EXAMPLES OF PROBLEMS

> Representation of problems

- Solving problems with algorithms
- Rates of growth
- Further examples
- Reductions
(C. Papadimitriou, Computational complexity, Chapter 1)
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Examples of Problems

Problems vs. Algorithms

This course focuses on analyzing the computational complexity of problems (not algorithms).
> A problem: an infinite set of possible instances with a question

- A decision problem: a question with a yes/no answer

Example. REACHABILITY:
INSTANCE: A graph (V, E) and nodes $v, u \in V$.
QUESTION: Is there a path in the graph from v to u ?

Algorithm for REACHABILITY

$S:=\{v\} ;$ mark $v ;$
while $S \neq\{ \}$ do
choose a node i and remove it from S;
for all $(i, j) \in E$ do
if j is not marked then mark j and add it to S endif
endfor
endwhile ;
if u marked then return 'there is a path from v to u ' else return 'there is no path from v to u ' endif
© 2006 TKK, Laboratory for Theoretical Computer Science

How efficient is the algorithm?
How is it affected by

- Programming language?
- Computer architecture?
- Representation of the graph?
- Representation of the set S ?

Given certain assumptions the algorithm terminates in $\mathrm{O}(|E|)$ steps.

Rates of Growth

Let $f, g: \mathbf{N} \mapsto \mathbf{N}$.
> $f(n)=\mathrm{O}(g(n))$ (f grows as g or slower), if there are positive integers c and n_{0} such that for all $n \geq n_{0}, f(n) \leq c \cdot g(n)$
> $f(n)=\Omega(g(n))$, if $g(n)=\mathrm{O}(f(n))$
> $f(n)=\Theta(g(n))$, if $g(n)=\mathrm{O}(f(n))$ and $f(n)=\mathrm{O}(g(n))$.
Example. If $p(n)$ is a polynomial of degree d, then $p(n)=\boldsymbol{\Theta}\left(n^{d}\right)$.
If $c>1$ is an integer and $p(n)$ a polynomial, then $p(n)=\mathrm{O}\left(c^{n}\right)$ but $p(n) \neq \Omega\left(c^{n}\right)$, i.e.,
any polynomial grows strictly slower than any exponential.
If $k>1$ is an integer, then $\log ^{k} n=\mathrm{O}(n)$
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Examples of Problems

Simplifying Assumptions

The following simplifying assumptions are introduced when the computational complexity of problems is analyzed:

- A problem is efficiently solvable when there is an algorithm solving the problem such that the rate of growth of the solution time is polynomial w.r.t. the size n of the input $\left(\mathrm{O}\left(n^{d}\right)\right)$
- A problem is intractable when no polynomial time algorithm available for it.
- Consider the worst-case performance (not, e.g., average case).
- Mathematical model of algorithms: Turing machines

Possible criticism:

- Not all polynomial time algorithms are efficient in practice.

There are efficient computations that are not polynomial.
For instance, consider n^{80} vs $2 \frac{n}{100}$.

- Average case analysis is more informative than worst-case.
[远 "Adopting polynomial time worst-case performance as our criterion of efficiency results in an elegant and useful theory that says something meaningful about practical computation, and would be impossible without this simplification."
© 2006 TKK, Laboratory for Theoretical Computer Science

Maximum Flow

MAX FLOW

INSTANCE: Network $N=(V, E, s, t, c)$, where (V, E) is a (directed) graph, $s, t \in V$, the source s has no incoming edges, the sink t has no outgoing edges and c is a function giving a capacity for each edge (each $c(i, j)$ is a positive integer).

QUESTION: What is the largest possible value for the flow in N ?
Definition. A flow is a function f that assigns for each edge (i, j) a nonnegative integer $f(i, j) \leq c(i, j)$ such that for each node (except s, t) the sum of $f \mathrm{~s}$ of the incoming edges is equal to the sum of $f \mathrm{~s}$ of the outgoing edges.

The value of the flow is the sum of the flows in the edges leaving s.
© 2006 TKK, Laboratory for Theoretical Computer Science

Discussion

- MAX FLOW is an optimization problem.
> MAX FLOW(D) (decision problem)
INSTANCE: Network N and integer K (goal/target value) QUESTION: Is there a flow of value K or more?
> MAX FLOW and MAX FLOW(D) are roughly equivalent.
- MAX FLOW is a nice example of a problem where the challenge was to find a polynomial time solution method.
- When "the barrier of exponentiality" was broken, more and more efficient polynomial time algorithms were developed $\left(\mathrm{O}\left(n^{5}\right), \ldots, \mathrm{O}\left(n^{3}\right), \ldots\right)$

Bipartite Matching

MATCHING

INSTANCE: Bipartite graph $B=(U, V, E)$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$, $V=\left\{v_{1}, \ldots, v_{n}\right\}$, and $E \subseteq U \times V$.
QUESTION: Is there a set $M \subseteq E$ of n edges such that for any two edges $(u, v),\left(u^{\prime}, v^{\prime}\right) \in M, u \neq u^{\prime}$ and $v \neq v^{\prime}$
(is there a perfect matching)?
© 2006 TKK, Laboratory for Theoretical Computer Science

- An efficient algorithm for B provides an efficient algorithm for A if the reduction R from A to B is efficient.

Example

- MATCHING can be solved by a reduction to MAX FLOW:

Given any bipartite graph $B=(U, V, E)$, construct a network

$$
N=\left(V \cup U \cup\{s, t\}, E^{\prime}, s, t, c\right)
$$

where

$$
E^{\prime}=E \cup\{(s, u) \mid u \in U\} \cup\{(v, t) \mid v \in V\}
$$

and all capacities equal to 1 .
> B has a perfect matching iff N has a flow of value n.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Examples of Problems

The Traveling Salesperson Problem

TSP
INSTANCE: n cities $1, \ldots, n$ and a nonnegative integer distance $d_{i j}$ between any two cities i and j (such that $d_{i j}=d_{j i}$).

QUESTION:
What is the shortest tour of the cities, i.e., a permutation π such that

$$
\sum_{i=1}^{n} d_{\pi(i) \pi(i+1)}
$$

is as small as possible (where $\pi(n+1)=\pi(1))$.
Decision problem TSP(D): is there a tour of length at most B (budget)?

A naive algorithm for TSP: enumerate all possible permutations, compute the cost of each, and pick the best.
Not very practical: $\mathrm{O}(n!)$ tours, e.g. $10!=3628800$.
$>$ For TSP no polynomial algorithm is known
(despite very intensive efforts of developing one).

- Conjecture: there can be no polynomial-time algorithm for TSP.
> This is closely related to one of the most important open problems in computer science: $\mathrm{P}=\mathrm{NP}$?
© 2006 TKK, Laboratory for Theoretical Computer Science

Learning Objectives

Ability to read and formulate decision/optimization problems

- Basic understanding of growth rates (polynomial vs. exponential)
> The idea of reducing one problem in another

