1-79.5103 / Autumn 20

MORE ABOUT TURING MACHINES

More about Turing Machines

- ➤ Random access machines
- ➤ Nondeterministic machines
- ➤ Universal Turing machine
- ➤ Halting problem
- ➤ Undecidability

(C. Papadimitriou: Computational complexity, Chapters 2.6-3.3)

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

2

1. Random Access Machines

- ➤ Can Turing machines implement arbitrary algorithms?
- ➤ Conjecture (a strengthening of Church's thesis):
 - "Any reasonable attempt to model mathematically computer algorithms and their time performance ends up with a model of computation and associated time cost that is equivalent to Turing machines within a polynomial."
- ➤ Further evidence: Turing machines can simulate *random access* machines (RAMs) which idealize a computer capable of handling arbitrarily large integers.

Basic definitions of RAMs

- ➤ Data structure: an array of registers, each capable of containing an arbitrarily large integer, possibly negative.
- ► A RAM program $\Pi = (\pi_1, \pi_2, ..., \pi_m)$ is a finite sequence of *instructions* (of assembler language type).
- ➤ Register 0 serves as an accumulator
- ➤ Three modes of addressing: $j' / \uparrow j' / = j'$
- ▶ Input is contained in a finite array of input registers $I = (i_1, ..., i_n)$.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

Instruction set

Instruction	Ор	Semantics	Instruction	Op	Semantics
READ	j	$r_0 := i_j$	JUMP	j	$\kappa := j$
READ	$\uparrow j$	$r_0 := i_{r_j}$	JPOS	j	if $r_0 > 0$, $\kappa := j$
STORE	j	$r_j := r_0$	JZERO	j	if $r_0 = 0$, $\kappa := j$
STORE	$\uparrow j$	$r_{r_j} := r_0$	JNEG	j	if $r_0 < 0$, $\kappa := j$
LOAD	x	$r_0 := x'$	HALT		$\kappa := 0$
ADD	x	$r_0 := r_0 + x'$	where x (resp. x') is one of		
SUB	x	$r_0 := r_0 - x'$	$'j' / '\uparrow j' / '=j'$		
HALF		$r_0 := \lfloor \frac{r_0}{2} \rfloor$	(resp. r_j / r_j	r_{r_j} / j)

Computations through configurations

A configuration is a pair $C = (\kappa, R)$ where κ is the number of the instruction to be executed and $R = \{(j_1, r_{j_1}), (j_2, r_{j_2}), \dots, (j_k, r_{j_k})\}$ is a finite set of register-value pairs.

The initial configuration: $(1, \emptyset)$.

More about Turing Machines

- For a RAM program Π and an input $I = (i_1, ..., i_n)$, the relation $(\kappa, R) \xrightarrow{\Pi, I} (\kappa', R')$ (yields in one step) is defined as follows:
 - $-\kappa'$ is the new value of κ after executing the κ th instruction of Π ,
 - -R' is R with possibly some pair (j,x) deleted and (j',x') added according to the κ th instruction of Π .
- ➤ The relation $\stackrel{\Pi,I}{\rightarrow}$ induces $\stackrel{\Pi,I^k}{\rightarrow}$ and $\stackrel{\Pi,I^*}{\rightarrow}$ as previously.

Definition. Let D be a set of finite sequences of integers. A RAM Π computes $\phi: D \to \mathbf{Z}$ iff $\forall I \in D$, $(1,\emptyset) \overset{\Pi,I^*}{\to} (0,R)$ so that $(0,\phi(I)) \in R$.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

6

Example. A RAM programming computing $\phi(x,y) = |x-y|$

Input:	Program:	Configurations:
I = (6, 10)	1. READ 2	(1, {})
	2. STORE 2	(2, {(0,10)})
$\phi(I) = 4$	3. READ 1	$(3, \{(0,10), (2,10)\})$
	4. STORE 1	$(4, \{(0,6), (2,10)\})$
	5. SUB 2	$(5, \{(0,6), (2,10), (1,6)\})$
	6. JNEG 8	(6, {(0,-4), (2,10), (1,6)})
	7. HALT	(8, {(0,-4), (2,10), (1,6)})
	8. LOAD 2	$(9, \{(0,10), (2,10), (1,6)\})$
	9. SUB 1	$(10, \{(0,4), (2,10), (1,6)\})$
	10. HALT	$(0, \{(0,4), (2,10), (1,6)\})$

Counting time and space

- ➤ The execution of each RAM instruction counts as one time step.
 - Addition of large integers takes place in one step.
 - Multiplication is not included in the instruction set.
- ➤ The size of the input is computed in terms of logarithms:
 - For an integer i, b(i) is its binary representation with no redundant leading 0s and with a minus sign in front if negative.
 - The length of integer i, 1(i) = |b(i)|.
 - For a sequence of integers $I = (i_1, \dots, i_n)$, $I(I) = \sum_{i=1}^n I(i_i)$.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

_

Time bounds for RAMs

Definition. Suppose that a RAM program Π computes a function $\phi: D \to \mathbf{Z}$ and let $f: \mathbf{N}^+ \to \mathbf{N}^+$.

The program Π computes ϕ in time f(n) iff

for any
$$I \in D$$
, $(1,0) \stackrel{\Pi,I^k}{\rightarrow} (0,R)$ so that $k \leq f(1,I)$.

Example. The multiplication of arbitrarily large integers is accomplished by a RAM in linear number of steps (i.e., the number of steps is propositional to the logarithm of the input integers).

RAM programs are powerful.

Example. A RAM for solving REACHABILITY can be found in the textbook.

Simulating TMs with RAMs

- The simulation of a Turing machine having an alphabet $\Sigma = {\sigma_1, ..., \sigma_k}$ is possible with a linear loss of efficiency.
- ➤ The domain of inputs for the simulating RAM is $D_{\Sigma} = \{(i_1, \dots, i_n, 0) \mid n \geq 0, \ 1 \leq i_j \leq k, \ j = 1, \dots, n\}.$
- ► For a language $L \subset (\Sigma \{\sqcup\})^*$, define $\phi_L : D_\Sigma \mapsto \{0,1\}$ so that

$$\phi_L(i_1,\ldots,i_n,0)=1$$
 iff $\sigma_{i_1}\cdots\sigma_{i_n}\in L$.

 \bigcirc Deciding L is equivalent to computing ϕ_L .

Theorem. Let $L \in \mathbf{TIME}(f(n))$. Then there is a RAM program which computes the function ϕ_L in time O(f(n)).

Proof sketch. Construct a subroutine (a RAM program) which simulates each state transition of the Turing machine M deciding L.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

10

Simulating RAMs with TMs

- ➤ Any RAM can be simulated by a Turing machine with only a polynomial loss of efficiency.
- ➤ The binary representation of a sequence $I = (i_1, ..., i_n)$ of integers, denoted by b(I), is the string $b(i_1); ...; b(i_n)$.

Definition. Let D be a set of finite sequences of integers and $\phi: D \to \mathbf{Z}$. A Turing machine M computes ϕ iff for any $I \in D$,

$$M(b(I)) = b(\phi(I)).$$

Simulating RAMs with TMs

Theorem. If a RAM program computes ϕ in time f(n), then there is a 7-string Turing machine M which computes ϕ in time $O(f(n)^3)$.

Proof sketch.

The strings of the machine serve the following purposes:

- 1. Input
- 2. Representation of register contents ...; $b(i) : b(r_i); ... \triangleleft$ (update: erase old value by \sqcup s and add new value to the right)
- 3. Program counter
- 4. Register address currently sought
- 5.–7. Extra space reserved for the execution of instructions

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

12

Proof skecth—cont'd.

- ➤ Each instruction of the RAM program is implemented by a group of states of *M*.
- Simulating an instruction of Π on M takes O(f(n)l) steps where l is the size of the largest integer in the registers (as there are O(f(n)) pairs on string 2).
- ➤ Simulating Π on M takes $O(f(n)^2l)$ steps.
- \blacktriangleright It remains to establish that $l=\mathrm{O}(f(n)).$

Claim: After the tth step of a RAM program Π computation on input I, the contents of any register have length at most t+1(I)+1(B) where B is the largest integer referred to in an instruction of Π .

Inductive proof of the claim

- \blacktriangleright Base case: the claim is true when t=0.
- ➤ Induction hypothesis: the claim is true after the (t-1)th step.
- Case analysis over instruction types of the tth instruction: Most of the instruction do no create new values (jumps, HALT, LOAD, STORE, READ). For these the claim continues to hold

 $\ensuremath{\mathsf{LOAD}},$ STORE, READ). For these the claim continues to hold after the execution of the instruction.

Consider arithmetic, say ADD, involving two integers i and j. The length of the result is one plus the length of the longest operand which is by induction hypothesis at most

t - 1 + 1(I) + 1(B).

Hence, the result has length at most t + l(I) + l(B).

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

14

2. Nondeterministic Machines

- ➤ Nondeterministic machines are an unrealistic model of computation.
- ➤ Nondeterministic TMs can be simulated by deterministic TMs with an exponential loss of efficiency.
- An open question: is a polynomial simulation possible? (i.e. P = NP?)

Transition relation

Definition. A nondeterministic Turing machine (NTM) is a quadruple $N=(K,\Sigma,\Delta,s)$ like the ordinary Turing machine except that Δ is a *transition relation* (rather than a transition function):

$$\Delta \subset (K \times \Sigma) \times [(K \cup \{h, "yes", "no"\}) \times \Sigma \times \{\rightarrow, \leftarrow, -\}]$$

- ightharpoonup Configurations are defined as before but "yields" is a relation (rather than a function) for a NTM N: $(q,w,u) \stackrel{N}{\rightarrow} (q',w',u')$ iff there is a tuple in Δ that makes this a legal transition.
- ➤ The power of nondeterminism boils down to the weak input-output behavior demanded of NTMs.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

16

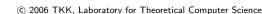
NMTs deciding languages

Definition. A nondeterministic Turing machine N decides a language L iff for any $x \in \Sigma^*$, the following holds:

$$x \in L$$
 iff $(s, \triangleright, x) \stackrel{N^*}{\rightarrow}$ ("yes", w, u) for some strings w and u .

Notes:

- (i) An input is accepted if there is some sequence of nondeterministic choices that results in the accepting state "yes".
- (ii) The input is rejected only if no sequence of nondeterministic choices can lead to acceptance.



Time complexity classes

Definition. A nondeterministic Turing machine N decides a language L in time f(n) iff N decides L and for any $x \in \Sigma^*$,

if
$$(s, \triangleright, x) \xrightarrow{N^k} (q, w, u)$$
, then $k \le f(|x|)$.

All computation paths should have length at most f(|x|).

Definition. A *time complexity class* **NTIME**(f(n)) is a set of languages L such that L is decided by a nondeterministic Turing machine in time f(n).

© 2006 TKK, Laboratory for Theoretical Computer Science

More about Turing Machines

Time complexity classes—cont'd

Definition. The set **NP** of all languages decidable in polynomial time by a nondeterministic Turing machine:

$$\mathbf{NP} = \bigcup_{k>0} \mathbf{NTIME}(n^k)$$

 $\mathcal{P} \subset \mathbf{NP}$ as TMs are also NTMs.

Theorem. Suppose that a language L is decided by a NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N. Thus

NTIME
$$(f(n)) \subseteq \bigcup_{c>1} \mathbf{TIME}(c^{f(n)}).$$

Proof sketch

- \blacktriangleright Let $N = (K, \Sigma, \Delta, s)$ be a NTM.
- \triangleright Let d be the degree on nondeterminism (maximal number of possible moves for any state-symbol pair in Δ) for N.
- \triangleright Any computation of N is a sequence of nondeterministic choices. A sequence of t choices is a sequence of t integers from $0, 1, \ldots, d-1$.
- \triangleright The simulating machine M considers all such sequences of choices in order of increasing length and simulates N on each.
- \blacktriangleright With sequence (c_1, c_2, \dots, c_t) M simulates the actions that N would have taken if N had taken choice c_i at step i for its first t steps.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

20

19

Proof sketch—cont'd

- \blacktriangleright If a sequence leads N to halting with "yes", then M does, too, and considers the next sequence otherwise.
- ightharpoonup The machine M rejects its input whenever it has simulated all sequences of choices of length t and each of them ends with halting in state "no" or h.
 - Note that the bound f(n) is not available to M!
- \blacktriangleright The time bound $O(c^{f(n)})$ is then established as the product of
 - the number of sequences $\sum_{t=1}^{f(n)} d^t = \mathrm{O}(d^{f(n)+1})$ and
 - the cost of each sequence which is $O(2^{f(n)})$.

Space complexity

- ➤ For space considerations, a nondeterministic Turing machine with input and output is needed.
- \blacktriangleright Given a k-string NTM N with input and output, we say that N decides language L within space f(n) if N decides L and for any $x \in (\Sigma - \{\sqcup\})^*$, if $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon,) \xrightarrow{N^*} (q, w_1, u_1, \ldots, w_k, u_k)$, then $\sum_{i=2}^{k-1} |w_i u_i| < f(|x|)$.

Example. REACHABILITY is nondeterministically solvable within space $O(\log n)$.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

22

21

3. Universal Turing Machine

- ➤ A TM has a fixed program which solves a single problem.
- ➤ A universal Turing machine U takes as input a description of another Turing machine M and an input x for M, and then simulates M on x so that U(M;x) = M(x).
- \blacktriangleright Encoding a Turing machine $M = (K, \Sigma, \delta, s)$ using integers:

$$\begin{split} & - \Sigma = \{1, 2, \dots, |\Sigma|\} \\ & - \mathit{K} = \{|\Sigma| + 1, |\Sigma| + 2, \dots, |\Sigma| + |\mathit{K}|\} \\ & - \mathit{s} = |\Sigma| + 1 \\ & - |\Sigma| + |\mathit{K}| + 1, |\Sigma| + |\mathit{K}| + 2, \dots, |\Sigma| + |\mathit{K}| + 6 \text{ encode} \\ & \leftarrow, \rightarrow, -, h, \text{ "yes", "no", respectively.} \end{split}$$

Encoding TMs using integers

- ➤ An entire TM $M = (K, \Sigma, \delta, s)$ is encoded as $b(|\Sigma|); b(|K|); e(\delta)$ where all integers i are represented as b(i) with exactly $\lceil \log(|\Sigma| + |K| + 6) \rceil$ bits and $e(\delta)$ is a sequence of pairs $((q,\sigma),(p,\rho,D))$ describing the transition function δ . (The symbol M is also used to denote this description of M).
- \blacktriangleright Then U simulates M using a string S_1 for the description of M and a string S_2 for the current configuration (q, w, u) of M. Simulation of a step of M is performed as follows:
 - (i) Scan S_2 to find an integer corresponding to a state.
 - (ii) Search S_1 for a rule of δ matching the current state.
 - (iii) Implement the rule. (When M halts, so does U.)

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

24

4. Halting Problem

- ➤ There are more languages than TMs for deciding them. Undecidable problems must exist.
- \blacktriangleright HALTING: Given the description of a Turing machine M and its input x, will M halt on x?

The corresponding language is defined as

$$H = \{M; x \mid M(x) \neq \nearrow\}.$$

➤ HALTING turns out to be an undecidable language, i.e., there is no Turing machine deciding H.

25

Properties of HALTING

➤ HALTING is recursively enumerable (r.e. for short).

Proof: A slight variant U' of the universal Turing machine U accepts H: all halting states of U are forced to be "yes" states.

- 1. If $M; x \in H$, then $M(x) \neq \nearrow$, $U(M,x) \neq \nearrow$, U'(M,x) = "yes".
- 2. If $M; x \notin H$, then $M(x) = U(M,x) = U'(M,x) = \nearrow$.
- ➤ HALTING is *complete* for r.e. languages, i.e. any r.e. language L can be reduced to it.

Proof: Let M_L be the machine accepting L.

Then $x \in L$ iff $M_L(x) =$ "yes" iff $M_L(x) \neq \nearrow$ iff $M_L; x \in H$.

➤ HALTING is not recursive.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

26

Proof skecth

- \blacktriangleright Assume that H is recursive, i.e., some M_H decides H.
- ➤ Consider the following TM D operating on an input M:

 if $M_H(M;M) = \text{"yes"}$ then \nearrow else "yes".
- ➤ There is no satisfactory answer to D(D): If $D(D) = \nearrow$, then $M_H(D;D) = \text{"yes"}$, i.e., $D(D) \neq \nearrow$, a contradiction.

Hence, $D(D) \neq \nearrow$. Then $M_H(D,D) \neq$ "yes". But as M_H decides H, $M_H(D,D) =$ "no" and, hence, $D; D \not\in H$, i.e. $D(D) = \nearrow$, a contradiction.

 $\bigcirc H$ is not recursive.

5. Undecidability

- ➤ HALTING spawns a range of other undecidable problems using a reduction technique.
- ➤ To show a problem *A* undecidable, establish that if there is an algorithm for *A*, then there is an algorithm for HALTING.
- ➤ This can be shown by devising a *reduction from* HALTING to *A*, i.e., a transformation of the input *M*; *x* of HALTING to the input *t*(*M*; *x*) of *A* such that

$$M; x \in H \text{ iff } t(M; x) \in A.$$

(It is assumed above that t(M;x) = T(M;x) for some TM T.)

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

28

Further undecidable languages

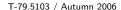
The following languages are not recursive:

- (a) $\{M \mid M \text{ halts on all inputs}\}$
- (b) $\{M; x \mid \text{there is } y \text{ such that } M(x) = y\}$
- (c) $\{M; x \mid \text{the computation } M \text{ on input } x \text{ uses all states of } M \}$
- (d) $\{M; x; y \mid M(x) = y\}$

Proof sketch for (a):

Reduction of HALTING to this problem A: Given M;x, we construct a machine M'(y): if x = y then M(x) else halt.

Now $M; x \in H$ iff M halts on x iff M' halts on all inputs iff $M' \in A$.



More about Turing Machines

Properties of recursive languages

Proposition. If L is recursive, then so is \overline{L} (the complement of L).

Proposition. A language L is recursive iff both L and \overline{L} are recursively enumerable.

Proof sketch.

- (\Rightarrow) By previous proposition and the fact that every recursive language is also recursively enumerable.
- (\Leftarrow) Simulate M_L and $M_{\overline{L}}$ on input x in an interleaved fashion:
- If M_L accepts, return "yes" and
- if $M_{\overline{I}}$ accepts, return "no".
- The complement \overline{H} of H is not recursively enumerable.

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

More about Turing Machines

30

Recursively enumerable languages

Proposition. A language L is recursively enumerable iff there is a machine M such that $L = E(M) = \{x \mid (s, \triangleright, \varepsilon) \stackrel{M}{\rightarrow}^* (q, y \sqcup x \sqcup, \varepsilon)\}.$

Any non-trivial property of Turing machines is undecidable:

Theorem. (Rice's Theorem) Let C be a proper non-empty subset of r.e. languages. Then the following problem is undecidable: given a Turing machine M, is $L(M) \in \mathbb{C}$?

Here L(M) is the language accepted by a Turing machine M.

T-79.5103 / Autumn 2006 More about Turing Machines 31

Learning Objectives

- ➤ You should be able to justify why Turing machines make a powerful model of algorithms/computation.
- ➤ Basic understanding of differences between deterministic and nondeterministic Turing machines.
- ➤ The definitions and background of complexity class **NP** and the problem whether P = NP or not.
- ➤ The definitions of recursive and recursively enumerable languages (including examples of such languages).

© 2006 TKK, Laboratory for Theoretical Computer Science