REDUCTIONS AND COMPLETENESS

- Reductions between problems
- Examples of reductions
- Composing reductions
- Completeness and hard problems
> Table method
- Computation as a Boolean circuit
- Capturing nondeterministic computation
(C. Papadimitriou: Computational complexity, Chapters 8.1-8.2)
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

1. Reductions between Problems

- A complexity class is an infinite collection of languages. Example. The class NP contains languages such as TSP(D), SAT, HORNSAT, REACHABILITY,
> Not all decision problems seem to be equally hard to solve; can problems be somehow ordered by difficulty?
- Such an ordering relation is definable using a notion of a reduction:
A is at least as hard as B if B reduces to A.

Basic requirements for reductions

- A problem B reduces to A if there is a transformation R which for every input x of B produces an equivalent input $R(x)$ of A.
- Here equivalent means that the "yes" /"no" answer for $R(x)$ considered as A 's input is the correct answer to x as an input of B, i.e., $x \in B$ iff $R(x) \in A$.
- To solve B on input x we need to compute $R(x)$ and solve A on it:

© 2006 TKK, Laboratory for Theoretical Computer Science

> The notion of a reduction seems reasonable to capture that A is at least as hard as B except when R is very hard to compute (e.g., when reducing TSP(D) to HORNSAT).
- Possible limits on resources in reductions:
- Cook reductions (polynomial-time Turing reductions)
- Karp reductions (polynomial-time many-one reductions)
- Log-space reductions (used here)

Definition. A language L_{1} is reducible to $L_{2}\left(L_{1} \leq_{\mathrm{L}} L_{2}\right)$ iff there is a function R from strings to strings computable by a deterministic Turing machine in space $\mathrm{O}(\log n)$ such that for all inputs x,

$$
x \in L_{1} \text { iff } R(x) \in L_{2} .
$$

The function R is called a reduction from L_{1} to L_{2}.

Time efficiency of reductions

Proposition. If R is a reduction computed by a deterministic TM M, then for all inputs x, M halts after a polynomial number of steps.

Proof sketch.

- As M works in space $\mathrm{O}(\log n)$, there are $\mathrm{O}\left(n c^{\log n}\right)$ possible configurations for M on input x where $|x|=n$.
> Since M is deterministic and halts on every input, it cannot repeat any configuration. Hence M halts in at most

$$
c_{1} n c^{\log n}=c_{1} n n^{\log c}=\mathrm{O}\left(n^{k}\right)
$$

steps for some k.
Note that as output string $R(x)$ is computed in a polynomial number of steps, its length is also polynomial w.r.t. $|x|$.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

2. Examples of Reductions

We will consider a number of reductions, i.e.

1. from HAMILTON PATH to SAT,
2. from REACHABILITY to CIRCUIT VALUE,
3. from CIRCUIT SAT to SAT, and
4. from CIRCUIT VALUE to CIRCUIT SAT.

In each case, we present a reduction R from the former language (say L_{1}) to the latter language (say L_{2}) such that for every string x based on the alphabet of L_{1},
(i) $x \in L_{1}$ iff $R(x) \in L_{2}$ and
(ii) $R(x)$ can be computed in $\mathrm{O}(\log n)$ space.

Reducing HAMILTON PATH to SAT

Definition. The problem HAMILTON PATH is defined as follows: INSTANCE: A graph G.
QUESTION: Is there a path in G that visits every node exactly once?
> To show that SAT is at least as hard as HAMILTON PATH we must establish a reduction R from HAMILTON PATH to SAT.

- For a graph G, the outcome $R(G)$ is a conjunction of clauses such that G has a Hamilton path iff $R(G)$ is satisfiable.
- Suppose G has n nodes, $1,2, \ldots, n$.
- Then $R(G)$ has n^{2} Boolean variables $x_{i j}$ where $1 \leq i, j \leq n$ and $x_{i j}$ denotes that the i th node on the path is j.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 Reductions and Completeness

Reducing a graph G to a Boolean formula $R(G)$ in CNF

Definition. For a graph G with n nodes, the formula $R(G)$ is the conjunction of the following clauses:

1. For each node $j: x_{1 j} \vee \cdots \vee x_{n j}$ (node j appears on the path).
2. For all j, i, k where $i \neq k: \neg x_{i j} \vee \neg x_{k j}$
(node j cannot be the i th and k th node simultaneously).
3. For all $i: x_{i 1} \vee \cdots \vee x_{i n}$ (some node is the i th node).
4. For all i, j, k where $j \neq k: \neg x_{i j} \vee \neg x_{i k}$
(no two nodes can be i th simultaneously).
5. For each pair (i, j) not an edge in G and for all $k=1, \ldots, n-1$:
$\neg x_{k i} \vee \neg x_{(k+1) j}$
(node j cannot come right after node i in the path).
(\Leftarrow) Let $R(G)$ have a satisfying truth assignment T.

- By clauses $(1,2)$ for every node j there is unique i such that $T\left(x_{i j}\right)=$ true .
- By clauses $(3,4)$ for every i there is unique node j such that $T\left(x_{i j}\right)=$ true.
- Thus T represents a permutation $\pi(1), \ldots, \pi(n)$ of the nodes where $\pi(i)=j$ iff $T\left(x_{i j}\right)=$ true
- By clauses (5) for all k, there is an edge $(\pi(k), \pi(k+1))$ in G. Hence $(\pi(1), \ldots, \pi(n))$ a Hamilton path.
(\Rightarrow) Let G have a Hamilton path $(\pi(1), \ldots, \pi(n))$ where π is a permutation. Then $R(G)$ is satisfied by a truth assignment T defined by $T\left(x_{i j}\right)=\mathbf{t r u e}$ if $\pi(i)=j$ else $T\left(x_{i j}\right)=\mathbf{f a l s e}$.

© 2006 TKK, Laboratory for Theoretical Computer Science

Proof of logarithmic space consumption

We show that $R(G)$ can be computed in space $\mathrm{O}(\log n)$.
Given G as an input, a TM M outputs $R(G)$ as follows:

- M first outputs clauses (1-4) not depending on G one by one using three counters i, j, k.
- Each counter is represented in binary within $\log n$ space.
- M outputs clauses (5) by considering each pair (i, j) in turn: if (i, j) is not an edge in G (M checks this first), then M outputs clauses $\neg x_{k i} \vee \neg x_{(k+1) j}$ one by one for all $k=1, \ldots, n-1$.
- Again space is needed only for the counters i, j, k, i.e. at most $3 \log n$ in total.

Hence, $R(G)$ can be computed in space $\mathrm{O}(\log n)$.

Reducing REACHABILITY to CIRCUIT VALUE

For a graph G, the outcome $R(G)$ is a variable-free circuit such that
the output of $R(G)$ is true iff there is a path from 1 to n in G.
> The gates of $R(G)$ are of the following two forms:
$-g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$ and

- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
> Now $g_{i j k}$ is supposed to be true iff there is a path in G from i to j not using any intermediate node bigger than k;
and $h_{i j k}$ is supposed to be true iff there is a path in G from i to j not using any intermediate node bigger than k but using k.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 Reductions and Completeness

The structure of the circuit $R(G)$

> For $k=0$, the gate $g_{i j k}$ is an input gate in $R(G)$:
$g_{i j 0}$ is a true gate if $i=j$ or (i, j) is an edge in G and a false gate otherwise.
$>$ For $k=1,2, \ldots, n$, there are the following gates in $R(G)$:

The gate $g_{1 n n}$ is the output of $R(G)$.
The circuit $R(G)$ is acyclic and variable-free.

Correct value assignment for $h_{i j k}$ and $g_{i j k}$

The correctness is proved by induction on $k=0,1, \ldots, n$.
> The base case $k=0$ is covered by the definition of input gates.
$>$ For $k>0$, the circuit assigns $h_{i j k}=g_{i k(k-1)} \wedge g_{k j(k-1)}$.
By the inductive hypothesis (IH) $h_{i j k}$ is true iff there is a path from i to k and from k to j not using any intermediate node bigger than $k-1$ iff there is a path from i to j not using any intermediate node bigger than k but going through k.
$>$ For $k>0$, the circuit assigns $g_{i j k}=g_{i j(k-1)} \vee h_{i j k}$.
By IH $g_{i j k}$ is true iff there is a path from i to j not using any node bigger than $k-1$; or a path not using any node bigger than k but going through k iff there is a path from i to j not using any intermediate node bigger than k.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

Correctness of the reduction

> In fact, the circuit $R(G)$ implements the Floyd-Warshall algorithm for REACHABILITY.

- The output of $R(G)$ is true iff $g_{1 n n}$ is true iff there is a path from 1 to n in G without any intermediate nodes bigger than n iff
there is a path from 1 to n in G.
> The circuit $R(G)$ can be computed in $\mathrm{O}(\log n)$ space using only three counters i, j, k.
> Note that $R(G)$ is a monotone circuit (no NOT gates).

Reducing CIRCUIT SAT to SAT

Given a Boolean circuit C, the result $R(C)$ is a Boolean formula in CNF such that C is satisfiable iff $R(C)$ is satisfiable.

Definition. The formula $R(C)$ uses all variables of C and it includes for each gate g of C a new variable g and the following clauses.

1. If g is a variable gate $x:(g \vee \neg x),(\neg g \vee x)$.
2. If g is a true (resp. false) gate: g (resp. $\neg g$).
3. If g is a NOT gate with a predecessor $h:(\neg g \vee \neg h),(g \vee h)$. [$g \leftrightarrow \neg h]$
4. If g is an AND gate with predecessors h, h^{\prime} :
$(\neg g \vee h),\left(\neg g \vee h^{\prime}\right),\left(g \vee \neg h \vee \neg h^{\prime}\right)$.

$$
\left[g \leftrightarrow\left(h \wedge h^{\prime}\right)\right]
$$

5. If g is an OR gate with predecessors h, h^{\prime} : $\left(\neg g \vee h \vee h^{\prime}\right),\left(g \vee \neg h^{\prime}\right),(g \vee \neg h)$.

$$
\left[g \leftrightarrow\left(h \vee h^{\prime}\right)\right]
$$

6. If g is also the output gate: g.

We skip the correctness proof which is straightforward.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006 Reductions and Completeness

Reducing CIRCUIT VALUE to CIRCUIT SAT

- CIRCUIT VALUE is a special case of CIRCUIT SAT: all inputs of CIRCUIT VALUE are also inputs of CIRCUIT SAT and for those CIRCUIT VALUE and CIRCUIT SAT coincide.
- Thus CIRCUIT SAT is a generalization of CIRCUIT VALUE.
$>$ There is a trivial reduction, i.e. identity function $I(x)=x$, from CIRCUIT VALUE to CIRCUIT SAT.

3. Composing Reductions

> So far, we have established a chain of reductions, i.e. REACHABILITY \leq_{L} CIRCUIT VALUE \leq_{L} CIRCUIT SAT \leq_{L} SAT.
\geqslant But do reductions compose, i.e., is \leq_{L} transitive? For instance, does REACHABILITY \leq_{L} SAT hold?

Proposition. If R is a reduction from language L_{1} to L_{2} and R^{\prime} is a reduction from language L_{2} to L_{3}, then the composition $R \cdot R^{\prime}$ is a reduction from L_{1} to L_{3}.
> As R, R^{\prime} are reductions, $x \in L_{1}$ iff $R(x) \in L_{2}$ iff $R^{\prime}(R(x)) \in L_{3}$.

- It remains to show that $R^{\prime}(R(x))$ can be computed in $\mathrm{O}(\log n)$ space where $n=|x|$.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

Logarithmic space consumption

> To construct a machine M for the composition $R \cdot R^{\prime}$ working in space $\mathrm{O}(\log n)$ requires care as the intermediate result computed by M_{R} cannot be stored (possibly longer than $\log n$).

- A solution: simulate $M_{R^{\prime}}$ on input $R(x)$ by remembering the cursor position i of the input string of $M_{R^{\prime}}$ which is the output string of M_{R}. Only the index i is stored (in binary) and the symbol currently scanned but not the whole string.

Space consumption-cont'd

- Initially $i=1$ and it is easy to simulate the first move of $M_{R^{\prime}}$ (scanning \triangleright).
- If $M_{R^{\prime}}$ moves right, simulate M_{R} to generate the next output symbol and increment i by one.
- If $M_{R^{\prime}}$ moves left, decrement i by one and run M_{R} on x from the beginning, counting symbols output and stopping when the i th symbol is output.
> The space required for simulating M_{R} on x as well as $M_{R^{\prime}}$ on $R(x)$ is $\mathrm{O}(\log n)$ where $n=|x|$.
- The space needed for bookkeeping the output of M_{R} on x is $\mathrm{O}(\log n)$ as $|R(x)|=\mathrm{O}\left(n^{k}\right)$ as we need only indices stored in binary.
© 2006 TKK, Laboratory for Theoretical Computer Science

> The reducibility relation \leq_{L} orders problems with respect to their difficulty as it is reflexive and transitive (a preorder).
- Maximal elements in this order are particularly interesting. Definition. Let C be a complexity class and let L be a language in C. Then L is C-complete if for every $L^{\prime} \in \mathrm{C}, L^{\prime} \leq_{\mathrm{L}} L$.
- A language L is called C -hard if any language $L^{\prime} \in \mathrm{C}$ is reducible to L but it is not known whether $L \in \mathrm{C}$ holds.
> The main complexity classes ($\mathbf{P}, \mathbf{N P}, \mathbf{P S P A C E}, \mathbf{N L}, \ldots$) have natural complete problems (as we shall see).

The role of completeness in complexity theory

- Complete problems are a central concept and methodological tool in complexity theory.
> The complexity of a problem is categorized by showing that it is complete for a complexity class.
- Complete problems capture the essence of a class.
- Completeness can be used to give a negative complexity result:

A complete problem is the least likely among all problems in C to belong to a weaker class $\mathbf{C}^{\prime} \subseteq \mathbf{C}$.
(If it does, then the whole class C coincides with the weaker class C^{\prime} as long as C^{\prime} is closed under reductions; see below.)
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

Closure under reductions

- A class C^{\prime} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathrm{C}^{\prime}$, then $L \in \mathrm{C}^{\prime}$.
Proposition. P,NP, coNP,L,NL,PSPACE,EXP are all closed under reductions.
> For example, if a \mathbf{P}-complete problem L is in $\mathbf{N L}$, then $\mathbf{P}=\mathbf{N L}$. Proof. We know that $\mathbf{N L} \subseteq \mathbf{P}$.
Let $L^{\prime} \in \mathbf{P}$. As L is \mathbf{P}-complete, then L^{\prime} is reducible to L. Since $\mathbf{N L}$ is closed under reductions, $L^{\prime} \in \mathbf{N L}$. Hence, $\mathbf{P} \subseteq \mathbf{N L}$.

Similarly, if an NP-complete problem is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$

Proving the equality of complexity classes

Proposition. If two complexity classes C and C^{\prime} are

1. both closed under reductions and
2. there is a language L which is complete for C and C^{\prime},
then $\mathrm{C}=\mathrm{C}^{\prime}$.
Proof.
(\subseteq) Since L is complete for C , all languages in C reduce to $L \in \mathrm{C}^{\prime}$. As C^{\prime} is closed under reductions, $\mathrm{C} \subseteq \mathrm{C}^{\prime}$.
(\supseteq) Follows by symmetry.
© 2006 TKK, Laboratory for Theoretical Computer Science

How to establish that a problem is a complete one for a class?

- Finding the first complete problem is the most problematic (then things become more straightforward as we shall see).
- To establish the first one we need capture in a problem the essence of the computation mode and resource bound for the class in question.
- Below we do this for the classes \mathbf{P} and NP using the so-called table method in which logic plays a major role.

Computation table

> Consider a polynomial time TM $M=(K, \Sigma, \delta, s)$ deciding a language L based on Σ.

- Its computation on input x can be thought of as a $|x|^{k} \times|x|^{k}$ computation table T where $|x|^{k}$ is the time bound for M.
> Each row in the table is a time step of the computation ranging from 0 to $|x|^{k}-1$.
> Each column is a position in the string (same range).
> The entry (i, j) in T, (i.e. $\left.T_{i, j}\right)$ represents the contents of position j of the string of M at time i (after i steps of M on x).
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

Example

i / j	0	1	2	3	\ldots	$\|x\|^{k}-1$
0	\triangleright	0_{s}	1	1	\ldots	\sqcup
1	\triangleright	0_{q}	1	1	\ldots	\sqcup
2	\triangleright	1	1_{q}	1	\ldots	\sqcup
\vdots	\vdots					
$\|x\|^{k}-1$	\triangleright	$" y e s "$	\sqcup	\sqcup	\ldots	\sqcup

Computation table-cont'd

Some standardizing assumptions are made:
> M has only one string.
$>M$ halts on any input x after at most $|x|^{k}-2$ steps (k is chosen so that this is guaranteed for $|x| \geq 2$).
> Strings in the table are padded with $\sqcup \mathrm{s}$ to be of same length $\left(|x|^{k}\right)$.

- If at time i the state is q and the cursor is scanning j th symbol σ, then the entry $T_{i, j}$ is σ_{q} (rather than σ);
except for "yes" / "no" for which the entry is "yes" / "no".
$>$ The cursor starts at the first symbol of the input (not at \triangleright).
© 2006 TKK, Laboratory for Theoretical Computer Science

> The cursor never visits the leftmost \triangleright which is achieved by merging two moves of M if M is about to visit the leftmost \triangleright.
T- The first symbol of each row is always $\triangleright\left(\right.$ never $\left.\triangleright_{q}\right)$.
- If M halts before its time bound $|x|^{k}$ expires ($T_{i, j}=$ "yes" / "no" for some $i<|x|^{k}-1$ and j), then all subsequent rows will be identical.
> The table is accepting iff $T_{|x|^{k}-1, j}=$ "yes" for some j.
Proposition.
M accepts input x iff the computation table of M on x is accepting.

6. Computation as a Boolean Circuit

Any deterministic polynomial time computation can captured as a problem of determining the value of a Boolean circuit!

Theorem. CIRCUIT VALUE is \mathbf{P}-complete.
$>$ As CIRCUIT VALUE $\in \mathbf{P}$, to establish \mathbf{P}-completeness it is enough to show that for every language $L \in \mathbf{P}$, there is a reduction R from L to CIRCUIT VALUE.
$>$ For an input x, the result $R(x)$ is to be a variable-free circuit such that $x \in L$ iff the value of $R(x)$ is true.
> In the sequel, we consider a TM M deciding L in time n^{k}.
© 2006 TKK, Laboratory for Theoretical Computer Science

Reduction from $L \in \mathbf{P}$ to CIRCUIT VALUE

Consider the computation table T of M on input x :
> When $i=0$ or $j=0$ or $j=|x|^{k}-1$, the value of $T_{i, j}$ is known a priori: in the first case x or $\sqcup \mathrm{s}$, in the second \triangleright, and \sqcup in the third.
> Any other entry $T_{i, j}$ depends only on the contents of the same or adjacent positions $T_{i-1, j-i}, T_{i-1, j}$ and $T_{i-1, j+1}$ at time $i-1$:

The idea is to encode this relationship using a Boolean circuit

A binary encoding for T

- Let Γ denote the set of all symbols appearing in the table T. Encode each symbol $\sigma \in \Gamma$ as a bit vector $\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ where $s_{1}, s_{2}, \ldots, s_{m} \in\{0,1\}$ and $m=\lceil\log |\Gamma|\rceil$.
> The computation table can be thought of as a table of binary entries $S_{i, j, l}$ with $0 \leq i, j \leq n^{k}-1$ and $1 \leq l \leq m$.

Thus each $S_{i, j, l}$ depends only on $3 m$ entries

$$
S_{i-1, j-1, l^{\prime}}, S_{i-1, j, l^{\prime}}, \text { and } S_{i-1, j+1, l^{\prime}}
$$

where $1 \leq l^{\prime} \leq m$
So there are Boolean functions F_{1}, \ldots, F_{m} with $3 m$ inputs each such that for all $i, j>0$,

$$
S_{i, j, l}=F_{l}\left(S_{i-1, j-1,1}, \ldots, S_{i-1, j-1, m}, S_{i-1, j, 1}, \ldots S_{i-1, j+1, m}\right)
$$

© 2006 TKK, Laboratory for Theoretical Computer Science

with $3 m$ inputs and m outputs that computes the binary encoding of $T_{i, j}$ given the binary encodings of $T_{i-1, j-1}, T_{i-1, j}$, and $T_{i-1, j+1}$ for all $i=1, \ldots|x|^{k}$ and for all $j=1, \ldots|x|^{k}-2$.

- Note that C depends only on M and has a fixed constant size independent of the length of input x.

The definition of the reduction

> The reduction $R(x)$ of x consists of $\left(|x|^{k}-1\right) \times\left(|x|^{k}-2\right)$ copies of circuit C one for each entry $T_{i, j}$ that is not on the top row or the two extreme columns (call this $C_{i, j}$)
$>$ For $i \geq 1$, the input gates of $C_{i, j}$ are identified by the output gates of $C_{i-1, j-1}, C_{i-1, j}, C_{i-1, j+1}$.
> The sorts (true/false) of the input gates of $R(x)$ correspond to the known values of the first row and the first and last column.
> The output gate of $R(x)$ is the first output of $C_{|x|^{k}-1,1}$ (assuming that M halts always with cursor in the second string position and the first bit of "yes" is 1 and that of "no" is 0).
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

Correctness of the reduction

> The value of $R(x)$ is true iff $x \in L$:
Suppose that the value of $R(x)$ is true.
It can be shown by induction on i that the output values of $C_{i, j}$ give the binary encoding of the i th row of T.

As $R(x)$ is true, then the entry $T_{|x|^{k}-1,1}$ is "yes". Hence, the table is accepting and so is M implying $x \in L$.
If $x \in L$, the table is accepting and the value of $R(x)$ is true.
$>$ The circuit $R(x)$ can be computed in logarithmic space: Input gates can be constructed by counting up to $|x|^{k}$ and inspecting input $x(\mathrm{O}(\log n)$ space $)$.
Other gates can be generated by manipulating indices in $\mathrm{O}(\log n)$ space as the size of C is fixed and independent of $|x|$.

Other P-complete problems

> Note that NOT gates can be eliminated from variable-free circuits: Move NOTs downwards by applying De Morgan's laws until input gates are reached where \neg true is changed to false and vice versa.
> We call circuits containing only AND and OR gates (but no NOT gates) monotone circuits.

- Monotone circuits can only compute monotone Boolean functions. (A Boolean function is monotone if it satisfies the following property: if one of the inputs changes from false to true, the value of the function cannot changes from true to false.)

Corollary. MONOTONE CIRCUIT VALUE is \mathbf{P}-complete.
Corollary. HORNSAT is \mathbf{P}-complete.
(See tutorials.)
© 2006 TKK, Laboratory for Theoretical Computer Science

$$
\text { T-79.5103 / Autumn } 2006 \quad \text { Reductions and Completeness }
$$

7. Capturing nondeterministic computation

Any nondeterministic polynomial time computation can captured as a circuit satisfiability problem!
Theorem. CIRCUIT SAT is NP-complete.
Proof.
\rightarrow CIRCUIT SAT is in NP.

- Let $L \in \mathbf{N P}$. We'll describe a reduction R which for each string x constructs a Boolean circuit $R(x)$ such that

$$
x \in L \text { iff } R(x) \text { is satisfiable. }
$$

Let M be a single-string NTM that decides L in time n^{k}.

Standardizing choices made by M

$>$ It is assumed that M has exactly two nondeterministic choices $\left(\delta_{1}, \delta_{2} \in \Delta\right)$ at each step of computation.
The cases that $|\Delta|>2$ or $|\Delta|<2$ can be avoided by adding new states to M or by assuming that choices coincide $\left(\delta_{1}=\delta_{2}\right)$.

- Under this assumption, a sequence of nondeterministic choices \mathbf{c} can be represented as a bit string $\left(c_{0}, c_{1}, \ldots, c_{|x|^{k}-2}\right) \in\{0,1\}^{|x|^{k}-1}$.
- If we fix the sequence of choices \mathbf{c}, then the computation of M becomes effectively deterministic.
> Let us define the computation table $T(M, x, \mathbf{c})$ corresponding to the machine M, an input x, and a sequence of choices \mathbf{c}.
© 2006 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2006
Reductions and Completeness

A binary encoding for $T(M, x, \mathbf{c})$

- The top row and extreme columns are predetermined as before.
- All other entries $T_{i, j}$ depend only on $T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}$, and the choice c_{i-1} at the previous step. There is a Boolean circuit C

with $3 m+1$ inputs and m outputs that computes the binary encoding of $T_{i, j}$ given the binary encodings of $T_{i-1, j-1}, T_{i-1, j}$, $T_{i-1, j+1}$ and the previous choice c_{i-1}.

Correctness of the reduction

- The circuit $R(x)$ is constructed as in the deterministic case but circuitry for \mathbf{c} must be incorporated.
- The circuit $R(x)$ can be computed in logarithmic space as C has a fixed constant size independent of $|x|$.
$>$ Moreover, the circuit $R(x)$ is satisfiable iff there is a sequence of choices \mathbf{c} such that the computation table is accepting iff $x \in L$.

Corollary. (Cook's theorem) SAT is NP-complete.
Proof. Let $L \in \mathbf{N P}$. Hence, L is reducible to CIRCUIT SAT as CIRCUIT SAT is NP-complete. But CIRCUIT SAT is reducible to SAT. Hence, L is reducible to SAT as reductions compose.
On the other hand, SAT $\in \mathbf{N P}$ so that SAT is NP-complete.
© 2006 TKK, Laboratory for Theoretical Computer Science

The idea of reducing one problem, or language, into another.
> You should know the basic properties of \mathbf{L}-reductions (e.g. compositionality) and be able to construct reductions on your own.

- The definitions of C-hard and C-complete problems/languages for a complexity class C.
> Understanding the role of complete problems in complexity theory.
- Fundamental completeness results regarding CIRCUIT VALUE, HORNSAT, CIRCUIT SAT, and SAT.

