
AB
T-79.5103 / Autumn 2005 NP-complete problems 1'

&

$

%

NP-COMPLETE PROBLEMS

➤ Characterizing NP

➤ Variants of satisfiability

➤ Graph-theoretic problems

➤ Coloring problems

➤ Sets and numbers

➤ Pseudopolynomial algorithms

(C. Papadimitriou: Computational complexity, Chapter 9)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 2'

&

$

%

1. Characterizing NP

Definition.

1. A relation R ⊆ Σ∗×Σ∗ is polynomially decidable iff there is a

deterministic TM deciding the language {x;y | (x,y) ∈ R} in

polynomial time.

2. A relation R is polynomially balanced if (x,y) ∈ R implies

|y| ≤ |x|k for some k ≥ 1.

Proposition. Let L ⊆ Σ∗ be a language.

Now L ∈ NP iff there is a polynomially balanced and polynomially

decidable relation R such that L = {x ∈ Σ∗ | (x,y) ∈ R for some y ∈ Σ∗}.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 3'

&

$

%

Proof

(⇐) Suppose there is such a relation R. Then L is decided by a NTM

that on input x, guesses a y of length at most |x|k and uses the

machine for R to decide in polynomial time whether (x,y) ∈ R.

(⇒) Suppose that L ∈ NP, i.e. there is a NTM N deciding L in time

|x|k for some k.

Define a relation R as follows: (x,y) ∈ R iff y is the encoding of an

accepting computation of N on input x. Now R is polynomially

• balanced (each computation of N is polynomially bounded) and

• decidable (since it can be checked in linear time whether y

encodes an accepting computation of N on x).

• As N decides L, L = {x | (x,y) ∈ R for some y}. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 4'

&

$

%

Succinct certificates

A problem is in NP if any “yes” instance x of the problem has at least

one succinct certificate, or polynomial witness, y. NP contains a

huge number of practically important, natural computational problems:

➤ A typical problem is to construct a mathematical object satisfying

certain specifications (path, solution of equations, routing, VLSI

layout,. . .). This is the certificate.

➤ The decision version of the problem is determine whether at least

one such an object exists for the input.

➤ The object is usually not very large compared to the input.

➤ The specifications of the object are usually simple enough to be

checkable in polynomial time.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 5'

&

$

%

Boundary between NP and P

➤ Most problems arising in computational practice are in NP.

➤ Computational complexity theory provides us tools to study which

problems in NP belong to P and which do not.

➤ NP-completeness is a basic tool in this respect:

Showing that a problem is NP-complete implies that the problem

is among the least likely to be in P.

(If an NP-complete problem is in P, then NP = P.)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 6'

&

$

%

NP-completeness and algorithm design techniques

When a problem is known to be NP-complete, further efforts are

usually directed to:

(i) Attacking special cases

(ii) Approximation algorithms

(iii) Studying average case performance

(iv) Randomized algorithms

(v) (Exponential) algorithms that are practical for small instances

(vi) Local search methods

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 7'

&

$

%

2. Variants of Satisfiability

➤ Many problems if generalized enough become NP-complete.

➤ Often it is important to find the dividing line between P and

NP-completeness.

➤ One basic technique is to investigate the set of instances produced

by a reduction R involved in the NP-completeness proof in order

to capture another NP-complete problem.

➤ Next we consider variants of SAT such as

3SAT, 2SAT, MAX2SAT, and NAESAT

and analyze their computational complexities.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 8'

&

$

%

kSAT problems

Definition. kSAT, where k ≥ 1 is an integer, is the set of Boolean

expressions φ ∈ SAT (in CNF) whose all clauses have exactly k literals.

Proposition. 3SAT is NP-complete.

Proof.

➤ 3SAT is in NP as a special case of SAT which is in NP.

➤ CIRCUIT SAT was shown to be NP-complete and a reduction

from CIRCUIT SAT to SAT has already been presented.

➤ Consider now the clauses in the reduction. They have all at most

3 literals. Each clause with one or two literals can be modified to

an equivalent clause with exactly 3 literals by duplicating literals.

➤ Hence, we can reduce CIRCUIT SAT to 3SAT. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 9'

&

$

%

Narrowing NP-complete languages

➤ An NP-complete languages can sometimes be narrowed down by

transformations which eliminate certain features of the language

but still preserve NP-completeness.

➤ The following result is a typical example.

Proposition. 3SAT remains NP-complete even if each variable is

restricted to appear at most three times in a Boolean expression

φ ∈ 3SAT and each literal at most twice in φ.

Proof. This is shown by a reduction where any instance φ of 3SAT is

rewritten to eliminate the forbidden features.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 10'

&

$

%

Proof

➤ Consider a variable x appearing k > 3 times in φ.

(i) Replace the first occurrence of x in φ by x1, the second by x2,

and so on where x1, . . . ,xk are new variables.

(ii) Add clauses (¬x1 ∨ x2),(¬x2 ∨ x3), . . . ,(¬xk ∨ x1) to φ.

➤ Let φ′ be the expression φ modified systematically in this way.

➤ It follows that φ′ has the desired syntactic properties.

➤ Now φ is satisfiable iff φ′ is satisfiable:

For each x appearing k > 3 times in φ, the truth values of

x1, . . . ,xk are the same in each truth assignment satisfying φ′. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 11'

&

$

%

Boundary between P and NP-completeness

➤ The boundary is between 2SAT and 3SAT.

➤ For an instance φ of 2SAT, there is a polynomial time algorithm

which is based on reachability in a graph associated with φ.

Definition. Let φ be an instance of 2SAT.

Define a graph G(φ) as follows:

– The variables of φ and their negations form the vertices of G(φ).

– There is an arc (α,β) iff there is a clause α∨β or β∨α in φ,

i.e., if (α,β) is an arc, so is (β,α) where α is the complement of α.

Theorem. Let φ be an instance of 2SAT.

Then φ is unsatisfiable iff there is a variable x such that there are

paths from x to ¬x and from ¬x to x in G(φ).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 12'

&

$

%

The complexity of 2SAT—cont’d

Corollary. 2SAT is in NL (⊆ P).

Proof. Since NL is closed under complement, it is sufficient to show

that 2SAT COMPLEMENT is in NL.

The reachability condition of the preceding theorem can be tested in

logarithmic space non-deterministically by guessing a variable x and

paths from x to ¬x and back. 2

MAX2SAT is a generalization of 2SAT:

INSTANCE: a Boolean expression φ in CNF (having at most two

literals per clause) and an integer bound K.

QUESTION: Is there a truth assignment satisfying at least K clauses?

Theorem. MAX2SAT is NP-complete. (See tutorials.)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 13'

&

$

%

The case of not-all-equal SAT (NAESAT)

For each φ ∈ NAESAT⊂ 3SAT, there is a truth assignment so that the

three literals in each clause of φ do not have the same truth value.

Theorem. NAESAT is NP-complete.

Proof.

➤ CIRCUIT SAT was shown to be NP-complete and a reduction R

from CIRCUIT SAT to SAT has already been presented.

➤ For all one- and two-literal clauses in the reduced circuit R(C),

add the same literal, say z, to make them 3-literal clauses.

Claim: it holds for the resulting Boolean expression Rz(C) in 3CNF:

Rz(C) ∈ NAESAT iff R(C) ∈ SAT iff C ∈ CIRCUIT SAT.

(The latter iff-relationship is already known.)

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 14'

&

$

%

(⇒) If a truth assignment T satisfies Rz(C) in the sense of NAESAT,

so does the complementary truth assignment T .

Thus z is false in either T or T which implies that R(C) is satisfied by

T or T . Thus C is satisfiable.

(⇐) If C is satisfiable, then there is a truth assignment T satisfying

R(C). Let us then extend T for Rz(C) by assigning T (z) = false.

In no clause of Rz(C) all literals are true (they cannot be all false):

(i) Clauses for true/false/NOT/variable gates contain z that is false.

(ii) For AND gates the clauses are: (¬g∨h∨ z), (¬g∨h′∨ z),

(g∨¬h∨¬h′) where in the first two z is false, and in the third all

three cannot be true as then the first two would be not true.

(iii) The case of OR gates is very similar. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 15'

&

$

%

3. Graph-Theoretic Problems

➤ In this section, we will consider only undirected graphs G = (V,E)

and their properties which lead to computational problems.

➤ For instance, consider the problem of finding an independent

subset I of V : for all i, j ∈ I there is no edge [i, j] ∈ E.

INDEPENDENT SET:

INSTANCE: An undirected graph G = (V,E) and an integer K.

QUESTION: Is there an independent set I ⊆V with |I| = K.

Theorem. INDEPENDENT SET is NP-complete. (See tutorials.)

The subclass of graphs needed in the reduction implies the following:

Corollary. 4-DEGREE INDEPENDENT SET is NP-complete.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 16'

&

$

%

Graph problems: CLIQUE and NODE COVER

➤ The problems in graph theory are often closely related; suggesting

even trivial reductions between problems.

Example. Consider the following two graph theoretic problems:

CLIQUE:

INSTANCE: An undirected graph G = (V,E) and an integer K.

QUESTION: Is there a clique C ⊆V with |C| = K?

(A set C ⊆V is clique iff for all i, j ∈ I, [i, j] ∈ E)

NODE COVER:

INSTANCE: An undirected graph G = (V,E) and an integer B.

QUESTION: Is there a set C ⊆V with |C| ≤ B such that for all

[i, j] ∈ E, i ∈C or j ∈C?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 17'

&

$

%

Trivial reductions for CLIQUE and NODE COVER

➤ Independent sets are closely related to cliques and node covers:

A set I ⊆V of vertices is

1. an independent set of G iff it is a clique of the complement

graph G, and

2. an independent set of G iff V − I is a node cover of G.

➤ Thus an instance G;K of INDEPENDENT SET can be reduced to

– an instance G;K of CLIQUE, and

– an instance G; |V |−K of NODE COVER.

Corollary. CLIQUE and NODE COVER are NP-complete.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 18'

&

$

%

Graph problems: MIN CUT and MAX CUT

➤ A cut in an undirected graph G = (V,E) is a partition of the nodes

into two nonempty sets S and V −S.

➤ The size of a cut is the number of edges between S and V −S.

➤ The problem of finding a cut with the smallest size is in P:

(i) The smallest cut that separates two given nodes s and t equals

to the maximum flow from s to t.

(ii) Minimum cut: find the maximum flow between a fixed s and

all other nodes and choose the smallest value found.

➤ However, the problem of deciding whether there is a cut of a size

greater than or equal to K (MAX CUT) is much harder:

Theorem. MAX CUT is NP-complete.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 19'

&

$

%

Reduction from NAESAT to MAX CUT

The NP-completeness of MAX CUT is shown for graphs with multiple

edges between nodes by a reduction from NAESAT.

➤ For a conjunction of clauses φ = C1 ∧ . . .∧Cm, we construct a

graph G = (V,E) so that

G has a cut of size 5m iff φ is satisfied in the sense of NAESAT.

➤ The nodes of G are x1, . . . ,xn,¬x1, . . . ,¬xn where x1, . . . ,xn are the

variables in φ.

➤ The edges in G include a triangle [α,β,γ] for each clause α∨β∨ γ
and ni copies of the edge [xi,¬xi] where ni is the number of

occurrences of xi or ¬xi in the clauses.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 20'

&

$

%

Correctness of the reduction

➤ Suppose there is a cut (S,V −S) of size 5m or more.

➤ All variables can be assumed separate from their negations:

If both xi,¬xi are on the same side, they contribute at most 2ni

edges to the cut and, hence, changing the one with fewer

neighbors does not decrease the size of the cut.

➤ Let S be the set of true literals and V −S those false.

➤ The total number of edges in the cut joining opposite literals is

3m. The remaining 2m are coming from triangles meaning that all

m triangles are cut, i.e. φ is satisfied in the sense of NAESAT.

➤ Conversely, a satisfying truth assignment (in the sense of

NAESAT) gives rise to a cut of size 5m. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 21'

&

$

%

Graph problems: MAX BISECTION

➤ In applications of graph partitioning, the sizes of S and V −S

cannot be arbitrarily small or large.

MAX BISECTION is the problem of determining whether there is

a cut (S,V −S) with size of K or more such that |S| = |V −S|.

➤ Is MAX BISECTION easier than MAX CUT?

Lemma. MAX BISECTION is NP-complete.

Proof. Reducing MAX CUT to MAX BISECTION by modifying input:

Add |V | disconnected new nodes to G. Now every cut of G can be

made a bisection by appropriately splitting the new nodes.

Now G = (V,E) has a cut (S,V −S) with size of K or more iff the

modified graph has a cut with size of K or more with |S| = |V −S|. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 22'

&

$

%

Graph problems: BISECTION WIDTH

➤ However, the respective minimization problem, i.e. MIN CUT with

the bisection requirement, is NP-complete.

➤ BISECTION WIDTH: is there a bisection of size K or less?

Theorem. BISECTION WIDTH is NP-complete.

Proof. A reduction from MAX BISECTION:

A graph G = (V,E) where |V | = 2n for some n has a bisection of size K

or more iff the complement G has a bisection of size n2 −K or less. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 23'

&

$

%

General instructions how to establish NP-completeness

Designing an NP-completeness proof for a given problem Q

➤ Work on small instances of Q to develop gadgets/primitives.

➤ Look at known NP-complete problems.

➤ Design a reduction R from a known NP-complete problem to Q.

➤ Typical ingredients of a reduction:

choices + consistency + constraints.

➤ The key question is how to express these in Q?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 24'

&

$

%

Graph problems: HAMILTON PATH

Theorem. HAMILTON PATH is NP-complete.

Proof.

➤ Reduction from 3SAT to HAMILTON PATH:

given a formula φ in CNF with variables x1, . . . ,xn and clauses

C1, . . . ,Cm each with three literals, we construct a graph R(φ) that

has a Hamilton path iff φ is satisfiable.

➤ Choice gadgets select a truth assignment for variables xi.

➤ Consistency gadgets (XOR) enforce that all occurrences of xi have

the same truth value and all occurrences of ¬xi the opposite.

➤ Constraint gadgets guarantee that all clauses are satisfied.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 25'

&

$

%

Reduction from 3SAT to HAMILTON PATH

The graph R(φ) is constructed as follows:

➤ The choice gadgets of variables xi are connected in series.

➤ A constraint gadget (triangle) for each clause with an edge

identified with each literal l in the clause.

– If l is xi, then XOR to true edge of choice gadget of xi.

– If it is ¬xi, then XOR to false edge of choice gadget of xi.

➤ All nodes of the triangles, the end node of choice gadgets and a

new node 3 form a clique. Add a node 2 connected to 3.

Basic idea: each side of the constraint gadget is traversed by the

Hamilton path iff the corresponding literal is false. Hence, at least one

literal in any clause is true since otherwise all sides for its triangle

should be traversed which is impossible (implying no Hamilton path).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 26'

&

$

%

Correctness of the reduction

➤ If there is a Hamilton path, φ is satisfiable:

The path starts at 1, makes a truth assignment, traverses the

triangles in some order and ends up in 2. The truth assignment

satisfies φ as there are no triangle where all sides are traversed,

i.e., all literals false.

➤ If φ is satisfiable, there is a Hamilton path:

From a satisfying truth assignment, we construct a Hamilton path

by starting at 1, traversing choice gadgets according to the truth

assignment, the rest is a big clique for which a trivial path can be

found leading to 3 and then to 2. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 27'

&

$

%

Travelling salesperson (TSP) revisited

Corollary. TSP(D) is NP-complete.

Proof: A reduction from HAMILTON PATH to TSP(D). Given a

graph G with n nodes, construct a distance matrix di j and a budget B

so that there is a tour of length B or less iff G has a Hamilton path.

➤ There are n cities and the distance di j = 1 if there is [i, j] ∈ G and

di j = 2 otherwise. The budget B = n+1.

➤ If there is a tour of length n+1 or less, then there is at most one

pair (π(i),π(i+1)) in it with cost 2, i.e., a pair for which

[π(i),π(i+1)] is not an edge. Removing it gives a Hamilton path.

➤ If G has a Hamilton path, then its cost is n−1 and it can be

made a tour with additional cost of 2. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 28'

&

$

%

4. Coloring Problems

Consider the following problem:

k-COLORING:

INSTANCE: An undirected graph G = (V,E).

QUESTION: Is there an assignment of one of k colors to each of the

nodes in V such that any two nodes i, j connected by an edge [i, j] ∈ E

do not have the same color?

☞ Coloring with k = 2 colors is easy (in P) but not when k = 3.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 29'

&

$

%

Determining the complexity of 3-COLORING

Theorem. 3-COLORING is NP-complete.

Proof. A reduction from NAESAT to 3-COLORING.

➤ For a conjunction clauses φ = C1 ∧ . . .∧Cm with variables x1, . . . ,xn,

construct a graph G(φ) that can be colored with {0,1,2} iff there

is a truth assignment satisfying all clauses in the way of NAESAT.

➤ Choice gadgets: For each variable xi, we introduce a triangle

[a,xi,¬xi], i.e. all triangles share a node a.

➤ Constraints: For each clause Ci: a triangle [Ci1,Ci2,Ci3] where

each Ci j is further connected to the node with the jth literal in Ci.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 30'

&

$

%

Correctness of the reduction

(⇒) Suppose G can be colored with {0,1,2} and a has color 2. This

induces a truth assignment T via the colors of the nodes xi: if the

color is 1, then T (xi) = true else T (xi) = false.

If we assume that T assigns all literals of some clause Ci to true/false,

then color 1/0 cannot be used for coloring [Ci1,Ci2,Ci3], a

contradiction. Thus φ is satisfied in the sense of NAESAT.

(⇐) Assume that φ is satisfied by T in the sense of NAESAT. Then

we can extract a coloring for G from T as follows:

1. Node a is colored with color 2.

2. If T (xi) = true, then color xi with 1 and ¬xi with 0 else vice versa.

3. From each [Ci1,Ci2,Ci3], color two literals having opposite truth

values with 0 (true) and 1 (false). Color the third with 2. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 31'

&

$

%

5. Sets and Numbers

TRIPARTITE MATCHING:

INSTANCE: Three sets B (boys), G (girls), and H (homes) each

containing n elements and a ternary relation T ⊆ B×G×H.

QUESTION: Is there a set of n triples in T no two of which have a

component in common?

Theorem. TRIPARTITE MATCHING is NP-complete.

Proof. By a reduction from 3SAT. Each variable x has a combined

choice and consistency gadget and each clause c a dedicated pair of a

boy bc and a girl gc and three triples (bc,gc,hl) where hl ranges over

the three homes corresponding to the occurrences of literals in the

clause (appearing in the combined gadgets).

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 32'

&

$

%

The combined gadget for choice and consistency

The gadget for a variable x involves k boys

and k girls forming a k circle and 2k homes

where k is either the number of occurrences

of x or its negation whichever is larger. (Re-

call that k can be assumed to be 1 or 2).

The case k = 2 is given alongside.

h2

b1 g1

b2g2

h1 h3

h4

➤ Each occurrence of x is represented by homes h2i−1 and

those of ¬x by homes h2i.

➤ Exactly two kinds of matchings possible:

– “T (x) = true”: bi with gi and h2i.

– “T (x) = false”: bi with gi−1 (gk if i = 1) and h2i−1.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 33'

&

$

%

Correctness of the reduction

➤ Note that “T (x) = true” matching leaves the homes for x

unoccupied and “T (x) = false” those for ¬x unoccupied.

➤ For a clause c, the dedicated bc and gc are matched to a home

that is left unoccupied when the variables are assigned truth

values meaning that it corresponds to a true literal satisfying c.

➤ One more detail needs to be settled: there are more homes H than

boys B and girls G (but |B| = |G|).

➤ Add l = |H|− |B| new boys and l new girls. The ith such girl

participates in |H| triples with the ith boy and every home.

➤ Now a tripartite matching exists iff the set of clauses is satisfiable.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 34'

&

$

%

Other problems involving sets

1. SET COVERING:

INSTANCE: A family F = {S1, . . . ,Sn} of subsets of a finite set U

and an integer B.

QUESTION: Is there a set of B sets in F whose union is U?

2. SET PACKING:

INSTANCE: A family F = {S1, . . . ,Sn} of subsets of a finite set U

and an integer K.

QUESTION: Is there a set of K pairwise disjoint sets in F?

3. EXACT COVER BY 3-SETS:

INSTANCE: A family F = {S1, . . . ,Sn} of subsets of a finite set U

such that |U | = 3m for some integer m and for all i |Si| = 3.

QUESTION: Is there a set of m sets in F that are disjoint and

have U as their union?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 35'

&

$

%

Classifications obtained by generalization

Corollary. SET COVERING, SET PACKING, and

EXACT COVER BY 3-SETS are all NP-complete.

➤ TRIPARTITE MATCHING can be reduced to

EXACT COVER BY 3-SETS by noticing that it is a special case

where U is partitioned in three sets B,G,H with |B| = |G| = |H|

and F = {{b,g,h} | (b,g,h) ∈ T}.

➤ EXACT COVER BY 3-SETS can be reduced to SET COVERING

as a special case where the universe has 3m elements, all sets in F

have 3 elements and the budget B = m.

➤ EXACT COVER BY 3-SETS can be reduced to SET PACKING as

a special case where the universe has 3m elements, all sets in F

have 3 elements and limit K = m. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 36'

&

$

%

A number problem: INTEGER PROGRAMMING

INSTANCE: a system of linear inequalities with integer coefficients.

QUESTION: Is there an integer solution of the system?

Corollary. INTEGER PROGRAMMING is NP-complete.

Proof. SET COVERING reducible to INTEGER PROGRAMMING:

Given a family F = {S1, . . . ,Sn} of subsets of a finite set

U = {u1, . . . ,um} and a integer B, construct a system:

0 ≤ x1 ≤ 1, . . . ,0 ≤ xn ≤ 1

Σn
i=1xi ≤ B

a11x1 + · · ·+a1nxn ≥ 1
...

am1x1 + · · ·+amnxn ≥ 1

where ai j = 1 if ith element of U is in the set S j, otherwise ai j = 0.

(The idea: xi = 1 if Si in the cover and otherwise xi = 0.) 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 37'

&

$

%

Further problems involving numbers

1. LINEAR PROGRAMMING (i.e. INTEGER PROGRAMMING

where non-integer solutions are allowed) is in P.

2. KNAPSACK:

INSTANCE: A set of n items with each item i having a value vi

and a weight wi (both positive integers) and integers W and K.

QUESTION: Is there a subset S of the items such that

Σi∈Swi ≤W but Σi∈Svi ≥ K?

Theorem. KNAPSACK is NP-complete.

Proof. We show that a simple special case of KNAPSACK is

NP-complete where vi = wi for all i and W = K:

INSTANCE: A set of integers w1, . . . ,wn and an integer K.

QUESTION: Is there a subset S of the integers with Σi∈Swi = K?

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 38'

&

$

%

Reduction from EXACT COVER BY 3-SETS

The reduction is based on the set U =

{1,2, . . . ,3m} and the sets S1, . . . ,Sn

given as bit vectors {0,1}3m and K =

23m −1. Then the task is to find a sub-

set of bit vectors that sum to K.

→ 0 1 . . . 0 0

1 0 . . . 0 0
...

→ 0 0 . . . 1 1

1 1 . . . 1 1

➤ This does not quite work because of the carry bit, but the problem

can be circumvented by using n+1 as the base rather than 2.

➤ Now Si corresponds to wi = Σ j∈Si(n+1)3m− j.

➤ Then a set of these integers wi adds up to K = ∑3m−1
j=0 (n+1) j iff

there is an exact cover among {S1,S2, . . . ,Sn}. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 39'

&

$

%

6. Pseudopolynomial Algorithms

Proposition. Any instance of KNAPSACK can be solved in O(nW)

time where n is the number of items and W is the weight limit.

Proof.

➤ Define V (w, i): the largest value attainable be selecting some

among the first i items so that their total weight is exactly w.

➤ Each V (w, i) with w = 1, . . . ,W and i = 1, . . . ,n can be computed by

V (w, i+1) = max{V (w, i),vi+1 +V (w−wi+1, i)}

where V (w,0) = 0 for all w and V (w, i) = −∞ if w ≤ 0.

➤ For each entry this can be done in constant number of steps and

there are nW entries. Hence, the algorithm runs in O(nW) time.

➤ An instance is answered “yes” iff there is an entry V (w, i) ≥ K. 2

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 40'

&

$

%

Strong NP-completeness

➤ The preceding algorithm is not polynomial w.r.t. the length of the

input (which is O(n logW)) but exponential (W = 2logW).

➤ An algorithm where the time bound is polynomial in the integers

in the input (not their logarithms) is called pseudopolynomial.

➤ A problem is called strongly NP-complete if the problem remains

NP-complete even if any instance of length n is restricted to

contain integers of size at most p(n), for a polynomial p.

☞ Strongly NP-complete problems cannot have

pseudopolynomial algorithms (unless P = NP).

➤ SAT, MAX CUT, TSP(D), HAMILTON PATH, . . . are strongly

NP-complete but KNAPSACK is not.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 41'

&

$

%

Yet another number problem: BIN PACKING

INSTANCE: N positive integers a1, . . . ,aN (items) and

integers C (capacity) and B (number of bins).

QUESTION: Is there a partition of the numbers into B subsets such

that for each subset S, Σai∈Sai ≤C?

➤ BIN PACKING is strongly NP-complete:

Even if the integers are restricted to have polynomial values

(w.r.t. the length of input), BIN PACKING remains NP-complete.

➤ Any pseudopolynomial algorithm for BIN PACKING would yield a

polynomial algorithm for all problems in NP implying P = NP.

c© 2005 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2005 NP-complete problems 42'

&

$

%

Learning Objectives

➤ The concept of NP-completeness and its characterizations in

terms of succinct certificates.

➤ You should know basic techniques to prove problems NP-complete

and be able to construct such proofs on your own.

➤ A basic repertoire of NP-complete problems (related with

satisfiability, graphs, sets, and numbers) to be used in further

NP-completeness proofs.

➤ The definition of strong NP-completeness and awareness of

number problems which are (not) strongly NP-complete.

c© 2005 TKK, Laboratory for Theoretical Computer Science

