REDUCTIONS AND COMPLETENESS

- Reductions between problems
- ► Examples of reductions
- ► Composing reductions

T-79.5103 / Autumn 2006

- ► Completeness and hard problems
- ➤ Table method
- ► Computation as a Boolean circuit
- ► Capturing nondeterministic computation
- (C. Papadimitriou: Computational complexity, Chapters 8.1-8.2)

C 2006 TKK, Laboratory for Theoretical Computer Science

Reductions and Completeness

1. Reductions between Problems

- A complexity class is an infinite collection of languages.
 Example. The class NP contains languages such as TSP(D), SAT, HORNSAT, REACHABILITY, ...
- Not all decision problems seem to be equally hard to solve; can problems be somehow ordered by difficulty?
- Such an ordering relation is definable using a notion of a reduction:
 A is at least as hard as B if B reduces to A.

Basic requirements for reductions

- ➤ A problem B reduces to A if there is a transformation R which for every input x of B produces an equivalent input R(x) of A.
- ➤ Here equivalent means that the "yes" / "no" answer for R(x) considered as A's input is the correct answer to x as an input of B, i.e., x ∈ B iff R(x) ∈ A.
- To solve B on input x we need to compute R(x) and solve A on it:

© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

Reductions and Completeness

4

Limiting resources in reductions

- The notion of a reduction seems reasonable to capture that A is at least as hard as B except when R is very hard to compute (e.g., when reducing TSP(D) to HORNSAT).
- ► Possible limits on resources in reductions:
 - Cook reductions (polynomial-time Turing reductions)
 - Karp reductions (polynomial-time many-one reductions)
 - Log-space reductions (used here)

Definition. A language L_1 is reducible to L_2 ($L_1 \leq_L L_2$) iff there is a function *R* from strings to strings computable by a deterministic Turing machine in space O(log *n*) such that for all inputs *x*,

$x \in L_1$ iff $R(x) \in L_2$.

The function R is called a *reduction* from L_1 to L_2 .

Time efficiency of reductions

Proposition. If R is a reduction computed by a deterministic TM M, then for all inputs x, M halts after a polynomial number of steps.

Proof sketch.

- ➤ As M works in space O(log n), there are O(nc^{log n}) possible configurations for M on input x where |x| = n.
- ➤ Since *M* is deterministic and halts on every input, it cannot repeat any configuration. Hence *M* halts in at most

$$c_1 n c^{\log n} = c_1 n n^{\log c} = \mathbf{O}(n^k)$$

steps for some k.

Note that as output string R(x) is computed in a polynomial number of steps, its length is also polynomial w.r.t. |x|.

C 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

Reductions and Completeness

2. Examples of Reductions

We will consider a number of reductions, i.e.

- 1. from HAMILTON PATH to SAT,
- 2. from REACHABILITY to CIRCUIT VALUE,
- 3. from CIRCUIT SAT to SAT, and
- 4. from CIRCUIT VALUE to CIRCUIT SAT.

In each case, we present a reduction R from the former language (say L_1) to the latter language (say L_2) such that for every string x based on the alphabet of L_1 ,

(i) $x \in L_1$ iff $R(x) \in L_2$ and

(ii) R(x) can be computed in $O(\log n)$ space.

Reducing HAMILTON PATH to SAT

Definition. The problem HAMILTON PATH is defined as follows: INSTANCE: A graph *G*.

QUESTION: Is there a path in G that visits every node exactly once?

- ➤ To show that SAT is at least as hard as HAMILTON PATH we must establish a reduction *R* from HAMILTON PATH to SAT.
- ➤ For a graph G, the outcome R(G) is a conjunction of clauses such that G has a Hamilton path iff R(G) is satisfiable.
- Suppose G has n nodes, $1, 2, \ldots, n$.
- ➤ Then R(G) has n^2 Boolean variables x_{ij} where $1 \le i, j \le n$ and x_{ij} denotes that the *i*th node on the path is *j*.

C 2006 TKK, Laboratory for Theoretical Computer Science

Proof of correspondence

- (\Leftarrow) Let R(G) have a satisfying truth assignment T.
- By clauses (1,2) for every node j there is unique i such that $T(x_{ij}) =$ true.
- By clauses (3,4) for every *i* there is unique node *j* such that $T(x_{ij}) =$ true.
- Thus T represents a permutation $\pi(1), \ldots, \pi(n)$ of the nodes where $\pi(i) = j$ iff $T(x_{ij}) = \mathbf{true}$
- By clauses (5) for all k, there is an edge $(\pi(k), \pi(k+1))$ in G. Hence $(\pi(1), \dots, \pi(n))$ a Hamilton path.

 (\Rightarrow) Let G have a Hamilton path $(\pi(1), \dots, \pi(n))$ where π is a permutation. Then R(G) is satisfied by a truth assignment T defined by $T(x_{ij}) =$ **true** if $\pi(i) = j$ else $T(x_{ij}) =$ **false**.

C 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 Reductions and Completeness

Proof of logarithmic space consumption

We show that R(G) can be computed in space $O(\log n)$.

Given G as an input, a TM M outputs R(G) as follows:

- *M* first outputs clauses (1-4) not depending on *G* one by one using three counters *i*, *j*, *k*.
- Each counter is represented in binary within log *n* space.
- M outputs clauses (5) by considering each pair (i, j) in turn: if (i, j) is not an edge in G (M checks this first), then M outputs clauses ¬x_{ki} ∨ ¬x_{(k+1)j} one by one for all k = 1,...,n-1.
- Again space is needed only for the counters i, j, k, i.e. at most $3 \log n$ in total.

Hence, R(G) can be computed in space $O(\log n)$.

Reducing REACHABILITY to CIRCUIT VALUE

For a graph G, the outcome R(G) is a variable-free circuit such that

the output of R(G) is **true** iff there is a path from 1 to n in G.

- ▶ The gates of R(G) are of the following two forms:
 - g_{ijk} with $1 \le i, j \le n$ and $0 \le k \le n$ and

 $-h_{ijk}$ with $1 \leq i, j, k \leq n$.

Now g_{ijk} is supposed to be true iff there is a path in G from i to j not using any intermediate node bigger than k;

and h_{ijk} is supposed to be **true** iff there is a path in *G* from *i* to *j* not using any intermediate node bigger than *k* but using *k*.

Correct value assignment for h_{ijk} and g_{ijk}

The correctness is proved by induction on k = 0, 1, ..., n.

- ▶ The base case k = 0 is covered by the definition of input gates.
- ► For k > 0, the circuit assigns $h_{ijk} = g_{ik(k-1)} \land g_{kj(k-1)}$.
 - By the inductive hypothesis (IH) h_{ijk} is **true** *iff* there is a path from *i* to *k* and from *k* to *j* not using any intermediate node bigger than k - 1 *iff* there is a path from *i* to *j* not using any intermediate node bigger than *k* but going through *k*.
- ▶ For k > 0, the circuit assigns $g_{ijk} = g_{ij(k-1)} \lor h_{ijk}$.

By IH g_{ijk} is **true** *iff* there is a path from *i* to *j* not using any node bigger than k - 1; or a path not using any node bigger than *k* but going through *k iff* there is a path from *i* to *j* not using any intermediate node bigger than *k*.

C 2006 TKK, Laboratory for Theoretical Computer Science

Reductions and Completeness

Correctness of the reduction

T-79.5103 / Autumn 2006

- ➤ In fact, the circuit R(G) implements the Floyd-Warshall algorithm for REACHABILITY.
- ➤ The output of R(G) is true iff g_{1nn} is true iff there is a path from 1 to n in G without any intermediate nodes bigger than n iff
 - there is a path from 1 to n in G.
- ➤ The circuit R(G) can be computed in O(log n) space using only three counters i, j, k.
- ▶ Note that R(G) is a monotone circuit (no NOT gates).

Reducing CIRCUIT SAT to SAT

Given a Boolean circuit C, the result R(C) is a Boolean formula in CNF such that C is satisfiable iff R(C) is satisfiable.

Definition. The formula R(C) uses all variables of C and it includes for each gate g of C a new variable g and the following clauses.

1. If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$.	$[g \leftrightarrow x]$
2. If g is a true (resp. false) gate: g (resp. $\neg g$).	
3. If g is a NOT gate with a predecessor h: $(\neg g \lor \neg h), (g \lor \neg $	$(\vee h). \ [g \leftrightarrow \neg h]$
4. If g is an AND gate with predecessors h, h' :	
$(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h').$	$[g \leftrightarrow (h \wedge h')]$
5. If g is an OR gate with predecessors h, h' :	
$(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h).$	$[g \leftrightarrow (h \lor h')]$
6. If g is also the output gate: g .	
We skip the correctness proof which is straightforward.)

reduction from L_1 to L_3 .

space where n = |x|.

T-79.5103 / Autumn 2006

3. Composing Reductions

REACHABILITY $<_{L}$ CIRCUIT VALUE $<_{L}$ CIRCUIT SAT $<_{L}$ SAT.

► So far, we have established a chain of reductions, i.e.

For instance, does REACHABILITY \leq_{I} SAT hold?

Proposition. If R is a reduction from language L_1 to L_2 and R' is a

reduction from language L_2 to L_3 , then the composition $R \cdot R'$ is a

▶ As R, R' are reductions, $x \in L_1$ iff $R(x) \in L_2$ iff $R'(R(x)) \in L_3$.

▶ It remains to show that R'(R(x)) can be computed in $O(\log n)$

© 2006 TKK, Laboratory for Theoretical Computer Science

Reductions and Completeness

 \blacktriangleright But do reductions compose. i.e., is \leq_{I} transitive?

18

Space consumption—cont'd

- ➤ Initially i = 1 and it is easy to simulate the first move of M_{R'} (scanning ▷).
- ➤ If M_{R'} moves right, simulate M_R to generate the next output symbol and increment *i* by one.
- ➤ If M_{R'} moves left, decrement i by one and run M_R on x from the beginning, counting symbols output and stopping when the ith symbol is output.
- The space required for simulating M_R on x as well as $M_{R'}$ on R(x) is $O(\log n)$ where n = |x|.
- The space needed for bookkeeping the output of M_R on x is $O(\log n)$ as $|R(x)| = O(n^k)$ as we need only indices stored in binary.

C 2006 TKK, Laboratory for Theoretical Computer Science

Reductions and Completeness

20

Logarithmic space consumption

- ➤ To construct a machine M for the composition R · R' working in space O(log n) requires care as the intermediate result computed by M_R cannot be stored (possibly longer than log n).
- A solution: simulate $M_{R'}$ on input R(x) by remembering the cursor position *i* of the input string of $M_{R'}$ which is the output string of M_R . Only the index *i* is stored (in binary) and the symbol currently scanned but not the whole string.

4. Completeness and Hard Problems

- ➤ The reducibility relation ≤_L orders problems with respect to their difficulty as it is reflexive and transitive (a preorder).
- Maximal elements in this order are particularly interesting.
 Definition. Let C be a complexity class and let L be a language in C. Then L is C-complete if for every L' ∈ C, L' ≤_L L.
- ➤ A language L is called C-hard if any language L' ∈ C is reducible to L but it is not known whether L ∈ C holds.
- ➤ The main complexity classes (P,NP,PSPACE,NL,...) have natural complete problems (as we shall see).

© 2006 TKK, Laboratory for Theoretical Computer Science

The role of completeness in complexity theory

- Complete problems are a central concept and methodological tool in complexity theory.
- The complexity of a problem is *categorized* by showing that it is complete for a complexity class.
- ► Complete problems capture the essence of a class.
- Completeness can be used to give a negative complexity result:
 A complete problem is the least likely among all problems in C to belong to a weaker class C' ⊆ C.

(If it does, then the whole class C coincides with the weaker class C^\prime as long as C^\prime is closed under reductions; see below.)

C 2006 TKK, Laboratory for Theoretical Computer Science

Reductions and Completeness

T-79.5103 / Autumn 2006

Closure under reductions

▶ A class C' is *closed under reductions* if whenever L is reducible to L' and $L' \in C'$, then $L \in C'$.

Proposition. P, **NP**, **coNP**, **L**, **NL**, **PSPACE**, **EXP** are all closed under reductions.

For example, if a P-complete problem L is in NL, then P = NL. Proof. We know that NL ⊆ P.

Let $L' \in \mathbf{P}$. As L is **P**-complete, then L' is reducible to L. Since **NL** is closed under reductions, $L' \in \mathbf{NL}$. Hence, $\mathbf{P} \subseteq \mathbf{NL}$.

> Similarly, if an NP-complete problem is in P, then P = NP.

Proving the equality of complexity classes

Proposition. If two complexity classes C and C' are

- 1. both closed under reductions and
- 2. there is a language L which is complete for C and C',
- then C = C'.

Proof.

- (\subseteq) Since *L* is complete for C, all languages in C reduce to $L \in C'$. As *C'* is closed under reductions, $C \subseteq C'$.
- (\supseteq) Follows by symmetry.

T-79.5103 / Autumn 2006 Reductions and Completeness	24
5. Table Method	
How to establish that a problem is a complete one for a class?	
Finding the first complete problem is the most problematic (then things become more straightforward as we shall see).	
To establish the first one we need capture in a problem the essence of the computation mode and resource bound for the class in question.	
Below we do this for the classes P and NP using the so-called table method in which logic plays a major role.	

T-79.5103 / Autumn 2006

Computation table

- Consider a polynomial time TM M = (K,Σ,δ,s) deciding a language L based on Σ.
- ➤ Its computation on input x can be thought of as a |x|^k × |x|^k computation table T where |x|^k is the time bound for M.
- ➤ Each row in the table is a time step of the computation ranging from 0 to |x|^k 1.
- ► Each column is a position in the string (same range).
- ➤ The entry (i, j) in T, (i.e. T_{i,j}) represents the contents of position j of the string of M at time i (after i steps of M on x).

C 2006 TKK, Laboratory for Theoretical Computer Science

Example								
Example								
	i/j	0	1	2	3	 $ x ^{k} - 1$		
	0	⊳	0s	1	1			
	1	⊳	0_q 1	1	1	 ${\color{black} \sqcup}$		
	2	⊳	1	1_q	1	 \Box		
	÷	÷						
	$ x ^{k} - 1$	⊳	"yes"	\Box	\Box	 \sqcup		
							•	

Computation table—cont'd

- ➤ The cursor never visits the leftmost ▷ which is achieved by merging two moves of *M* if *M* is about to visit the leftmost ▷.
 CSP The first symbol of each row is always ▷ (never ▷_a).
- ➤ If M halts before its time bound |x|^k expires (T_{i,j} = "yes" / "no" for some i < |x|^k 1 and j), then all subsequent rows will be identical.
- ▶ The table is *accepting* iff $T_{|x|^k-1, j} =$ "yes" for some *j*.

Proposition.

M accepts input x iff the computation table of M on x is accepting.

6. Computation as a Boolean Circuit

Any deterministic polynomial time computation can captured as a problem of determining the value of a Boolean circuit!

Theorem. CIRCUIT VALUE is P-complete.

- ➤ As CIRCUIT VALUE \in **P**, to establish **P**-completeness it is enough to show that for every language $L \in$ **P**, there is a reduction *R* from *L* to CIRCUIT VALUE.
- For an input x, the result R(x) is to be a variable-free circuit such that $x \in L$ iff the value of R(x) is **true**.
- > In the sequel, we consider a TM M deciding L in time n^k .

T-79.5103 / Autumn 2006

Reductions and Completeness

Reduction from $L \in \mathbf{P}$ to CIRCUIT VALUE

Consider the computation table T of M on input x:

- ➤ When i = 0 or j = 0 or $j = |x|^k 1$, the value of $T_{i,j}$ is known a priori: in the first case x or \sqcup s, in the second \triangleright , and \sqcup in the third.
- Any other entry $T_{i,j}$ depends only on the contents of the same or adjacent positions $T_{i-1,j-i}$, $T_{i-1,j}$ and $T_{i-1,j+1}$ at time i-1:

 \blacktriangleright The idea is to encode this relationship using a Boolean circuit.

A binary encoding for T

- ► Let Γ denote the set of all symbols appearing in the table T. Encode each symbol $\sigma \in \Gamma$ as a bit vector (s_1, s_2, \dots, s_m) where $s_1, s_2, \dots, s_m \in \{0, 1\}$ and $m = \lceil \log |\Gamma| \rceil$.
- ➤ The computation table can be thought of as a table of binary entries $S_{i,j,l}$ with $0 \le i, j \le n^k 1$ and $1 \le l \le m$.
- Thus each $S_{i,j,l}$ depends only on 3m entries

$$S_{i-1,j-1,l'}$$
, $S_{i-1,j,l'}$, and $S_{i-1,j+1,l'}$

where $1 \leq l' \leq m$

➤ So there are Boolean functions F₁,..., F_m with 3m inputs each such that for all i, j > 0,

 $S_{i,j,l} = F_l(S_{i-1,j-1,1},\ldots,S_{i-1,j-1,m},S_{i-1,j,1},\ldots,S_{i-1,j+1,m}).$

© 2006 TKK, Laboratory for Theoretical Computer Science

The definition of the reduction

- ➤ The reduction R(x) of x consists of (|x|^k 1) × (|x|^k 2) copies of circuit C one for each entry T_{i,j} that is not on the top row or the two extreme columns (call this C_{i,j})
- ➤ For i ≥ 1, the input gates of C_{i,j} are identified by the output gates of C_{i-1,j-1}, C_{i-1,j}, C_{i-1,j+1}.
- ➤ The sorts (true/false) of the input gates of R(x) correspond to the known values of the first row and the first and last column.
- ➤ The output gate of R(x) is the first output of C_{|x|^k-1,1} (assuming that M halts always with cursor in the second string position and the first bit of "yes" is 1 and that of "no" is 0).

C 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006

Reductions and Completeness

Correctness of the reduction

▶ The value of R(x) is **true** iff $x \in L$:

Suppose that the value of R(x) is **true**.

It can be shown by induction on *i* that the output values of $C_{i,j}$ give the binary encoding of the *i*th row of *T*.

As R(x) is **true**, then the entry $T_{|x|^k-1,1}$ is "yes". Hence, the table is accepting and so is M implying $x \in L$.

If $x \in L$, the table is accepting and the value of R(x) is **true**.

➤ The circuit R(x) can be computed in logarithmic space: Input gates can be constructed by counting up to |x|^k and inspecting input x (O(log n) space).

Other gates can be generated by manipulating indices in $O(\log n)$ space as the size of *C* is fixed and independent of |x|.

Other P-complete problems

- ➤ Note that NOT gates can be eliminated from variable-free circuits: Move NOTs downwards by applying De Morgan's laws until input gates are reached where ¬true is changed to false and vice versa.
- We call circuits containing only AND and OR gates (but no NOT gates) monotone circuits.
- Monotone circuits can only compute *monotone Boolean functions*.
 (A Boolean function is monotone if it satisfies the following property: if one of the inputs changes from **false** to **true**, the value of the function cannot changes from **true** to **false**.)

Corollary. MONOTONE CIRCUIT VALUE is P-complete.

Corollary. HORNSAT is P-complete.

(See tutorials.)

C 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 Reductions and Completeness **7. Capturing nondeterministic computation** Any nondeterministic polynomial time computation can captured as a circuit satisfiability problem! Theorem. CIRCUIT SAT is NP-complete. Proof. CIRCUIT SAT is in NP. Let $L \in NP$. We'll describe a reduction R which for each string x constructs a Boolean circuit R(x) such that $x \in L$ iff R(x) is satisfiable. Let M be a single-string NTM that decides L in time n^k .

Standardizing choices made by ${\cal M}$

It is assumed that M has exactly two nondeterministic choices (δ₁, δ₂ ∈ Δ) at each step of computation.
 The cases that |Δ| > 2 or |Δ| < 2 can be avoided by adding new

states to *M* or by assuming that choices coincide $(\delta_1 = \delta_2)$.

- ➤ Under this assumption, a sequence of nondeterministic choices **c** can be represented as a bit string $(c_0, c_1, \ldots, c_{|x|^k-2}) \in \{0, 1\}^{|x|^k-1}$.
- If we fix the sequence of choices c, then the computation of M becomes effectively deterministic.
- Let us define the computation table $T(M, x, \mathbf{c})$ corresponding to the machine M, an input x, and a sequence of choices \mathbf{c} .

C 2006 TKK, Laboratory for Theoretical Computer Science

Correctness of the reduction

- ➤ The circuit R(x) is constructed as in the deterministic case but circuitry for c must be incorporated.
- ➤ The circuit R(x) can be computed in logarithmic space as C has a fixed constant size independent of |x|.
- ➤ Moreover, the circuit R(x) is satisfiable iff there is a sequence of choices c such that the computation table is accepting iff x ∈ L.

Corollary. (Cook's theorem) SAT is NP-complete.

Proof. Let $L \in \mathbf{NP}$. Hence, L is reducible to CIRCUIT SAT as CIRCUIT SAT is **NP**-complete. But CIRCUIT SAT is reducible to SAT. Hence, L is reducible to SAT as reductions compose.

On the other hand, $SAT \in NP$ so that SAT is NP-complete.

