TURING MACHINES

> Basic definitions

- Turing machines as algorithms
- Turing machines with multiple strings
- Linear speedup
- Space bounds
(C. Papadimitriou: Computational complexity, Chapters 2.1-2.5)

Additional references:
M. Sipser: Introduction to the Theory of Computation, Chapter 3.
P. Orponen: Tietojenkäsittelyteorian perusteet, Luku 4.
(c) 2006 TKK, Laboratory for Theoretical Computer Science

1. Basic Definitions

- Turing machines are used as the formal model of algorithms.
- Turing machines can simulate arbitrary algorithms with inconsequential loss of efficiency using a single data structure: a string of symbols.

Definition. A Turing machine is a quadruple $M=(K, \Sigma, \delta, s)$ with a finite set of states K,
a finite set of symbols $\Sigma($ alphabet of $M)$ so that $\sqcup, \triangleright \in \Sigma$,
a transition function δ :

$$
K \times \Sigma \rightarrow(K \cup\{\text { h, "yes", "no" }\}) \times \Sigma \times\{\rightarrow, \leftarrow,-\}
$$

a halting state h, an accepting state "yes", a rejecting state "no", and cursor directions: \rightarrow (right), \leftarrow (left), and - (stay).

Example. Consider a Turing machine $M=(K, \Sigma, \delta, s)$ with $K=\{s, q\}$, $\Sigma=\{0,1, \sqcup, \triangleright\}$ and a transition function δ defined as follows:

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s,	0	$(s, 0, \rightarrow)$
s,	1	$(s, 1, \rightarrow)$
s,	\sqcup	(q, \sqcup, \leftarrow)
s,	\triangleright	$(s, \triangleright, \rightarrow)$
q,	0	$(h, 1,-)$
q,	1	$(q, 0, \leftarrow)$
q,	\triangleright	$(h, \triangleright, \rightarrow)$

The machine computes $n+1$ for a natural number n in binary.
© 2006 TKK, Laboratory for Theoretical Computer Science

Transition functions

> Function δ is the "program" of the machine.

- For the current state $q \in K$ and the current symbol $\sigma \in \Sigma$,
$-\delta(q, \boldsymbol{\sigma})=(p, \rho, D)$ where p is the new state,
$-\rho$ is the symbol to be overwritten on σ, and
$-D \in\{\rightarrow, \leftarrow,-\}$ is the direction in which the cursor will move.
$>$ For any states p and $q, \delta(q, \triangleright)=(p, \rho, D)$ with $\rho=\triangleright$ and $D=\rightarrow$.
- If the machine moves off the right end of the string, it reads \sqcup (the string becomes longer but it cannot become shorter; thus it keeps track of the space used by the machine).

The program starts with
(i) initial state s,
(ii) the string initialized to $\triangleright x$ where x is a finitely long string in
($\Sigma-\{\sqcup\})^{*}(x$ is the input of the machine) and
(iii) the cursor pointing to \triangleright.

- A machine has halted iff one of the 3 halting states
(h, "yes", "no") has been reached.
- If "yes" has been reached, the machine accepts the input.

If "no" has been reached, the machine rejects the input.
> Output $M(x)$ of a machine M on input x :
(i) If M accepts/rejects, then $M(x)=$ "yes" / "no"
(ii) If h has been reached, $M(x)=y$
where $\triangleright y \sqcup \sqcup \ldots$ is the string of M at the time of halting.
(iii) If M never halts on input x, then $M(x)=\nearrow$

© 2006 TKK, Laboratory for Theoretical Computer Science

> A configuration (q, w, u) :
$q \in K$ is the current state and $w, u \in \Sigma^{*}$ where
(i) w is the string to the left of the cursor including the symbol scanned by the cursor and
(ii) u is the string to the right of the cursor.
> The relation \xrightarrow{M} (yields in one step): $(q, w, u) \xrightarrow{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ Let σ be the last symbol of w and $\delta(q, \sigma)=(p, \rho, D)$.
Then $q^{\prime}=p$, and w^{\prime}, u^{\prime} are obtained according to (p, ρ, D).
Example. If $D=\rightarrow$, then
(i) w^{\prime} is w with its last symbol replaced by ρ and the first symbol of u appended to it (\sqcup if u is empty) and
(ii) u^{\prime} is u with the first removed (or empty, if u is empty).
© 2006 TKK, Laboratory for Theoretical Computer Science

Configurations reached in several steps

Yields in k steps: $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$
iff there are configurations $\left(q_{i}, w_{i}, u_{i}\right), i=1, \ldots, k+1$ such that $(q, w, u)=\left(q_{1}, w_{1}, u_{1}\right)$,

- $\left(q_{i}, w_{i}, u_{i}\right) \xrightarrow{M}\left(q_{i+1}, w_{i+1}, u_{i+1}\right), i=1, \ldots, k$, and
$-\left(q^{\prime}, w^{\prime}, u^{\prime}\right)=\left(q_{k+1}, w_{k+1}, u_{k+1}\right)$
- Yields: $(q, w, u) \xrightarrow{M^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$
iff there is some $k \geq 0$ such that $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.
Therefore $\xrightarrow{M^{*}}$ is the transitive and reflexive closure of \xrightarrow{M}.

Turing machines are natural for solving problems on strings:

- Let $L \subset(\Sigma-\{\sqcup\})^{*}$ be a language.

A Turing machine M decides L iff for every string $x \in(\Sigma-\{\sqcup\})^{*}$, if $x \in L, M(x)=$ "yes" and
if $x \notin L, M(x)=$ "no" .

- If L is decided by a Turing machine, L is a recursive language.
- A Turing machine M computes a (string) function
$f:(\Sigma-\{\sqcup\})^{*} \rightarrow \Sigma^{*}$ iff for every string $x \in(\Sigma-\{\sqcup\})^{*}$,
$M(x)=f(x)$.
- If such an M exists, f is called a recursive function.

Example. Transition function δ for checking even parity of $x \in\{0,1\}^{*}$:

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$	$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s,	\triangleright	$(s, \triangleright, \rightarrow)$	t,	\triangleright	$(t, \triangleright, \rightarrow)$
s,	0	$(s, 0, \rightarrow)$	t,	0	$(t, 0, \rightarrow)$
s,	1	$(t, 1, \rightarrow)$	t,	1	$(s, 1, \rightarrow)$
s,	\sqcup	$\left({ }^{\prime \prime}\right.$ yes"' $\left.^{\prime}, \sqcup,-\right)$	t,	\sqcup	$($ "no" $, \sqcup,-)$

The respective Turing machine M decides $101 \in\{0,1\}^{*}$ as follows:

$$
\begin{array}{rll}
(s, \triangleright, 101) & \xrightarrow{M} & (s, \triangleright 1,01) \\
& \xrightarrow{M} & (t, \triangleright 10,1) \\
& \xrightarrow{M} & (t, \triangleright 101, \varepsilon) \\
& \xrightarrow{M} & (s, \triangleright 101 \sqcup, \varepsilon) \\
& \xrightarrow{M} & \left(\text { "yes"' }^{\prime}, \triangleright 101 \sqcup, \varepsilon\right) .
\end{array}
$$

© 2006 TKK, Laboratory for Theoretical Computer Science

Recursively enumerable languages

> A Turing machine M accepts L iff for every string $x \in(\Sigma-\{\sqcup\})^{*}$, if $x \in L$, then $M(x)=$ "yes" but if $x \notin L, M(x)=\nearrow$.

- If L is accepted by some Turing machine, L is a recursively enumerable language.
- We will later encounter examples of r.e. languages.

Proposition. If L is recursive, then it is recursively enumerable.
[-4) The terms recursive and recursively enumerable suggest that Turing machines are equivalent in power with arbitrarily general (recursive) computer programs.

Solving problems using Turing machines

> Instances of the problem need to be represented by strings.

- Solving a decision problem amounts to deciding the language consisting of the encodings of the "yes" instances of the problem.
- An optimization problem is solved by a Turing machine that computes the appropriate function from strings to strings (where the output is similarly represented as a string).
© 2006 TKK, Laboratory for Theoretical Computer Science

- Any "finite" mathematical object can be represented by a finite string over an appropriate alphabet.

Example.

Graph: \quad| Representations as a string: |
| :---: |
| 3 |

Representation vs. solvability?

- All acceptable encodings are related polynomially:

If A and B are both "reasonable" representations of the same set of instances, and representation A of an instance is a string with n symbols, the representation B of the same instance has length at most $p(n)$ for some polynomial p.
> Exception: unary representation of numbers requires exponentially more symbols than the binary representation.

- A reasonably succinct input representation is assumed.

In particular, numbers are always represented in binary.
© 2006 TKK, Laboratory for Theoretical Computer Science

3. Turing Machines with Multiple Strings

- Turing machines with multiple strings and associated cursors are more convenient from the programmer's point of view.
- They can be simulated by an ordinary Turing machine with an inconsequential loss of efficiency.
> A k-string Turing machine with an integer parameter $k \geq 1$ is a quadruple $M=(K, \Sigma, \delta, s)$ where the transition function δ has been generalized to handle k strings simultaneously:

$$
\delta: K \times \Sigma^{k} \rightarrow(K \cup\{\text { h, "yes", "no" }\}) \times(\Sigma \times\{\rightarrow, \leftarrow,-\})^{k}
$$

This definition yields an ordinary Turing machine when $k=1$.

Generalized transitions

- Transitions are determined by
$\delta\left(q, \sigma_{1}, \ldots, \sigma_{k}\right)=\left(p, \rho_{1}, D_{1}, \ldots, \rho_{k}, D_{k}\right)$.
If M is in the state q, the cursor of the first string is scanning σ_{1}, that of the second σ_{2} and so on, then the next state is p, the first cursor will write ρ_{1} and move D_{1} and so on.
$>$ A configuration is defined as a $2 k+1$-tuple $\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$.
- A k-string machine with input x starts from the configuration

$$
(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon)
$$

> Relations $\xrightarrow{M}, \xrightarrow{M^{t}}, \xrightarrow{M^{*}}$ are defined in analogy to ordinary machines.
© 2006 TKK, Laboratory for Theoretical Computer Science

If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{*}}\left(\right.$ "yes" $\left., w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$, then $M(x)=$ "yes".
If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{*}}\left(\right.$ "no" $\left., w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$, then
$M(x)=$ "no".
If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{*}}\left(\mathrm{~h}, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$, then $M(x)=y$
where y is $w_{k} u_{k}$ with the leading \triangleright and trailing $\sqcup s$ removed.
(Output read from the last (kth) string.)
> The time required by M on input x is t iff
$(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{t}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$ where
$H \in\{$ h, "yes", "no" $\}$.
If $M(x)=\nearrow$, then the time required is thought to be ∞.

Complexity classes

> Performance measured by the amount of time (or space) required on instances of size n using a function of n.
> Machine M operates within time $f(n)$ if for any input string x, the time required by M on x is at most $f(|x|)$.

- Function $f(n)$ is a time bound for M.
- A complexity class TIME $(f(n))$ is a set of languages L decided by a multistring Turing machine operating within time $f(n)$.
> Notice that worst-case inputs are taken into account.

2. pass: change in the underlined (scanned) symbols
> The strings of M have a total length of $\mathrm{O}(k f(n))$.
To simulate one step of M, M^{\prime} needs $\mathrm{O}\left(k^{2} f(n)\right)$ steps.

- Since M makes at most $f(n)$ steps, M^{\prime} makes $\mathrm{O}\left(f(n)^{2}\right)$ steps (k is fixed and independent of x).

T-8 Thesis: No conceivable "realistic" improvement on the Turing machine will increase the domain of the language such machines decide, or will affect their speed more than polynomially.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Turing Machines

Multiple strings vs. a single string

Theorem. Given any k-string Turing machine M operating within time $f(n)$, we can construct a Turing machine M^{\prime} operating within time $\mathrm{O}\left(f(n)^{2}\right)$ and such that for any input $x, M(x)=M^{\prime}(x)$.

Proof sketch:
> M^{\prime} is based on an extended alphabet $\Sigma^{\prime}=\Sigma \cup \underline{\Sigma} \cup\left\{\triangleright^{\prime}, \triangleleft\right\}$.
> M^{\prime} represents a configuration of M by concatenation

$$
\left(q, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right) \mapsto\left(q, \triangleright, w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \ldots w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right)
$$ where each w_{i}^{\prime} is w_{i} with the leading \triangleright replaced by \triangleright^{\prime} and the last symbol σ_{i} by $\underline{\sigma_{i}}$ to keep track of cursor positions.

$>$ Initial configuration: $\left(s, \triangleright, \underline{\triangleright}^{\prime} x \triangleleft \underline{\unrhd^{\prime}} \triangleleft \ldots \unrhd^{\prime} \triangleleft \triangleleft\right)$

- When using Turing machines, the rate of growth of the time/space requirements is important but the precise multiplicative and additive constants are not.
- In practice this also holds to some extent because of continuously improving computer hardware.

Theorem. Let $L \in \mathbf{T I M E}(f(n))$. Then for any $\varepsilon>0$, $L \in \mathbf{T I M E}\left(f^{\prime}(n)\right)$ where $f^{\prime}(n)=\varepsilon f(n)+n+2$.

Proof sketch

$>$ Let $M=(K, \Sigma, \delta, s)$ be a k-string machine deciding L in time $f(n)$. We construct a k^{\prime}-string machine $M^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s^{\prime}\right)$ operating within time bound $f^{\prime}(n)$ and simulating M.
(If $k>1, k^{\prime}=k$ and if $k=1$, then $k^{\prime}=2$).

- Performance savings are obtained by adding word length: Each symbol of M^{\prime} encodes several symbols of M and each move of M^{\prime} several moves of M.
> Given M and ε we take some integer m and use m-tuples of symbols of M in M^{\prime}.
> The linear term $(n+2)$ in the theorem is due to condensing input.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Turing Machines

Proof sketch - cont'd

> M^{\prime} simulates m steps of M in at most a constant (6) number of steps in a stage.
> In such a stage M^{\prime} reads the adjacent symbols (m-tuples) on both sides of the cursors (this takes 4 steps).
The state of M^{\prime} records all symbols at or next to all cursors.
Now M^{\prime} can predict the next m moves of M which can be implemented in 2 steps.
$>$ The time spent by M^{\prime} on input x is $|x|+2+6\lceil f(|x|) / m\rceil$.
> The speedup is obtained if $m=\lceil 6 / \varepsilon\rceil$.
Notice that a lot of new states have to be added: $|K| * m^{k}|\Sigma|^{3 m k}$

Consequences of the linear speedup theorem

- It holds for any time bound $f(n)$ such that $f(n) \geq n$,
(i) if $f(n)=c n$, then $f^{\prime}(n) \approx n$ and
(ii) if $f(n)$ is superlinear, e.g., $f(n)=20 n^{2}+11 n$, then $f^{\prime}(n) \approx n^{2}$ (arbitrary linear speedup).
- If L is polynomially decidable, then $L \in \mathbf{T I M E}\left(n^{k}\right)$ for some integer $k>0$.

Definition. The set of all languages decidable by Turing machines in polynomial time \mathbf{P} is defined as the union

$$
\bigcup_{k>0} \mathbf{T I M E}\left(n^{k}\right)
$$

© 2006 TKK, Laboratory for Theoretical Computer Science

Strings cannot become shorter during computation.

- Thus the sum of lengths of the final strings provides a preliminary definition of the space consumed by a computation.
> There is an overcharge: sublinear space bounds are not covered! Example. The language of palindromes can be decided by a 3 -string Turing machine in logarithmic space.
> This suggests us to exclude the effects of reading the input and writing the output as regards the consumption of space.

Turing machines with input and output

Definition. A k-string Turing machine $(k>2)$ with input and output is an ordinary k-string Turing machine with the following restrictions on the program δ :
If $\delta\left(q, \sigma_{1}, \ldots, \sigma_{k}\right)=\left(p, \rho_{1}, D_{1}, \ldots, \rho_{k}, D_{k}\right)$, then
(a) $\rho_{1}=\sigma_{1}$ (read-only input string),
(b) $D_{k} \neq \leftarrow$ (write-only output string), and
(c) if $\sigma_{1}=\sqcup$, then $D_{1}=\leftarrow$ (end of input respected).

Proposition. For any k-string Turing machine M operating within time bound $f(n)$ there is a $(k+2)$-string Turing machine M^{\prime} with input and output which operates within time bound $\mathrm{O}(f(n))$.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Turing Machines

Space consumption

Definition. Suppose that for a k-string Turing machine M and an input $x,(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{*}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)$ where $H \in\{$ "yes", "no", h\} is a halting state.
Then the space required by M on input x is $\sum_{i=1}^{k}\left|w_{i} u_{i}\right|$.
If M is a Turing machine with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|$.
Let $f: \mathbf{N} \mapsto \mathbf{N}$.
Turing machine M operates within space bound $f(n)$ if for any input x, M requires space at most $f(|x|)$.

Space complexity classes

Definition. A space complexity class $\mathbf{S P A C E}(f(n))$ is a set of languages L decidable by a Turing machine with input and output operating within space bound $f(n)$.

Definition. The class $\operatorname{SPACE}(\log (n))$ is denoted by \mathbf{L}.
Example. The language of palindromes belongs to \mathbf{L}.

Theorem. Let $L \in \operatorname{SPACE}(f(n))$. Then for any $\varepsilon>0$,
$L \in \mathbf{S P A C E}(2+\varepsilon f(n))$.
[-8) Constants do not count for space as well.
© 2006 TKK, Laboratory for Theoretical Computer Science

A deeper understanding why (k-string) Turing machines make a reasonable model of computation.

- You should know how time/space complexity classes are derived using bounds on computations.
- The idea that multiplicative/additive constants do not count.
> The definitions and background of complexity classes \mathbf{P} and \mathbf{L}.

