coNP AND FUNCTION PROBLEMS

- The class of complement problems coNP
> The relationship of coNP and NP
> The class coNP $\cap \mathbf{N P}$
- Function problems vs. decision problems
- Classes of function problems
- Total functions
(C. Papadimitriou: Computational complexity, Chapter 10)
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
coNP and function problems

1. The class of complement problems coNP

- NP is the class of problems with succinct certificates.
- coNP is the class of problems with succinct disqualifications.

Example. Consider the problem of VALIDITY: INSTANCE: A Boolean expression ϕ in CNF. QUESTION: Is ϕ valid?

- VALIDITY is in coNP: for an expression ϕ which is not valid, a falsifying truth assignment is a succinct disqualification.
> HAMILTON PATH COMPLEMENT and SAT COMPLEMENT are also in coNP
- $\mathbf{P} \subseteq \mathbf{c o N P}$

coNP-completeness

Definition. A language L is $\mathbf{c o N P}$-complete iff $L \in \mathbf{c o N P}$ and $L^{\prime} \leq_{\mathrm{L}} L$ holds for every language $L^{\prime} \in \mathbf{c o N P}$.
Proposition. HAMILTON PATH COMPLEMENT and VALIDITY are coNP-complete.

Proof. Every language $L \in \mathbf{c o N P}$ is reducible to VALIDITY, because $\bar{L} \in \mathbf{N P}$ and, hence, there is a reduction R from \bar{L} to SAT such that for every string $x, x \in \bar{L}$ iff $R(x) \in$ SAT. But then there is a reduction R^{\prime} such that $x \in L$ iff $R(x) \notin$ SAT iff $R^{\prime}(x)=\neg R(x) \in$ VALIDITY.

Similarly for HAMILTON PATH COMPLEMENT. \square
© 2006 TKK, Laboratory for Theoretical Computer Science

Proposition. If $L \subset \Sigma^{*}$ is NP-complete, then its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.
Further observations:
> It is open whether $\mathbf{N P}=\mathbf{c o N P}$.
$\boldsymbol{>}$ If $\mathbf{P}=\mathbf{N P}$, then $\mathbf{N P}=\mathbf{c o N P}($ and $\mathbf{P}=\mathbf{c o N P}$).
$\boldsymbol{>}$ It is possible that $\mathbf{P} \neq \mathbf{N P}$ but $\mathbf{N P}=\mathbf{c o N P}$ (however, it is strongly believed that $\mathbf{N P} \neq \mathbf{c o N P}$).

- The problems in coNP that are coNP-complete are the least likely problems to be in \mathbf{P} and also in NP (see below).

Do coNP and NP coincide?

Proposition. If a coNP-complete problem is in $\mathbf{N P}, \mathbf{N P}=\mathbf{c o N P}$
Proof.
Suppose that L is a coNP-complete problem that is in NP
(\supseteq) Consider $L^{\prime} \in \mathbf{c o N P}$. Then there is a reduction R from L^{\prime} to L. Then $L^{\prime} \in \mathbf{N P}$, because L^{\prime} can be decided by a polynomial time NTM which on input x computes first $R(x)$ and then starts the NTM for L.
(\subseteq) Consider $L^{\prime} \in \mathbf{N P}$. Then $\overline{L^{\prime}} \in \mathbf{c o N P}$ and there is a reduction R from $\overline{L^{\prime}}$ to L. Then similarly $\overline{L^{\prime}} \in \mathbf{N P}$ and hence $L^{\prime} \in \mathbf{c o N P}$. \square
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
coNP and function problems

The primality problem PRIMES

INSTANCE: An integer N in binary representation.
QUESTION: Is N a prime number?
$>$ PRIMES $\in \mathbf{c o N P}$ as any divisor acts as a succinct disqualification.
> Note that a $\mathrm{O}(\sqrt{N})$ algorithm for PRIMES testing all relevant divisor candidates is only pseudopolynomial.
> PRIMES $\in \mathbf{N P}$ (as shown below) and hence PRIMES $\in \mathbf{c o N P} \cap \mathbf{N P}$.
> New result in August 2002:
M. Agrawal, N. Kayal, N. Saxena: PRIMES is in \mathbf{P} !!

3. The Class coNP $\cap \mathbf{N P}$

> Problems in coNP $\cap \mathbf{N P}$ have both succinct certificates and disqualifications.
> $\mathbf{P} \subseteq \mathbf{c o N P} \cap \mathbf{N P}$ as $\mathbf{P} \subseteq \mathbf{c o N P}$ and $\mathbf{P} \subseteq \mathbf{N P}$.

- If two problems in NP are dual, i.e. each is reducible to the complement of the other, then both are in $\mathbf{c o N P} \cap \mathbf{N P}$.
Example.
MAX $\operatorname{FLOW}(\mathrm{D})$: Has a network N a flow of at least K from s to t ? MIN CUT(D): Given a network, is there a set of edges of capacity of at most B such that deleting these disconnects s from t ?
Now by the max flow-min cut theorem, N has a flow of value at least K iff it does not have a cut of capacity $K-1$ or less.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 coNP and function problems

PRIMES has succinct certificates

A succinct certificate for primality can be obtained using the following theorem.
Theorem. A number $p>1$ is prime iff there is a number $1<r<p$ such that $r^{p-1}=1 \bmod p$ and, furthermore, $r^{\frac{p-1}{q}} \neq 1 \bmod p$ for all prime divisors q of $p-1$.
Corollary. PRIMES is in NP \cap coNP.
> The theorem provides a succinct certificate for the primality of p :

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), \ldots, q_{k}, C\left(q_{k}\right)\right)
$$

where $C\left(q_{i}\right)$ is a recursive primality certificate for each prime divisor q_{i} of $p-1$.

- The recursion stops for prime divisors $q_{i}=2$ for which $C\left(q_{i}\right)=(1)$

Verifying the certificate $C(p)$

The following observations can be made:
> The certificate $C(p)$ is polynomial in the length of $p(\operatorname{in} \log p)$ and it can be checked by division and exponentiation.
> Ordinary multiplication and division are doable in polynomial time in the length of the input (in binary representation).

- Exponentiation $r^{p-1} \bmod p$ can be done in polynomial time by repeated squaring $r^{1}, r^{2}, r^{4}, \ldots r^{2^{l}}(\bmod p)$ where $l=\left\lfloor\log _{2}(p-1)\right\rfloor$ and then with at most l additional multiplications.
[-20) The certificate $C(p)$ can be checked in polynomial time. \square

c 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
coNP and function problems

4. Function Problems vs. Decision Problems

- We have studied decision problems but many problems in practice require a more complicated answer than "yes" / "no".
Example. Find a satisfying truth assignment for a formula.
Example. Compute an optimal tour for TSP.
> Such problems are called function problems.
- Decision problems are useful surrogates of function problems only in the context of negative complexity results.
Example. SAT and TSP(D) are NP-complete. Then unless $\mathbf{P}=\mathbf{N P}$, there is no polynomial time algorithm for finding a satisfying truth assignment or an optimal tour.

The relationship of SAT and FSAT

FSAT: given a Boolean expression ϕ, if ϕ is satisfiable then return a satisfying truth assignment of ϕ otherwise return "no".

- If FSAT can solved in polynomial time, then clearly so can SAT.
- If SAT can be solved in polynomial time, then so can FSAT using the following algorithm given input ϕ with variables x_{1}, \ldots, x_{n} ($\phi[x=$ true $]$ denotes ϕ where variable x is replaced by true):
if $\phi \notin$ SAT then return "no";
for all $x \in\left\{x_{1}, \ldots, x_{n}\right\}$ do
if $\phi[x=$ true $] \in$ SAT then $T(x):=$ true; $\phi:=\phi[x=$ true $]$ else $T(x):=$ false $; \phi:=\phi[x=$ false $]$;
return T;
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 coNP and function problems

The relationship of TSP (D) and TSP

- If TSP can solved in polynomial time, then clearly so can TSP(D).
- If TSP(D) can solved in polynomial time, then so can TSP in the following way.
- An optimal tour can be found using the algorithm below which finds

1. the cost $0 \leq C \leq 2^{n}$ of an optimal tour by binary search and
2. an optimal tour using the cost C computed in step 1 .
(Here n is the length of the encoding of the problem instance.)

- Both steps involve a polynomial number of calls to the polynomial time algorithm for TSP(D) (given such an algorithm exists).

An algorithm for TSP

An algorithm for TSP(D) is used as a subroutine:
/* Find the cost C of an optimal tour by binary search*/
$C:=0 ; C_{u}:=2^{n}$;
while $\left(C_{u}>C\right)$ do
if there is a tour of cost $\left\lfloor\left(C_{u}+C\right) / 2\right\rfloor$ or less then
$C_{u}:=\left\lfloor\left(C_{u}+C\right) / 2\right\rfloor$
else $C:=\left\lfloor\left(C_{u}+C\right) / 2\right\rfloor+1$;
/* Find an optimal tour */
For all intercity distances do
set the distance to $C+1$;
if there is a tour of cost C or less, freeze the distance to $C+1$ else restore the original distance and add it to the tour; endfor
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
coNP and function problems

5. Classes of Function Problems

Definition. Let $L \in \mathbf{N P}$. Then there is a polynomial time decidable and polynomially balanced relation R_{L} such that for all strings x, there is a string y with $R_{L}(x, y)$ iff $x \in L$.
The function problem associated with L (denoted $\mathrm{F} L$) is:
Given x, find a string y such that $R_{L}(x, y)$ if such a string y exists; otherwise return "no".

- The class of all function problems associated as above with languages in NP is called FNP.
- FP is the subclass of FNP solvable in polynomial time.
- FSAT is in FNP and FHORNSAT is in FP (but it is open whether TSP is in FNP).

Reductions and completeness for function problems

A function problem A reduces to a function problem B if there are string functions R, S computable in logarithmic space such that for all strings x, z : if x is an instance of A, then $R(x)$ is an instance of B and if z is a correct output of $R(x)$, then $S(z)$ is a correct output of x.

- Reductions compose among function problems.
- A problem A is complete for a class F_{C} of function problems if it is in $\mathrm{F}_{\mathcal{C}}$ and every problem in $\mathrm{F}_{\mathcal{C}}$ reduces to A.
- FP and FNP are closed under reductions.
- FSAT is FNP-complete.
> $\mathbf{F P}=\mathbf{F N P}$ iff $\mathbf{P}=\mathbf{N P}$.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
coNP and function problems

6. Total Functions

- There are certain important problems in FNP that are guaranteed to never return "no".
Example. FACTORING: Given an integer N, find its prime decomposition $N=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$.
(No known polynomial time algorithm).
- FACTORING seems to be different from the other hard problems in FNP: it is a total function in a sense:
Definition. A problem L in FNP is called total if for every string x there is at least one string y such that $R_{L}(x, y)$.
- The subclass of FNP containing all total function problems is denoted by TFNP.
- ANOTHER HAMILTON CYCLE is FNP-complete.
> ANOTHER HAMILTON CYCLE for cubic graphs is in TFNP.
- EQUAL SUMS:

Given n positive integers a_{1}, \ldots, a_{n} such that $\sum_{i=1}^{n} a_{i}<2^{n}-1$, find two different subsets that have the same sum.

- EQUAL SUMS in TFNP.

The proof is based on the observation that there are more subsets of $\left\{a_{1}, \ldots, a_{n}\right\}$ than numbers between 1 and $\Sigma_{i=1}^{n} a_{i}$. \square
© 2006 TKK, Laboratory for Theoretical Computer Science

Total functions-cont'd

There are also other problems in TFNP with no known polynomial time algorithm.

Example. HAPPYNET:
INSTANCE: An undirected graph $G=(V, E)$ with integer weights w on edges.
GOAL: Find a state of the graph where all nodes are happy.
$>$ A state is a mapping $S: V \mapsto\{-1,+1\}$.

- A node i is happy in a state S of $G=(V, E)$ if

$$
S(i) \cdot \sum_{[i, j] \in E} S(j) w[i, j] \geq 0
$$

© 2006 TKK, Laboratory for Theoretical Computer Science

