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EXAMPLES OF PROBLEMS

➤ Representation of problems

➤ Solving problems with algorithms

➤ Rates of growth

➤ Further examples

➤ Reductions

(C. Papadimitriou, Computational complexity, Chapter 1)
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Problems vs. Algorithms

This course focuses on analyzing the computational complexity of

problems (not algorithms).

➤ A problem: an infinite set of possible instances with a question

➤ A decision problem: a question with a yes/no answer

Example. REACHABILITY:

INSTANCE: A graph (V,E) and nodes v,u ∈V .

QUESTION: Is there a path in the graph from v to u?
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Algorithm for REACHABILITY

S := {v}; mark v;

while S 6= {} do

choose a node i and remove it from S;

for all (i, j) ∈ E do

if j is not marked then mark j and add it to S

endif

endfor

endwhile ;

if u marked then return ’there is a path from v to u’

else return ’there is no path from v to u’

endif
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Questions

How efficient is the algorithm?

How is it affected by

➤ Programming language?

➤ Computer architecture?

➤ Representation of the graph?

➤ Representation of the set S?

Given certain assumptions the algorithm terminates in O(|E|) steps.
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Rates of Growth

Let f , g: N 7→ N.

➤ f (n) = O(g(n)) ( f grows as g or slower), if there are positive

integers c and n0 such that for all n ≥ n0, f (n) ≤ c ·g(n)

➤ f (n) = Ω(g(n)), if g(n) = O( f (n))

➤ f (n) = Θ(g(n)), if g(n) = O( f (n)) and f (n) = O(g(n)).

Example. If p(n) is a polynomial of degree d, then p(n) = Θ(nd).

If c > 1 is an integer and p(n) a polynomial, then p(n) = O(cn) but

p(n) 6= Ω(cn), i.e.,

any polynomial grows strictly slower than any exponential .

If k > 1 is an integer, then logk n = O(n)
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Simplifying Assumptions

The following simplifying assumptions are introduced when the

computational complexity of problems is analyzed:

➤ A problem is efficiently solvable when there is an algorithm solving

the problem such that the rate of growth of the solution time is

polynomial w.r.t. the size n of the input (O(nd))

➤ A problem is intractable when no polynomial time algorithm

available for it.

➤ Consider the worst-case performance (not, e.g., average case).

➤ Mathematical model of algorithms: Turing machines

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Examples of Problems 7'

&

$

%

Discussion

Possible criticism:

➤ Not all polynomial time algorithms are efficient in practice.

There are efficient computations that are not polynomial.

For instance, consider n80 vs 2
n

100 .

➤ Average case analysis is more informative than worst-case.

☞ “Adopting polynomial time worst-case performance as our

criterion of efficiency results in an elegant and useful theory that says

something meaningful about practical computation, and would be

impossible without this simplification.”
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Further Examples

➤ Maximum flow

➤ Bipartite matching

➤ The traveling salesperson problem
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Maximum Flow

MAX FLOW

INSTANCE: Network N = (V,E,s, t,c), where (V,E) is a (directed)

graph, s, t ∈V , the source s has no incoming edges, the sink t has no

outgoing edges and c is a function giving a capacity for each edge

(each c(i, j) is a positive integer).

QUESTION: What is the largest possible value for the flow in N?

Definition. A flow is a function f that assigns for each edge (i, j) a

nonnegative integer f (i, j) ≤ c(i, j) such that for each node (except

s, t) the sum of f s of the incoming edges is equal to the sum of f s of

the outgoing edges.

The value of the flow is the sum of the flows in the edges leaving s.
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Discussion

➤ MAX FLOW is an optimization problem.

➤ MAX FLOW(D) (decision problem)

INSTANCE: Network N and integer K (goal/target value)

QUESTION: Is there a flow of value K or more?

➤ MAX FLOW and MAX FLOW(D) are roughly equivalent.

➤ MAX FLOW is a nice example of a problem where the challenge

was to find a polynomial time solution method.

➤ When “the barrier of exponentiality” was broken, more and more

efficient polynomial time algorithms were developed

(O(n5), . . . ,O(n3), . . .)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Examples of Problems 11'

&

$

%

Bipartite Matching

MATCHING

INSTANCE: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},

V = {v1, . . . ,vn}, and E ⊆U ×V .

QUESTION: Is there a set M ⊆ E of n edges such that for any two

edges (u,v),(u′,v′) ∈ M, u 6= u′ and v 6= v′

(is there a perfect matching)?
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Reductions

➤ A reduction is an algorithm that solves problem A by transforming

any instance x of A to an equivalent instance of a problem B (for

which an algorithm already exists).

input x =⇒

Algorithm for A:

Reduction

R

R(x)
=⇒

Algorithm

for B
=⇒ Answer

➤ An efficient algorithm for B provides an efficient algorithm for A if

the reduction R from A to B is efficient.
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Example

➤ MATCHING can be solved by a reduction to MAX FLOW:

Given any bipartite graph B = (U,V,E), construct a network

N = (V ∪U ∪{s, t},E ′,s, t,c),

where

E ′ = E ∪{(s,u) | u ∈U}∪{(v, t) | v ∈V}

and all capacities equal to 1.

➤ B has a perfect matching iff N has a flow of value n.
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The Traveling Salesperson Problem

TSP

INSTANCE: n cities 1, . . . ,n and a nonnegative integer distance di j

between any two cities i and j (such that di j = d ji).

QUESTION:

What is the shortest tour of the cities, i.e., a permutation π such that

n

∑
i=1

dπ(i)π(i+1)

is as small as possible (where π(n+1) = π(1)).

Decision problem TSP(D): is there a tour of length at most B

(budget)?
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Discussion

➤ A naive algorithm for TSP: enumerate all possible permutations,

compute the cost of each, and pick the best.

Not very practical: O(n!) tours, e.g. 10! = 3 628 800.

➤ For TSP no polynomial algorithm is known

(despite very intensive efforts of developing one).

➤ Conjecture: there can be no polynomial-time algorithm for TSP.

➤ This is closely related to one of the most important open problems

in computer science: P = NP?
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Learning Objectives

➤ Ability to read and formulate decision/optimization problems

➤ Basic understanding of growth rates (polynomial vs. exponential)

➤ The idea of reducing one problem in another
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