
AB
T-79.5103 / Autumn 2006 Boolean Logic 1'

&

$

%

BOOLEAN LOGIC

➤ Syntax

➤ Semantics

➤ Normal forms

➤ Satisfiability and validity

➤ Boolean functions and expressions

➤ Boolean circuits

(C. Papadimitriou: Computational complexity, Chapter 4)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 2'

&

$

%

Motivation

➤ Logic involves interesting computational problems.

➤ Logic is “the calculus of computer science”:

digital circuit design, programming language semantics,

specification and verification, constraint programming, logic

programming, databases, artificial intelligence, knowledge

representation, machine learning, . . .

➤ In computational complexity theory:

Computational problems from logic are of central importance; they

can be used to express computation at various levels.

This leads to important connections between complexity concepts

and actual computational problems.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 3'

&

$

%

1. Syntax

➤ The syntax of Boolean logic (i.e. the set of well-formed Boolean

expressions) is based on the following symbols:

– Boolean variables (or atoms): X = {x1,x2, . . .}.

– Boolean connectives: ∨, ∧ , and ¬.

➤ The set of Boolean expressions (formulae) is the smallest set such

that all Boolean variables are Boolean expressions and if φ1 and φ2

are Boolean expressions, so are ¬φ1, (φ1 ∧φ2), and (φ1 ∨φ2).

➤ An expression of the form xi or ¬xi is called a literal where xi is a

Boolean variable.

Example. ((x1 ∨ x2)∧¬x3) is a Boolean expression but ((x1 ∨ x2)¬x3)

is not.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 4'

&

$

%

Some notational conventions

➤ Simplified notation: (((x1 ∨¬x3)∨ x2)∨ (x4 ∨ (x2 ∨ x5))) is written

as x1 ∨¬x3 ∨ x2 ∨ x4 ∨ x2 ∨ x5 or x1 ∨¬x3 ∨ x2 ∨ x4 ∨ x5.

➤ Disjunctions and conjunctions involving n members:

–
Wn

i=1 ϕi stands for ϕ1 ∨·· ·∨ϕn.

–
Vn

i=1 ϕi stands for ϕ1 ∧·· ·∧ϕn.

➤ Frequently appearing abbreviations:

– An implication φ1 → φ2 stands for ¬φ1 ∨φ2.

– An equivalence φ1 ↔ φ2 stands for (¬φ1 ∨φ2)∧ (¬φ2 ∨φ1).

c© 2006 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2006 Boolean Logic 5'

&

$

%

2. Semantics

How to interpret Boolean expressions?

➤ Boolean expressions are propositions that are either true or false.

They speak about a world where certain atomic proposition

(Boolean variables) are either true or false.

This induces truth values for Boolean expressions as follows.

➤ A truth assignment T is mapping from a finite subset X ′ ⊂ X to

the set of truth values {true, false}.

➤ Let X(φ) be the set of Boolean variables appearing in φ.

Definition. A truth assignment T : X ′ → {true, false} is

appropriate to φ if X(φ) ⊆ X ′.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 6'

&

$

%

Satisfaction relation

➤ Let a truth assignment T : X ′ → {true, false} be appropriate to φ,

i.e., X(φ) ⊆ X ′.

➤ T |= φ (T satisfies φ) is defined inductively as follows:

If φ is a variable from X ′, then T |= φ iff T (φ) = true.

If φ = ¬φ1, then T |= φ iff T 6|= φ1.

If φ = φ1 ∧φ2, then T |= φ iff T |= φ1 and T |= φ2.

If φ = φ1 ∨φ2, then T |= φ iff T |= φ1 or T |= φ2.

Example. Let T (x1) = true, T (x2) = false.
Then T |= x1 ∨ x2 but T 6|= (x1 ∨¬x2)∧ (¬x1 ∧ x2).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 7'

&

$

%

Logical equivalence

Definition. Expressions φ1 and φ2 are logically equivalent (φ1 ≡ φ2) iff

for all truth assignments T appropriate to both of them,

T |= φ1 iff T |= φ2.

Example.

(φ1 ∨φ2) ≡ (φ2 ∨φ1)

((φ1 ∧φ2)∧φ3) ≡ (φ1 ∧ (φ2 ∧φ3))

¬¬φ ≡ φ
((φ1 ∧φ2)∨φ3) ≡ ((φ1 ∨φ3)∧ (φ2 ∨φ3))

¬(φ1 ∧φ2) ≡ (¬φ1 ∨¬φ2)

(φ1 ∨φ1) ≡ φ1

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 8'

&

$

%

3. Normal Forms

Theorem. Every Boolean expression is equivalent to one in

conjunctive (disjunctive) normal form CNF (DNF).

➤ These forms are defined by

CNF: (l11 ∨·· ·∨ l1n1)∧·· ·∧ (lm1 ∨·· ·∨ lmnm)

DNF: (l11 ∧·· ·∧ l1n1)∨·· ·∨ (lm1 ∧·· ·∧ lmnm)

where each li j is a literal (Boolean variable or its negation).

➤ A disjunction l1 ∨·· ·∨ ln of literals is called a clause.

➤ A conjunction l1 ∧·· ·∧ ln of literals is called an implicant.

➤ We can assume that normal forms do not have repeated

clauses/implicants or repeated literals in clauses/implicants.

Example. (¬x1 ∨¬x1 ∨ x2) ≡ (¬x1 ∨ x2).

c© 2006 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2006 Boolean Logic 9'

&

$

%

CNF/DNF transformation

Any Boolean expression can be transformed into CNF/DNF as follows.

• Remove ↔ and →:

α ↔ β ; (¬α∨β)∧ (¬β∨α) (1)

α → β ; ¬α∨β (2)

• Push negations in front of Boolean variables:

¬¬α ; α (3)

¬(α∨β) ; ¬α∧¬β (4)

¬(α∧β) ; ¬α∨¬β (5)

☞ The result is a mixed conjunction and disjunction of literals.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 10'

&

$

%

CNF/DNF transformation—cont’d

The next phase depends on the normal form being pursued:

• For a CNF, move ∧ connectives outside ∨ connectives:

α∨ (β∧ γ) ; (α∨β)∧ (α∨ γ) (6)

(α∧β)∨ γ ; (α∨ γ)∧ (β∨ γ) (7)

• For a DNF, move ∨ connectives outside ∧ connectives:

α∧ (β∨ γ) ; (α∧β)∨ (α∧ γ) (8)

(α∨β)∧ γ ; (α∧ γ)∨ (β∧ γ) (9)

Note: Normal forms can be exponentially bigger than the original

expression in the worst case.

Example. Consider deriving a CNF for (x1 ∧¬x1)∨ . . .∨ (xn ∧¬xn).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 11'

&

$

%

Example

Transform (x1 ∨ x2) → (x2 ↔ x3) into CNF.

(x1 ∨ x2) → (x2 ↔ x3) (1)

¬(x1 ∨ x2)∨ (x2 ↔ x3) (2)

¬(x1 ∨ x2)∨ ((¬x2 ∨ x3)∧ (¬x3 ∨ x2)) (4)

(¬x1 ∧¬x2)∨ ((¬x2 ∨ x3)∧ (¬x3 ∨ x2)) (7)

(¬x1 ∨ ((¬x2 ∨ x3)∧ (¬x3 ∨ x2)))∧ (¬x2 ∨ ((¬x2 ∨ x3)∧ (¬x3 ∨ x2))) (6)

((¬x1 ∨ (¬x2 ∨ x3))∧ (¬x1 ∨ (¬x3 ∨ x2)))

∧ (¬x2 ∨ ((¬x2 ∨ x3)∧ (¬x3 ∨ x2))) (6)

((¬x1 ∨ (¬x2 ∨ x3))∧ (¬x1 ∨ (¬x3 ∨ x2)))

∧ ((¬x2 ∨ (¬x2 ∨ x3))∧ (¬x2 ∨ (¬x3 ∨ x2))) (Simplification)

(¬x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨¬x3 ∨ x2)∧ (¬x2 ∨¬x2 ∨ x3)∧ (¬x2 ∨¬x3 ∨ x2)

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 12'

&

$

%

4. Satisfiability and Validity

➤ A Boolean expression φ is satisfiable iff

there is a truth assignment T appropriate to it such that T |= φ.

➤ A Boolean expression φ is valid/tautology (denoted by |= φ) iff

for every truth assignment T appropriate to it, T |= φ.

➤ The interconnection of satisfiability and validity:

|= φ iff ¬φ is unsatisfiable.

➤ Moreover, for any Boolean expressions ψ1 and ψ2,

ψ1 ≡ ψ2 iff |= ψ1 ↔ ψ2 iff ¬(ψ1 ↔ ψ2) is unsatisfiable.

☞ Satisfiability forms a fundamental computational problem.

c© 2006 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2006 Boolean Logic 13'

&

$

%

Satisfiability Problem

➤ SAT problem: Given ϕ in CNF, is ϕ satisfiable?

Example. (x1 ∨¬x2)∧¬x1 is satisfiable

but (x1 ∨¬x2)∧¬x1 ∧ x2 is unsatisfiable.

➤ SAT can be solved in O(n22n) time (e.g., truth table method).

➤ SAT ∈ NP but SAT ∈ P remains open!

A nondeterministic Turing machine for ϕ ∈ SAT:

for all variables x in ϕ do

choose nondeterministically: T (x) := true or T (x) := false;
if T |= ϕ then return “yes” else return “no”

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 14'

&

$

%

Horn clauses

➤ An interesting special case of SAT concerns Horn clauses, i.e.,

clauses (disjunction of literals) with at most one positive literal .

Example. ¬x1 ∨ x2 ∨¬x3 and ¬x1 ∨¬x3, x2 are Horn clauses but

¬x1 ∨ x2 ∨ x3 is not.

➤ A Horn clause with a positive literal is called an implication and

can be written as (x1 ∧ x3) → x2

(or → x2 when there are no negative literals).

➤ HORNSAT problem:

Given a conjunction of Horn clauses, is it satisfiable?

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 15'

&

$

%

Polynomial Time Algorithm for HORNSAT

Algorithm hornsat(S)

/* Determines whether S ∈ HORNSAT */

T := /0 /* T is the set of true atoms */

repeat

if there is an implication (x1 ∧ x2 ∧·· ·∧ xn) → y in S

such that {x1, . . . ,xn} ⊆ T but y 6∈ T then

T := T ∪{y}

until T does not change

if for all purely negative clauses ¬x1 ∨·· ·∨¬xn in S,

there is some literal ¬xi such that xi 6∈ T then

return S is satisfiable

else return S is not satisfiable

☞ HORNSAT ∈ P.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 16'

&

$

%

5. Boolean Functions and Expressions

➤ An n-ary Boolean function is a mapping

{true, false}n → {true, false}.

Example. The connectives ∨, ∧, →, and ↔ can be viewed as

binary Boolean functions and ¬ is a unary function.

➤ Similarly, any Boolean expression φ can be interpreted as an n-ary

Boolean function fφ where n = |X(φ)|.

➤ A Boolean expression φ with variables x1, . . . ,xn expresses the

n-ary function f if for any n-tuple of truth values t = (t1, . . . , tn),

f (t) =







true, if T |= φ.

false, if T 6|= φ.

where T satisfies T (xi) = ti for every i = 1, . . . ,n.

c© 2006 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2006 Boolean Logic 17'

&

$

%

Proposition. Any n-ary Boolean function f can be expressed as a

Boolean expression φ f involving variables x1, . . . ,xn.

➤ The idea: model the rows of the truth table

giving true as a disjunction of conjunctions.

➤ Let F be the set of all n-tuples t = (t1, . . . , tn)

with f (t) = true.

➤ For each t, let Dt be a conjunction of literals

xi if ti = true and ¬xi if ti = false.

➤ Let φ f =
W

t∈F Dt

➤ Note that φ f may get big in the worst case:

O(n2n).

☞ Not all Boolean functions can be expressed

concisely.

Example.

x1 x2 f

0 0 0

0 1 1

1 0 1

1 1 0

φ f = (¬x1 ∧ x2)∨

(x1 ∧¬x2).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 18'

&

$

%

6. Boolean Circuits

A more economical way to represent Boolean functions?

Syntax:

➤ A graph C = (V,E) where V = {1,2, . . . ,n} is the set of gates

and C must be acyclic (i < j for all edges (i, j) ∈ E).

➤ All gates i have a sort s(i) ∈ {true, false,∧,∨,¬}∪{x1,x2, . . .}.

– If s(i) ∈ {true, false}∪{x1,x2, . . .}, the indegree of i is 0 (inputs).

– If s(i) = ¬, the indegree of i 1.

– If s(i) ∈ {∨,∧}, the indegree of i is 2.

➤ Node n is the output of the circuit.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 19'

&

$

%

Semantics

A truth assignment is a function T : X(C) → {true, false} where X(C)

is the set of variables appearing in a circuit C.

The truth value T (i) for each gate i is defined inductively:

• If s(i) = true, T (i) = true and if s(i) = false, T (i) = false.

• If s(i) ∈ X(C), then T (i) = T (s(i)).

• If s(i) = ¬, then T (i) = true if T ( j) = false, otherwise T (i) = false
where ( j, i) is the unique edge entering i.

• If s(i) = ∧, then T (i) = true if T ( j) = T ( j′) = true else

T (i) = false where ( j, i) and ( j′, i) are the two edges entering i.

• If s(i) = ∨, then T (i) = true if T ( j) = true or T ( j′) = true else

T (i) = false where ( j, i) and ( j′, i) are the two edges to i.

• T (C) = T (n), i.e. the value of the circuit C.

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 20'

&

$

%

Boolean circuits vs. Boolean expressions

➤ For each Boolean circuit C, there is a corresponding Boolean

expression φC.

➤ For each Boolean expression φ, there is a corresponding Boolean

circuit Cφ such that for any T appropriate for both,

T (Cφ) = true iff T |= φ.

Idea: just introduce a new gate for each subexpression of φ.

➤ Notice that Boolean circuits allow shared subexpressions but

Boolean expressions do not.

c© 2006 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2006 Boolean Logic 21'

&

$

%

Computational problems related with Boolean circuits

➤ CIRCUIT SAT:

Given a circuit C, is there a truth assignment

T : X(C) → {true, false} such that T (C) = true?

➤ CIRCUIT SAT ∈ NP.

➤ CIRCUIT VALUE:

Given a circuit C with no variables, is it the case that T (C) = true?

➤ CIRCUIT VALUE ∈ P.

(No truth assignment is needed as X(C) = /0).

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 22'

&

$

%

Circuits computing Boolean functions

➤ A Boolean circuit with variables x1, . . . ,xn computes an n-ary

Boolean function f if for any n-tuple of truth values

t = (t1, . . . , tn), f (t) = T (C) where T (xi) = ti for i = 1, . . . ,n.

➤ Any n-ary Boolean function f can be computed by a Boolean

circuit involving variables x1, . . . ,xn.

➤ Not every Boolean function has a concise circuit computing it.

Theorem. For any n ≥ 2 there is an n-ary Boolean function f such

that no Boolean circuit with 2n

2n or fewer gates can compute it.

However, all natural families of Boolean functions seem to need only a

linear number of gates to compute!

c© 2006 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2006 Boolean Logic 23'

&

$

%

Learning Objectives

➤ You should deeply understand the syntax and semantics of

Boolean expressions — including their use in practice.

➤ The relationship/difference between Boolean expressions and

circuits.

➤ Knowing the idea of representing Boolean functions in terms of

Boolean expressions and circuits.

➤ Four computational problems related with Boolean logic and

circuits: SAT, HORNSAT, CIRCUIT SAT, and CIRCUIT VALUE.

c© 2006 TKK, Laboratory for Theoretical Computer Science


