
AB
T-79.5103 / Autumn 2006 coNP and function problems 1'

&

$

%

coNP AND FUNCTION PROBLEMS

➤ The class of complement problems coNP

➤ The relationship of coNP and NP

➤ The class coNP∩NP

➤ Function problems vs. decision problems

➤ Classes of function problems

➤ Total functions

(C. Papadimitriou: Computational complexity, Chapter 10)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 2'

&

$

%

1. The class of complement problems coNP

➤ NP is the class of problems with succinct certificates.

➤ coNP is the class of problems with succinct disqualifications.

Example. Consider the problem of VALIDITY:

INSTANCE: A Boolean expression φ in CNF.

QUESTION: Is φ valid?

➤ VALIDITY is in coNP: for an expression φ which is not valid, a

falsifying truth assignment is a succinct disqualification.

➤ HAMILTON PATH COMPLEMENT and SAT COMPLEMENT

are also in coNP.

➤ P ⊆ coNP

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 3'

&

$

%

coNP-completeness

Definition. A language L is coNP-complete iff L ∈ coNP and L′ ≤L L

holds for every language L′ ∈ coNP.

Proposition. HAMILTON PATH COMPLEMENT and VALIDITY are

coNP-complete.

Proof. Every language L ∈ coNP is reducible to VALIDITY, because

L ∈ NP and, hence, there is a reduction R from L to SAT such that for

every string x, x ∈ L iff R(x) ∈ SAT. But then there is a reduction R′

such that x ∈ L iff R(x) 6∈ SAT iff R′(x) = ¬R(x) ∈ VALIDITY.

Similarly for HAMILTON PATH COMPLEMENT. 2

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 4'

&

$

%

2. The Relationship of coNP and NP

Proposition. If L ⊂ Σ∗ is NP-complete, then its complement

L = Σ∗−L is coNP-complete.

Further observations:

➤ It is open whether NP = coNP.

➤ If P = NP, then NP = coNP (and P = coNP).

➤ It is possible that P 6= NP but NP = coNP
(however, it is strongly believed that NP 6= coNP).

➤ The problems in coNP that are coNP-complete are the least likely

problems to be in P and also in NP (see below).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 5'

&

$

%

Do coNP and NP coincide?

Proposition. If a coNP-complete problem is in NP, NP = coNP.

Proof.

Suppose that L is a coNP-complete problem that is in NP.

(⊇) Consider L′ ∈ coNP. Then there is a reduction R from L′ to L.

Then L′ ∈ NP, because L′ can be decided by a polynomial time NTM

which on input x computes first R(x) and then starts the NTM for L.

(⊆) Consider L′ ∈ NP. Then L′ ∈ coNP and there is a reduction R

from L′ to L. Then similarly L′ ∈ NP and hence L′ ∈ coNP. 2

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 6'

&

$

%

The primality problem PRIMES

INSTANCE: An integer N in binary representation.

QUESTION: Is N a prime number?

➤ PRIMES ∈ coNP as any divisor acts as a succinct disqualification.

➤ Note that a O(
√

N) algorithm for PRIMES testing all relevant

divisor candidates is only pseudopolynomial.

➤ PRIMES ∈ NP (as shown below) and hence

PRIMES ∈ coNP∩NP.

➤ New result in August 2002:

M. Agrawal, N. Kayal, N. Saxena: PRIMES is in P !!

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 7'

&

$

%

3. The Class coNP∩NP

➤ Problems in coNP∩NP have both succinct certificates and

disqualifications.

➤ P ⊆ coNP∩NP as P ⊆ coNP and P ⊆ NP.

➤ If two problems in NP are dual , i.e. each is reducible to the

complement of the other, then both are in coNP∩NP.

Example.

MAX FLOW(D): Has a network N a flow of at least K from s to t?

MIN CUT(D): Given a network, is there a set of edges of capacity of

at most B such that deleting these disconnects s from t?

Now by the max flow–min cut theorem, N has a flow of value at least

K iff it does not have a cut of capacity K −1 or less.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 8'

&

$

%

PRIMES has succinct certificates

A succinct certificate for primality can be obtained using the following

theorem.

Theorem. A number p > 1 is prime iff there is a number 1 < r < p

such that rp−1 = 1 mod p and, furthermore, r
p−1

q 6= 1 mod p for all

prime divisors q of p−1.

Corollary. PRIMES is in NP∩ coNP.

➤ The theorem provides a succinct certificate for the primality of p:

C(p) = (r;q1,C(q1), . . . ,qk,C(qk))

where C(qi) is a recursive primality certificate for each prime

divisor qi of p−1.

➤ The recursion stops for prime divisors qi = 2 for which C(qi) = (1).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 9'

&

$

%

Verifying the certificate C(p)

The following observations can be made:

➤ The certificate C(p) is polynomial in the length of p (in log p) and

it can be checked by division and exponentiation.

➤ Ordinary multiplication and division are doable in polynomial time

in the length of the input (in binary representation).

➤ Exponentiation rp−1 mod p can be done in polynomial time by

repeated squaring r1,r2,r4, . . .r2l
(mod p) where l = blog2(p−1)c

and then with at most l additional multiplications.

☞ The certificate C(p) can be checked in polynomial time. 2

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 10'

&

$

%

4. Function Problems vs. Decision Problems

➤ We have studied decision problems but many problems in practice

require a more complicated answer than “yes”/“no”.

Example. Find a satisfying truth assignment for a formula.

Example. Compute an optimal tour for TSP.

➤ Such problems are called function problems.

➤ Decision problems are useful surrogates of function problems only

in the context of negative complexity results.

Example. SAT and TSP(D) are NP-complete. Then unless

P = NP, there is no polynomial time algorithm for finding a

satisfying truth assignment or an optimal tour.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 11'

&

$

%

The relationship of SAT and FSAT

FSAT: given a Boolean expression φ, if φ is satisfiable then return a

satisfying truth assignment of φ otherwise return “no”.

➤ If FSAT can solved in polynomial time, then clearly so can SAT.

➤ If SAT can be solved in polynomial time, then so can FSAT using

the following algorithm given input φ with variables x1, . . . ,xn

(φ[x = true] denotes φ where variable x is replaced by true):

if φ 6∈ SAT then return “no”;

for all x ∈ {x1, . . . ,xn} do

if φ[x = true] ∈ SAT then T (x) := true; φ := φ[x = true]
else T (x) := false ; φ := φ[x = false];

return T ;

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 12'

&

$

%

The relationship of TSP(D) and TSP

➤ If TSP can solved in polynomial time, then clearly so can TSP(D).

➤ If TSP(D) can solved in polynomial time, then so can TSP in the

following way.

➤ An optimal tour can be found using the algorithm below which

finds

1. the cost 0 ≤C ≤ 2n of an optimal tour by binary search and

2. an optimal tour using the cost C computed in step 1.

(Here n is the length of the encoding of the problem instance.)

➤ Both steps involve a polynomial number of calls to the polynomial

time algorithm for TSP(D) (given such an algorithm exists).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 13'

&

$

%

An algorithm for TSP

An algorithm for TSP(D) is used as a subroutine:

/* Find the cost C of an optimal tour by binary search*/

C := 0; Cu := 2n;

while (Cu > C) do

if there is a tour of cost b(Cu +C)/2c or less then

Cu := b(Cu +C)/2c
else C := b(Cu +C)/2c+1;

/* Find an optimal tour */

For all intercity distances do

set the distance to C +1;

if there is a tour of cost C or less, freeze the distance to C +1

else restore the original distance and add it to the tour;

endfor

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 14'

&

$

%

5. Classes of Function Problems

Definition. Let L ∈ NP. Then there is a polynomial time decidable

and polynomially balanced relation RL such that for all strings x, there

is a string y with RL(x,y) iff x ∈ L.

The function problem associated with L (denoted FL) is:

Given x, find a string y such that RL(x,y) if such a string y exists;

otherwise return “no”.

➤ The class of all function problems associated as above with

languages in NP is called FNP.

➤ FP is the subclass of FNP solvable in polynomial time.

➤ FSAT is in FNP and FHORNSAT is in FP
(but it is open whether TSP is in FNP).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 15'

&

$

%

Reductions and completeness for function problems

A function problem A reduces to a function problem B if there are

string functions R, S computable in logarithmic space such that for all

strings x,z: if x is an instance of A, then R(x) is an instance of B and if

z is a correct output of R(x), then S(z) is a correct output of x.

➤ Reductions compose among function problems.

➤ A problem A is complete for a class FC of function problems if it

is in FC and every problem in FC reduces to A.

➤ FP and FNP are closed under reductions.

➤ FSAT is FNP-complete.

➤ FP = FNP iff P = NP.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 16'

&

$

%

6. Total Functions

➤ There are certain important problems in FNP that are guaranteed

to never return “no”.

Example. FACTORING: Given an integer N, find its prime

decomposition N = pk1
1 · · · pkm

m .

(No known polynomial time algorithm).

➤ FACTORING seems to be different from the other hard problems

in FNP: it is a total function in a sense:

Definition. A problem L in FNP is called total if for every string

x there is at least one string y such that RL(x,y).

➤ The subclass of FNP containing all total function problems is

denoted by TFNP.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 17'

&

$

%

Total functions—cont’d

There are also other problems in TFNP with no known polynomial

time algorithm.

Example. HAPPYNET:

INSTANCE: An undirected graph G = (V,E) with integer weights w on

edges.

GOAL: Find a state of the graph where all nodes are happy.

➤ A state is a mapping S : V 7→ {−1,+1}.

➤ A node i is happy in a state S of G = (V,E) if

S(i) ·∑[i, j]∈E S(j)w[i, j] ≥ 0.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 18'

&

$

%

Properties of HAPPYNET

➤ Every instance is guaranteed to have a happy state which can be

found using the following algorithm:

Start with any S and while there is an unhappy node, flip it.

➤ This algorithm in not polynomial but pseudopolynomial O(W)

where W is the sum of all weights.

➤ No polynomial algorithm known.

➤ HAPPYNET equivalent with finding stable states in neural

networks in the Hopfield model.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 19'

&

$

%

Other total functions

➤ ANOTHER HAMILTON CYCLE is FNP-complete.

➤ ANOTHER HAMILTON CYCLE for cubic graphs is in TFNP.

➤ EQUAL SUMS:

Given n positive integers a1, . . . ,an such that ∑n
i=1 ai < 2n −1, find

two different subsets that have the same sum.

➤ EQUAL SUMS in TFNP.

The proof is based on the observation that there are more subsets

of {a1, . . . ,an} than numbers between 1 and Σn
i=1ai. 2

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 coNP and function problems 20'

&

$

%

Learning Objectives

➤ The definition of coNP and examples of languages from this class,

e.g., VALIDITY.

➤ The characterization of coNP based on disqualifications.

➤ Reductions and completeness for function problems

➤ Relationship of decision problems and function problems

c© 2006 TKK, Laboratory for Theoretical Computer Science

