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RELATIONS BETWEEN COMPLEXITY CLASSESI

Basic requirements for complexity classes

Relations between Complexity Classes

Complexity classes
Hierarchy theorems
Reachability method
Class inclusions

Simulating nondeterministic space

o o o o o o d

Closure under complement

(C. Papadimitriou: Computational complexity, Chapter 7)
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1. Basic Requirements for Complexity CIassesI

A complexity class is specified by

Relations between Complexity Classes

O model of computation (multi-string TMs)

O mode of computation (deterministic, nondeterministic,. . . )
O resource (time, space, ...)

O bound (function f)

A complexity class is the set of all languages decided by some
multi-string Turing machine M operating in the appropriate mode, and
such that, for any input X, M expends at most f(|x|) units of the
specified resource.
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Reasonable bound functions'

Definition. A function f : N — N is a proper complexity function if f

Relations between Complexity Classes

is nondecreasing and there is a k-string TM Ms with input and output
such that on any input X,

1. M¢(x) =Nf(X) where M is a quasi-blank symbol,
M+ halts after O(|x| + f(|x|)) steps, and

M+ uses O(f(|x])) space besides its input.

O w N

Examples of proper complexity functions f(n):

¢ n, [logn], log?n, nlogn, n?, n3+3n, 2", \/n, nl, ...

O

If f and g are proper, so are, e.g., f+g, f-g, 29.

O Only proper complexity functions will be used as bounds.
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Precise Turing machines.

Definition. Let M be a deterministic/nondeterministic multi-string

Relations between Complexity Classes

Turing machine (with or without input and output).

Machine M is precise if there are functions f and g such that for every
n> 0, for every input X of length n, and for every computation of M,

1. M halts after precisely f(|x|) steps and

2. all of its strings (except those reserved for input and output
whenever present) are at halting of length precisely g(|x|).

(Precise bounds will be convenient in various simulation results).
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Simulating TMs with precise TMSI

Proposition. Let M be a deterministic or nondeterministic TM

deciding a language L within time/space f(n) where f is proper.

Then there is a precise TM M’ which decides L in time/space O(f(n)).

Proof sketch.
The simulating machine M’
1. computes a yardstick/alarm clock nf(¥) using M¢ and

2. simulates M for exactly f(|X|) steps or
simulates M using exactly f(|x|) units of space.
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2. Complexity CIassesI

O Given a proper complexity function f, we obtain following classes:

Relations between Complexity Classes

TIME(f) (deterministic time)
NTIME(f)  (nondeterministic time)
SPACE(f) (deterministic space)
NSPACE(f) (nondeterministic space)

O The bound f can be a family of functions parameterized by a
non-negative integer k; meaning the union of all individual classes.

The most important are:  TIME(n) = Ujso Tl ME(n})
NTIME(nK) = U;-oNTIME(n))
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Variety of complexity cIassesI

Relations between Complexity Classes

P = TIME(n)

NP = NTIME(nK)
PSPACE = SPACE(nX)
NPSPACE = NSPACE(nX)
EXP = TIME(2™)

L = SPACE(log(n))
NL = NSPACE(log(n))

The relationships of these classes will be studied in the sequel.
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Complements of decision problems.

O Given an alphabet X and a language L C X*, the complement of L
L=>"—L.

Relations between Complexity Classes

O For a decision problem A, the answer for the complement
“A COMPLEMENT" is “yes” iff the answer for A is “no".

Example. SAT COMPLEMENT: given a Boolean expression @ in
CNF, is @ unsatisfiable?

Example. REACHABILITY COMPLEMENT: given a graph (V,E)
and nodes V,uU €V, is it the case that there is no path from v to u?
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Closure under Complement.

For any complexity class C, coC denotes the class
{L|LeC}.

All deterministic time and space complexity classes are closed
under complement. Hence, e.g., P = coP.

Proof. Exchange "yes" and “no” states of the deciding machine.

The same holds for nondeterministic space complexity classes
(to be shown in the sequel).

An important open question: are nondeterministic time complexity

/

classes closed under complement? For instance, NP = coNP?
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3. Hierarchy Theorems'

We derive a quantitative hierarchy result:

with sufficiently greater time allocation, Turing machines are able
to perform more complex computational tasks.

For a proper complexity function f(n) > n, define

Hi = {M;x| M accepts input X after at most f(|x|) steps}.

Thus Hs is the time-bounded version of H, i.e. the language of
the HALTING problem.

/
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Upper bound for H; I

Lemma. H¢ € TIME((f(n))3).

Proof sketch.

A 4-string machine Us deciding Hs in time f(n)3 is based on
(i) the universal Turing machine U,

)
(i) the single-string simulator of a multi-string machine,
(iii) the linear speedup machine, and

)

(iv) the machine M; computing the yardstick of length f(n)
where n is the length of the input X.

O\
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Proof—cont'd.
The machine Us operates as follows:
1. M¢ computes the alarm clock Mf(X) for M (string 4).

2. The description of M is copied on string 3 and string 2 initialized
to encode the initial state S and string 1 the input >X.

3. Then Ut simulates M and advances the alarm clock. If Ut finds
out that M accepts input X within f(|X|) steps, then U accepts,
but if the alarm clock expires, then Us rejects.

Observations:

O Since M is simulated using a single string, each simulation step
takes O(f(n)?) time.

O The total running time is O(f(n)3) for f(|x|) steps.

\_
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KLower bound for H;

Lemma. Hf ¢ TIME(f([5]))

Proof sketch.

O Suppose there is a TM My, that decides Hs in time f([5]).

O Consider D¢(M): if Mp,(M;M) = "yes” then “no” else “yes".
Thus Dt on input M runs in time f(L%J) = f(|M)).

O If D¢(Df) = “yes", then My, (D¢,D¢) = “no”, hence, D¢; Dt ¢ H

and Dy fails to accept input D within f(|Dg¢|) steps, i.e.

D¢ (Dt) = “no”, a contradiction.
O Hence, D¢(D¢) # “yes". Then D¢(D) = “no” and
My, (Dt,Df) = "yes". Therefore, D; D¢ € H¢, and Dy accepts
input D¢ within f(|D¢]) steps, i.e., D¢(D¢) = “yes”, a
contradiction again.

.
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The time hierarchy theorem.

Theorem. If f(n) > nis a proper complexity function, then the class
TIME(f(n)) is strictly contained within TIME((f(2n+1))3).

O TIME(f(n)) C TIME((f(2n+1))%) as f is nondecreasing.
0 By the first lemma: Hy(o.1) € TIME((f(2n+1))3).

0 By the second lemma:
Hi(anig) € TIME(T([ 252 ])) = TIME(T(n)).

Corollary. P is a proper subset of EXP.
O Since N =0O(2"), we have P C TIME(2") C EXP.

O It follows by the time hierarchy theorem that

TIME(2") ¢ TIME((22"1)3) C TIME(2") C EXP.

(© 2006 TKK, Laboratory for Theoretical Computer Science
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The space hierarchy theorem I

Theorem. If f(n) > nis a proper complexity function, then the class
SPACE(f(n)) is a proper subset of SPACE(f(n)log f(n)).

However, counter-intuitive results are obtained if non-proper
complexity functions are allowed.

Theorem. (The Gap Theorem).

There is a recursive function f from the nonnegative integers to the
nonnegative integers such that TIME(f(n)) =TIM E(Zf(”)).

Proof sketch.

The bound f can be defined so that no TM M computing on input X
with [x| = n halts after number of steps between f(n) and 2f(".

\
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4. Reachability Method.

Theorem. Let f(n) be a proper complexity function. Then
(a) SPACE(f(n)) C NSPACE(f(n)) and
TIME(f(n)) C NTIME(f(n)).
C

(b) NTIME(f(n)) C SPACE(f(n)).

(c) NSPACE(f(n)) € TIME(c®9" (M),

Proofs.

(a) ATM is a NTM, too.

(b) Simulation of all choices within space f(n) (see below).

(c) Proof by reachability method (see below).
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Proof of NTIME(f(n)) C SPACE(f(n))

Let L € NTIME(f(n)). Hence there is a precise nondeterministic
Turing machine N that decides L in time f(n).

Let d be the degree on nondeterminism (maximal number of
possible moves for any state-symbol pair in A).

Any computation of N is a f(n)-long sequence of nondeterministic
choices (represented by integers 0,1,....d —1).

The simulating deterministic machine M considers all such
sequences of choices and simulates N on each.

/
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Proof—cont’d.

~

With sequence (C1,Cy,...,Ct(n)) M simulates the actions that N
would have taken had N taken choice ¢ at step i.

If a sequence leads N to halting with "yes”, then M does, too.
Otherwise it considers the next sequence. If all sequences are

exhausted without accepting, then M rejects.

There is an exponential number of simulations to be tried but they
can be carried out in space f(n) by carrying them out one-by-one,
always erasing the previous simulation to reuse space.

As f(n) is proper, the first sequence Of(" can be generated in
space f(n).

/
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Proof of NSPACE(f(n)) C TIME(c'%9™ (")
The reachability method is used to prove the claim.
O Consider a k-string nondeterministic TM M with input and output
which decides a language L within space f(n).
O We develop a deterministic method for simulating the
nondeterministic computation of M on input X within time
¢o9n+f(M where n= [x| and ¢ is a constant depending on M.
O The configuration graph G(M,x) of M is used:
nodes are all possible configurations of M and there is an edge
between two nodes (configurations) Cy and C; iff C; M>C2.
O Now x € L iff there is a path from Cg = (S,>,X,>,€,...,>,€) to
K some configuration of the form C = (“yes’,...) in G(M,Xx). /
© 2006 TKK, Laboratory for Theoretical Computer Science
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Proof—cont’d.

~

A configuration (g, w1, U, ..., Wk,Ug) is a complete “snapshot” of a
computation.
Since M is a machine with input and output deciding L:

— the output string can be neglected,
— for the input string, only the cursor position can change, and
— for all other k— 2 strings, the length is at most f(n).

A configuration can be represented as (q,i,Wo, Uy, ..., Wk_1,Uk_1)
where 1 <i < n gives the cursor position on the input string.

How many possible configurations does M have? At most

IK|(n+1)(2]TM)2(k-2) < |K |2n(|z|2K-2) T < pcf ™ < ot

/

for some constant ¢; depending on M.
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Proof—cont’d.

O

Hence, deciding whether X € L holds can be done by solving a

logn+f(n)

reachability problem for a graph with at most c; nodes.

The problem can be solved, say, with a quadratic algorithm in

time cpca 29T (W) < dognt () yith ¢ — cpc2.

The graph G(M,X) needs not to be represented explicitly
(e.g., as an adjacency matrix) for the reachability algorithm.

The existence of an edge from C to C' can be determined on the
fly by examining C, C’, and the input X.

/
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5. Class IncIusionsI

Corollary. L € NL C P C NP C PSPACE C EXP.
Proof.

1.
2.

\_

L = SPACE(logn) C NSPACE(logn) = NL follows by (a).

NL = NSPACE(logn) C TIME(c'®9"+109n) — TIME(n?'%9¢) C P
follows by (c).

By (a) TIME(n¥) € NTIME(n) which implies P C NP.
By (b) NTIME(nK) C SPACE(n¥) which implies NP C PSPACE.

By (a) and (c) SPACE(nk) C NSPACE(nk) C TIME(do9m+n) ¢
TIME(2"'®) CEXP.

/
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Which inclusions are proper? I

Corollary. The class L is a proper subset of PSPACE.

Proof. The space hierarchy theorem tells us L = SPACE(log(n)) C
SPACE(log(n)log(log(n))) € SPACE(n?) C PSPACE. O

It is believed that all inclusions of the complexity classes in
L CNL C P C NP CPSPACE C EXP are proper.

However, we only know that

O at least one of the inclusions between L and PSPACE is proper

(but don't know which) and

O at least one of the inclusions between P and EXP is proper

(but don't know which).

\
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6. Simulating Nondeterministic Space'

The question is how efficiently can we simulate nondeterministic
space by deterministic space?

It follows by the previous theorem that
NSPACE(f(n)) C TIME(c'99™f(M) C SPACE (o9 (M),
But can we do better than this?

Yes, in fact. Nondeterministic space can be simulated with
quadratic deterministic space (using a theorem that follows).

\_
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Savitch’s theorem '

Theorem. REACHABILITY ¢ SPACE(Iog2 n.

~

Proof sketch.

O Given a graph G and nodes X,y and i > O, define PATH(X,Y,1):
there is a path from X to y of length at most 2'.

O If G has n nodes, any simple path is at most n long and we can
solve reachability in G if we can compute whether
PATH(x,y, [logn]) holds for any given nodes X,y of G.

O This can be done using middle-first search.

. /
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Proof—cont’d.

~

O function path(x,y,i) /* middle-first search */
if i =0 then
if X=1y or there is an edge (X,y) in G then return “yes”
else for all nodes z do
if path(x,zi—1) and path(zy,i —1) then return “yes";

“ ”

return "no

O Proof that path(x,y,i) correctly determines PATH(X,y,i):
If i =0, then clearly path correctly determines PATH(x,y,0).
For i >0, path(x,y,i) returns “yes" iff there is a node z with
path(x,zi— 1) and path(zy,i — 1) holding. By the inductive
hypothesis there are paths from X to z and from z to y both at
most 21 long. Then there is a path from X to y at most 2' long.

\_ /
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Proof—cont'd.
O The algorithm is started with path(x,y, [logn]).

O O(Iog2 n) space bound can be achieved by handling recursion using
a stack containing a triple (X,y,i) for each active recursive call.
For each node z put (X,z,i—1) into the stack and call
path(x,z,i—1). If this fails, erase (x,z,i —1) and put (x,Z,i —1)
for the next Z otherwise erase (X,z,i —1) and put (zY,i —1).

O As there are at most logn recursive calls active with each taking
at most 3logn space, the O(log?n) space bound is achieved.

- /
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orollary. For any proper complexity function f(n) > logn,
NSPACE(f(n)) € SPACE((f(n))?).
Proof.

O To simulate an f(n)-space bounded NTM M on input X, run the
previous algorithm on the configuration graph G(M,X).

O The edges of the graph G(M,x) are determined on the fly by
examining the input X.

logn+f(n)

0 The configuration graph has at most c; < ¢/ nodes.

O By Savitch's theorem, the algorithm needs at most
(logef™)2 = f(n)2log?c = O(f(n)?) space.

Corollary. PSPACE = NPSPACE.

|:| Nondeterminism is less powerful with respect to space than time.
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7. Closure under Complement'

A key result about reachability will be established:

the number of nodes reachable from a node X can be computed in
nondeterministic logn space!

The complement (the number of nodes not reachable from X) can
be handled in nondeterministic logn space, too!

(This quantity can be obtained by a simple subtraction.)

It is open (and doubtful) whether nondeterministic time
complexity classes are closed under complement.

/
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Functions computed by NTMsI

When does a NTM M compute a function F from strings to strings?

O On input X, each computation of M either

\_

— outputs the correct answer F(X) or
— enters the rejecting “no” state.

At least one computation must end up with F(X) which must be
unique for all such computations.

Such a machine observes a space bound f(n) iff for any input X,
at halting all strings (except the ones reserved for input and
output) are of length at most f(|x|).

/
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Immerman-Szelepscényi theorem I

A\

Proof.

from X via paths of length K or less.

reachable from X in G is |S(n—1)|.

Theorem. Given a graph G and a node X, the number of nodes

O Let us define S(K) as the set of nodes in G which are reachable
O The strategy is to compute values [§(1)],|S(2)|,...,|S(n—1)|
iteratively and recursively, i.e. |(i)| is computed from |S(i —1)|.

O Given that the number of nodes in G is n, the number of nodes

O Let G(v,u) mean that v=u or there is an arc from v to u in G.

~

reachable from X in G can be computed by a NTM within space logn.

/
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Proof—cont'd.

The nondeterministic algorithm:

[S0)]: =1,
for k:=1,2,...n—1do
| :=0;
for each node u:=1,2,...,ndo
check whether u € Sk) and set reply accordingly;
/* See below how this is implemented */
if reply=truethen | ;=1+1;
end for;
S(k)| =1

end for

\_
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KProof—cont'd.

/* Check whether u € S(k) and set reply */
m:=0; reply .= falsg
for each nodev:=12,....ndo

end for
if m<|Sk—1)| then “give up” (end in “no” state)

~

/* check whether ve Sk—1) */
Wp :=X; path:=true
for p:=1,2,...k—1do
guess a node Wy; if not G(Wp_1,Wp) then path:= false
end for
if path=true and wx_; =V then
m:=m+1; /* ve Sk—1) holds */
if G(v,u) then reply:=true
end if

/
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Proof—cont'd.
O Note that only logn-space is needed as there are only nine

O The algorithm computes correctly |S(k)| (by induction on k):

~

variables: |S(K)|,k,1,u,m,v, p,Wp, Wp_1

which each (an integer) can be stored in logn space.

—If k=0, then |S(k)| =1 as given by the algorithm.

— For k> 0O, consider a computation that does not “give up”. We
need to show that counter | is incremented iff u € §kK).

If counter | is incremented, then reply =true implying that

ue §K), i.e. there is a path (X =)Wp,...,Wk_1(=V),u.

If ue SK), then there is some v e S(k— 1) such that G(v,u). But
as the computation does not “give up”, m=|Sk—1)| (which is
the correct value by induction) and therefore all ve S(k—1) are
verified as such and, thus, reply is set to true.

— Moreover, clearly there is at least one accepting computation
where paths to the members of S(k— 1) are correctly guessed. j

(© 2006 TKK, Laboratory for Theoretical Computer Science
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Closure under Complement.

Corollary. If f(n) >logn is a proper complexity function, then
NSPACE(f(n)) = coNSPACE(f(n)).

Proof sketch.

~

Suppose L € NSPACE(f(n)) is decided by an f(n)-space bounded
NTM M. We build an f(n)-space bounded NTM M deciding L.

On input X, M runs the previous algorithm on the configuration
graph G(M,X) associated with M and Xx.

M rejects if it finds an accepting configuration in any S(k).

Since G(M, X) has at most ng = cf(™ nodes, then M can accept if
|S(ng —1)| is computed without an accepting configuration.

Due to bound ng, M needs at most logc’™ = O(f(n)) space. /
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Learning Objectives'

The definitions and background of major complexity classes: P,
NP, PSPACE, NPSPACE, EXP, L, and NL.

The knowledge of basic relationships between complexity classes
(inclusions and proper inclusions).

Savitch's theorem and Immerman-Szelepscényi theorem.
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