\{1,2,\ldots,3m\}$ and the sets S_1,\ldots,S_n		1	0	 0	0
given as bit vectors $\{0,1\}^{3m}$ and $K=$					
$2^{3m}-1$. Then the task is to find a sub-		:			
set of bit vectors that sum to K .	\rightarrow	0	0	 1	1
		1	1	 1	1

- This does not quite work because of the carry bit, but the problem can be circumvented by using n+1 as the base rather than 2.
- ► Now S_i corresponds to $w_i = \sum_{i \in S_i} (n+1)^{3m-j}$.
- ➤ Then a set of these integers w_i adds up to $K = \sum_{j=0}^{3m-1} (n+1)^j$ iff there is an exact cover among $\{S_1, S_2, \dots, S_n\}$. \Box

6. Pseudopolynomial Algorithms

Proposition. Any instance of KNAPSACK can be solved in O(nW) time where *n* is the number of items and *W* is the weight limit. Proof.

Define V(w,i): the largest value attainable be selecting some among the first i items so that their total weight is exactly w.

► Each V(w,i) with w = 1,...,W and i = 1,...,n can be computed by

 $V(w, i+1) = \max\{V(w, i), v_{i+1} + V(w - w_{i+1}, i)\}$

where V(w,0) = 0 for all w and $V(w,i) = -\infty$ if $w \le 0$.

- For each entry this can be done in constant number of steps and there are nW entries. Hence, the algorithm runs in O(nW) time.
- ▶ An instance is answered "yes" iff there is an entry $V(w,i) \ge K$. □

© 2005 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2005

NP-complete problems

Strong NP-completeness

- The preceding algorithm is not polynomial w.r.t. the length of the input (which is $O(n \log W)$) but exponential ($W = 2^{\log W}$).
- ➤ An algorithm where the time bound is polynomial in the integers in the input (not their logarithms) is called pseudopolynomial.
- A problem is called strongly NP-complete if the problem remains NP-complete even if any instance of length *n* is restricted to contain integers of size at most *p(n)*, for a polynomial *p*.
 Strongly NP-complete problems cannot have

pseudopolynomial algorithms (unless $\mathbf{P} = \mathbf{NP}$).

 SAT, MAX CUT, TSP(D), HAMILTON PATH,... are strongly NP-complete but KNAPSACK is not.

Yet another number problem: BIN PACKING

INSTANCE: *N* positive integers a_1, \ldots, a_N (items) and integers *C* (capacity) and *B* (number of bins). QUESTION: Is there a partition of the numbers into *B* subsets such that for each subset *S*, $\sum_{a_i \in S} a_i \leq C$?

► BIN PACKING is strongly **NP**-complete:

Even if the integers are restricted to have polynomial values (w.r.t. the length of input), BIN PACKING remains **NP**-complete.

➤ Any pseudopolynomial algorithm for BIN PACKING would yield a polynomial algorithm for all problems in NP implying P = NP.

© 2005 TKK, Laboratory for Theoretical Computer Science

