
AB
T-79.5103 / Autumn 2006 Turing Machines 1'

&

$

%

TURING MACHINES

➤ Basic definitions

➤ Turing machines as algorithms

➤ Turing machines with multiple strings

➤ Linear speedup

➤ Space bounds

(C. Papadimitriou: Computational complexity, Chapters 2.1–2.5)

Additional references:

M. Sipser: Introduction to the Theory of Computation, Chapter 3.

P. Orponen: Tietojenkäsittelyteorian perusteet, Luku 4.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 2'

&

$

%

1. Basic Definitions

➤ Turing machines are used as the formal model of algorithms.

➤ Turing machines can simulate arbitrary algorithms with

inconsequential loss of efficiency using a single data structure:

a string of symbols.

Definition. A Turing machine is a quadruple M = (K,Σ,δ,s) with

a finite set of states K,

a finite set of symbols Σ (alphabet of M) so that t,. ∈ Σ,

a transition function δ:

K×Σ→ (K∪{h,“yes”,“no”})×Σ×{→,←,−},

a halting state h, an accepting state “yes”, a rejecting state “no”,

and cursor directions: → (right), ← (left), and − (stay).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 3'

&

$

%

Example. Consider a Turing machine M = (K,Σ,δ,s) with K = {s,q},

Σ = {0,1,t,.} and a transition function δ defined as follows:

p ∈ K σ ∈ Σ δ(p,σ)

s, 0 (s,0,→)

s, 1 (s,1,→)

s, t (q,t,←)

s, . (s,.,→)

q, 0 (h,1,−)

q, 1 (q,0,←)

q, . (h,.,→)

The machine computes n+1 for a natural number n in binary.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 4'

&

$

%

Transition functions

➤ Function δ is the “program” of the machine.

➤ For the current state q ∈ K and the current symbol σ ∈ Σ,

– δ(q,σ) = (p,ρ,D) where p is the new state,

– ρ is the symbol to be overwritten on σ, and

– D ∈ {→,←,−} is the direction in which the cursor will move.

➤ For any states p and q, δ(q,.) = (p,ρ,D) with ρ = . and D =→.

➤ If the machine moves off the right end of the string, it reads t

(the string becomes longer but it cannot become shorter; thus it

keeps track of the space used by the machine).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 5'

&

$

%

➤ The program starts with

(i) initial state s,

(ii) the string initialized to .x where x is a finitely long string in

(Σ−{t})∗ (x is the input of the machine) and

(iii) the cursor pointing to ..

➤ A machine has halted iff one of the 3 halting states

(h,“yes”,“no”) has been reached.

➤ If “yes” has been reached, the machine accepts the input.

If “no” has been reached, the machine rejects the input.

➤ Output M(x) of a machine M on input x:

(i) If M accepts/rejects, then M(x) = “yes”/“no”.

(ii) If h has been reached, M(x) = y

where .ytt . . . is the string of M at the time of halting.

(iii) If M never halts on input x, then M(x) =↗

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 6'

&

$

%

Operational semantics

➤ A configuration (q,w,u):

q ∈ K is the current state and w,u ∈ Σ∗ where

(i) w is the string to the left of the cursor including the symbol

scanned by the cursor and

(ii) u is the string to the right of the cursor.

➤ The relation
M
→ (yields in one step): (q,w,u)

M
→ (q′,w′,u′)

Let σ be the last symbol of w and δ(q,σ) = (p,ρ,D).

Then q′ = p, and w′,u′ are obtained according to (p,ρ,D).

Example. If D =→, then

(i) w′ is w with its last symbol replaced by ρ and the first symbol of u

appended to it (t if u is empty) and

(ii) u′ is u with the first removed (or empty, if u is empty).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 7'

&

$

%

Configurations reached in several steps

➤ Yields in k steps: (q,w,u)
M
→

k
(q′,w′,u′)

iff there are configurations (qi,wi,ui), i = 1, . . . ,k +1 such that –

(q,w,u) = (q1,w1,u1),

– (qi,wi,ui)
M
→ (qi+1,wi+1,ui+1), i = 1, . . . ,k, and

– (q′,w′,u′) = (qk+1,wk+1,uk+1)

➤ Yields: (q,w,u)
M
→
∗
(q′,w′,u′)

iff there is some k ≥ 0 such that (q,w,u)
M
→

k
(q′,w′,u′).

➤ Therefore
M
→
∗

is the transitive and reflexive closure of
M
→.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 8'

&

$

%

2. Turing Machines as Algorithms

Turing machines are natural for solving problems on strings:

➤ Let L⊂ (Σ−{t})∗ be a language.

A Turing machine M decides L iff for every string x ∈ (Σ−{t})∗,
if x ∈ L, M(x) = “yes” and

if x 6∈ L, M(x) = “no” .

➤ If L is decided by a Turing machine, L is a recursive language.

➤ A Turing machine M computes a (string) function

f : (Σ−{t})∗→ Σ∗ iff for every string x ∈ (Σ−{t})∗,
M(x) = f (x).

➤ If such an M exists, f is called a recursive function.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 9'

&

$

%

Example. Transition function δ for checking even parity of x ∈ {0,1}∗:

p ∈ K σ ∈ Σ δ(p,σ)

s, . (s,.,→)

s, 0 (s,0,→)

s, 1 (t,1,→)

s, t (“yes”,t,−)

p ∈ K σ ∈ Σ δ(p,σ)

t, . (t,.,→)

t, 0 (t,0,→)

t, 1 (s,1,→)

t, t (“no”,t,−)

The respective Turing machine M decides 101 ∈ {0,1}∗ as follows:

(s,.,101)
M
→ (s,.1,01)
M
→ (t,.10,1)
M
→ (t,.101,ε)
M
→ (s,.101t,ε)
M
→ (“yes”,.101t,ε).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 10'

&

$

%

Recursively enumerable languages

➤ A Turing machine M accepts L iff for every string x ∈ (Σ−{t})∗,
if x ∈ L, then M(x) = “yes” but if x 6∈ L, M(x) =↗ .

➤ If L is accepted by some Turing machine, L is a recursively

enumerable language.

➤ We will later encounter examples of r.e. languages.

Proposition. If L is recursive, then it is recursively enumerable.

☞ The terms recursive and recursively enumerable suggest that

Turing machines are equivalent in power with arbitrarily general

(recursive) computer programs.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 11'

&

$

%

Solving problems using Turing machines

➤ Instances of the problem need to be represented by strings.

➤ Solving a decision problem amounts to deciding the language

consisting of the encodings of the “yes” instances of the problem.

➤ An optimization problem is solved by a Turing machine that

computes the appropriate function from strings to strings

(where the output is similarly represented as a string).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 12'

&

$

%

How does representation affect solvability?

➤ Any “finite” mathematical object can be represented by a finite

string over an appropriate alphabet.

Example.

Graph:u u

u u

-

? ?

1 2

3 4

Representations as a string:

“{(1,10),(1,11),(10,100)}”

“(0110,0001,0000,0000)”

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 13'

&

$

%

Representation vs. solvability?

➤ All acceptable encodings are related polynomially:

If A and B are both “reasonable” representations of the same set

of instances, and representation A of an instance is a string with n

symbols, the representation B of the same instance has length at

most p(n) for some polynomial p.

➤ Exception: unary representation of numbers requires exponentially

more symbols than the binary representation.

➤ A reasonably succinct input representation is assumed.

In particular, numbers are always represented in binary.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 14'

&

$

%

3. Turing Machines with Multiple Strings

➤ Turing machines with multiple strings and associated cursors are

more convenient from the programmer’s point of view.

➤ They can be simulated by an ordinary Turing machine with an

inconsequential loss of efficiency.

➤ A k-string Turing machine with an integer parameter k ≥ 1 is a

quadruple M = (K,Σ,δ,s) where the transition function δ has been

generalized to handle k strings simultaneously:

δ: K×Σk→ (K∪{h,“yes”,“no”})× (Σ×{→,←,−})k

➤ This definition yields an ordinary Turing machine when k = 1.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 15'

&

$

%

Generalized transitions

➤ Transitions are determined by

δ(q,σ1, . . . ,σk) = (p,ρ1,D1, . . . ,ρk,Dk).

If M is in the state q, the cursor of the first string is scanning σ1,

that of the second σ2 and so on, then the next state is p, the first

cursor will write ρ1 and move D1 and so on.

➤ A configuration is defined as a 2k +1-tuple (q,w1,u1, . . . ,wk,uk).

➤ A k-string machine with input x starts from the configuration

(s,.,x,.,ε, . . . ,.,ε).

➤ Relations
M
→,

M
→

t
,

M
→
∗

are defined in analogy to ordinary machines.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 16'

&

$

%

➤ Output is defined as for ordinary machines:

If (s,.,x,.,ε, . . . ,.,ε) M
→
∗
(“yes”,w1,u1, . . . ,wk,uk), then

M(x) = “yes”.

If (s,.,x,.,ε, . . . ,.,ε) M
→
∗
(“no”,w1,u1, . . . ,wk,uk), then

M(x) = “no”.

If (s,.,x,.,ε, . . . ,.,ε) M
→
∗
(h,w1,u1, . . . ,wk,uk), then M(x) = y

where y is wkuk with the leading . and trailing ts removed.

(Output read from the last (kth) string .)

➤ The time required by M on input x is t iff

(s,.,x,.,ε, . . . ,.,ε) M
→

t
(H,w1,u1, . . . ,wk,uk) where

H ∈ {h,“yes”,“no”}.

If M(x) =↗, then the time required is thought to be ∞.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 17'

&

$

%

Complexity classes

➤ Performance measured by the amount of time (or space) required

on instances of size n using a function of n.

➤ Machine M operates within time f (n) if for any input string x, the

time required by M on x is at most f (|x|).

➤ Function f (n) is a time bound for M.

➤ A complexity class TIME(f (n)) is a set of languages L decided by

a multistring Turing machine operating within time f (n).

➤ Notice that worst-case inputs are taken into account.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 18'

&

$

%

Multiple strings vs. a single string

Theorem. Given any k-string Turing machine M operating within time

f (n), we can construct a Turing machine M′ operating within time

O(f (n)2) and such that for any input x, M(x) = M′(x).

Proof sketch:

➤ M′ is based on an extended alphabet Σ′ = Σ∪Σ∪{.′,/}.

➤ M′ represents a configuration of M by concatenation

(q,w1,u1, . . . ,wk,uk) 7→ (q,.,w′1u1 /w′2u2 / . . .w′kuk //)

where each w′i is wi with the leading . replaced by .′ and

the last symbol σi by σi to keep track of cursor positions.

➤ Initial configuration: (s,.,.′x/.′ /′ //)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 19'

&

$

%

➤ The simulation of a step of M by M′ takes place as follows:

1. pass: symbols underlined (scanned) on the k strings

2. pass: change in the underlined (scanned) symbols

➤ The strings of M have a total length of O(k f (n)).

To simulate one step of M, M′ needs O(k2 f (n)) steps.

➤ Since M makes at most f (n) steps, M′ makes O(f (n)2) steps

(k is fixed and independent of x).

☞ Thesis: No conceivable “realistic” improvement on the Turing

machine will increase the domain of the language such machines

decide, or will affect their speed more than polynomially.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 20'

&

$

%

4. Linear Speedup

➤ When using Turing machines, the rate of growth of the

time/space requirements is important but the precise

multiplicative and additive constants are not.

➤ In practice this also holds to some extent because of continuously

improving computer hardware.

Theorem. Let L ∈ TIME(f (n)). Then for any ε > 0,

L ∈ TIME(f ′(n)) where f ′(n) = ε f (n)+n+2.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 21'

&

$

%

Proof sketch

➤ Let M = (K,Σ,δ,s) be a k-string machine deciding L in time f (n).

We construct a k′-string machine M′ = (K′,Σ′,δ′,s′) operating

within time bound f ′(n) and simulating M.

(If k > 1, k′ = k and if k = 1, then k′ = 2).

➤ Performance savings are obtained by adding word length:

Each symbol of M′ encodes several symbols of M and

each move of M′ several moves of M.

➤ Given M and ε we take some integer m and use m-tuples of

symbols of M in M′.

➤ The linear term (n+2) in the theorem is due to condensing input.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 22'

&

$

%

Proof sketch — cont’d

➤ M′ simulates m steps of M in at most a constant (6) number of

steps in a stage.

➤ In such a stage M′ reads the adjacent symbols (m-tuples) on both

sides of the cursors (this takes 4 steps).

The state of M′ records all symbols at or next to all cursors.

Now M′ can predict the next m moves of M which can be

implemented in 2 steps.

➤ The time spent by M′ on input x is |x|+2+6d f (|x|)/me.

➤ The speedup is obtained if m = d6/εe.

➤ Notice that a lot of new states have to be added: |K| ∗mk|Σ|3mk.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 23'

&

$

%

Consequences of the linear speedup theorem

➤ It holds for any time bound f (n) such that f (n)≥ n,

(i) if f (n) = cn, then f ′(n)≈ n and

(ii) if f (n) is superlinear, e.g., f (n) = 20n2 +11n, then f ′(n)≈ n2

(arbitrary linear speedup).

➤ If L is polynomially decidable, then L ∈ TIME(nk) for some

integer k > 0.

Definition. The set of all languages decidable by Turing machines in

polynomial time P is defined as the union

[

k>0

TIME(nk)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 24'

&

$

%

5. Space bounds

➤ Strings cannot become shorter during computation.

➤ Thus the sum of lengths of the final strings provides a preliminary

definition of the space consumed by a computation.

➤ There is an overcharge: sublinear space bounds are not covered!

Example. The language of palindromes can be decided by a

3-string Turing machine in logarithmic space.

➤ This suggests us to exclude the effects of reading the input and

writing the output as regards the consumption of space.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 25'

&

$

%

Turing machines with input and output

Definition. A k-string Turing machine (k > 2) with input and output

is an ordinary k-string Turing machine with the following restrictions

on the program δ:

If δ(q,σ1, . . . ,σk) = (p,ρ1,D1, . . . ,ρk,Dk), then

(a) ρ1 = σ1 (read-only input string),

(b) Dk 6=← (write-only output string), and

(c) if σ1 = t, then D1 =← (end of input respected).

Proposition. For any k-string Turing machine M operating within

time bound f (n) there is a (k +2)-string Turing machine M′ with

input and output which operates within time bound O(f (n)).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 26'

&

$

%

Space consumption

Definition. Suppose that for a k-string Turing machine M and an

input x, (s,.,x,.,ε, . . . ,.,ε) M
→
∗
(H,w1,u1, . . . ,wk,uk)

where H ∈ {“yes”,“no”,h} is a halting state.

Then the space required by M on input x is Σk
i=1|wiui| .

If M is a Turing machine with input and output, then the space

required by M on input x is Σk−1
i=2 |wiui| .

Let f : N 7→N.

Turing machine M operates within space bound f (n) if for any input x,

M requires space at most f (|x|).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 27'

&

$

%

Space complexity classes

Definition. A space complexity class SPACE(f (n)) is a set of

languages L decidable by a Turing machine with input and output

operating within space bound f (n).

Definition. The class SPACE(log(n)) is denoted by L.

Example. The language of palindromes belongs to L.

Theorem. Let L ∈ SPACE(f (n)). Then for any ε > 0,

L ∈ SPACE(2+ ε f (n)).

☞ Constants do not count for space as well.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Turing Machines 28'

&

$

%

Learning Objectives

➤ A deeper understanding why (k-string) Turing machines make a

reasonable model of computation.

➤ You should know how time/space complexity classes are derived

using bounds on computations.

➤ The idea that multiplicative/additive constants do not count.

➤ The definitions and background of complexity classes P and L.

c© 2006 TKK, Laboratory for Theoretical Computer Science

