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Figure 8: Detailed balance conditionπi pi j = π j p ji .

But this is straightforward:

∑
j∈S

π j p ji = ∑
j∈S

πi pi j = πi ∑
j∈S

p ji = πi .

2

Observe the intuition underlying the detailed balance condition: At stationarity,
an equal amount of probability mass flows in each step fromi to j as from j to
i.(The “ergodic flows”’ between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graph,V = {1, . . . ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbours is selected as
the next state, uniformly at random. That is,

pi j =

{ 1
di

, if (i, j) ∈ E
0, otherwise

(di = deg(i))

Let us check that this chain is reversible, with stationary distribution

π =

[
d1

d
d2

d
· · · dn

d

]

,

whered = ∑n
i=1di = 2|E|. The detailed balance condition is easy to verify:

πi pi j =

{
di
d · 1

di
= 1

d =
d j
d · 1

d j
= π j p ji , if (i, j) ∈ E

0 = π j p ji , if (i, j) /∈ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that
this chain has the unique stationary distributionπ =

[
1
3

1
3

1
3

]
. However, for

any i = 1,2,3:

πi pi,(i+1) =
1
3
· 2
3

=
2
9

> πi+1p(i+1),i =
1
3
· 1
3

=
1
9
.

Thus, even in a stationary situation, the chain has a “preference” of moving in the
counter-clockwise direction, i.e. it is not time-symmetric.
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Figure 9: A nonreversible Markov chain.

Figure 10: Hard-core colouring of a lattice.

2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) sampling, which is an
extremely important method for dealing with “hard-to-access” distributions.

Assume that one needs to generate samples according to a probability distribution
π, but π is too complicated to describe explicitly. A clever solution is then to
construct a Markov chain that converges to stationary distribution π, let it run
for a while and then sample states of the chain. (However, oneobvious problem
that this approach raises is determining how long is “for a while”? This leads to
interesting considerations of the convergence rates and “rapid mixing” of Markov
chains.)

Example 2.1 The hard-core model.

A hard-core colouringof a graphG = (V,E) is a mapping

ξ : V →{0,1} (“empty” vs. “occupied” sites)

such that

(i, j) ∈ E ⇒ ξ(i) = 0∨ξ( j) = 0 (no two occupied sites are adjacent)
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E.g. on a lattice graph, the hard-core colouring condition models an exclusion
principle, whereby a “particle” at one site excludes the presence of “particles” at
neighbouring sites, cf. Figure 10. In computer science terms, a hard-core colour-
ing of a graphG corresponds to an independent set of nodes fromG.

Denote byµG the uniform distribution over all theZG valid hard-core colourings of
G. We would like to sample colourings according toµG, e.g. in order to compute
the expected number of ones in a valid colouring:

E(n(X)) = ∑
ξ∈{0,1}V

n(ξ)µG(ξ) =
1

ZG
∑

ξ∈{0,1}V

n(ξ)I[ξ is valid],

wheren(ξ) denotes the number of ones in colouringξ.

However, the combinatorial structure of distributionµG is quite complicated; it is
far from clear how one could pick a random valid hard-core colouring of graph
G. (Even computing their total numberZG is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless P = NP.)

Given a graphG = (V,E), V = {1, . . . ,n}, let us consider the following Markov
chain(X0,X1, . . .) on the space of valid hard-core colourings ofG:

• Initially chooseX0 to be any valid hard-core colouring ofG.

• Then, given colouringXt, generate colouringXt+1 as follows:

1. Choose some nodei ∈V uniformly at random.

2. If all the neighbours ofi have colour 0 inXt , then letXt+1(i) = 1 with
probability 1/2 andXt+1(i) = 0 with probability 1/2.

3. At all other nodesj, let Xt+1( j) = Xt( j).

It can be seen that the chain thus determined is irreducible (since all colourings
communicate via the all-zeros colouring) and aperiodic (since for any colouring
ξ, Pξξ > 0).

To see that the chain hasµG as its unique stationary distribution, it suffices to
check the detailed balance conditions with respect toµG. Let ξ,ξ′ be two different
colourings. If they differ at more than one node, thenPξξ′ = Pξ′ξ = 0, so it suffices
to check the case whereξ(i) 6= ξ′(i) at a single nodei. But then

µG(ξ)Pξξ′ =
1

ZG
· 1
n
· 1
2

= µG(ξ′)Pξ′ξ.

The above hard-core sampling algorithm is a special case of aGibbs samplerfor
a target distributionπ on a state space of the formS= CV .



24 Part I. Markov Chains and Stochastic Sampling

The general principle is to choose in step 2 of the state update rule the new value
for Xt+1(i) according to theconditionalπ-distribution:

PrMC(Xt+1(i) = c) = Prπ(ξ(i) = c | ξ( j) = Xt( j), j 6= i).

(In addition, the chain needs to be initialised in a stateX0 that has nonzeroπ-
probability.) It can be seen that the chain so obtained is aperiodic and hasπ as
a stationary distribution. Whether the chain is also irreducible depends on which
statesξ have nonzeroπ-probability.

Example 2.2 Sampling graph k-colourings.Let G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in thespaceS= {1, . . . ,k}V

of k-colourings ofG:

• Initially chooseX0 to be any validk-colouring ofG. (Of course, finding a
valid k-colouring is an NP-complete problem fork≥ 3, but let us not worry
about that).

• Then, given colouringXt , generate colouringXt+1 as follows:

1. Choose some nodei ∈V uniformly at random.

2. LetC′ be the set of colours assigned byXt to the neighbours ofi:

C′ = {Xt( j) | (i, j) ∈ E}.

(Note that|C′| < k.) Choose a colour forXt+1(i) uniformly at random
from the set{1, . . . ,k}\C′.

3. At all other nodesj, let Xt+1( j) = Xt( j).

Note that it is a nontrivial question whether this chain is irreducible or not.

Another general family of MCMC samplers are theMetropolis chains.

Let the state spaceShave some neighbourhood structure, so that it may be viewed
as a (large) connected graph(S,N). Denote byN(i) the set of neighbours of state
i, and letdi = |N(i)|. We assume that the neighbourhood structure is symmetric,
so thati ∈ N( j) if and only if j ∈ N(i).

Then the (basic)Metropolis samplerfor distributionπ onSoperates as follows:

• Initially chooseX0 to be some statei ∈ S.

• Then, given stateXt = i, stateXt+1 is obtained as follows:
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1. Choose somej ∈ N(i) uniformly at random.

2. With probability min
{

π jdi
πid j

,1
}

, acceptXt+1 = j. Otherwise letXt+1 =

i.

Thus, fully written out the transition probabilities are:

pi j =







1
di

min

{
π jdi

πid j
,1

}

, if j ∈ N(i)

0, if j /∈ N(i), j 6= i
1− ∑

j∈N(i)

pi j , if j = i

To show that this chain hasπ as its stationary distribution, it suffices to check the
detailed balance conditions:

πi pi j = π j p ji ∀ i, j ∈ S.

The conditions are trivial ifi = j or j /∈ N(i), so let us consider the casej ∈ N(i).
There are two subcases:

(i) Caseπ jdi
πid j

≥ 1: Then:







πi pi j = πi ·
1
di
·1

π j p ji = π j ·
1
d j

· πid j

π jdi
=

πi

di

(ii) Caseπ jdi
πid j

< 1: Then:







πi pi j = πi ·
1
di
· π jdi

πid j
=

π j

d j

π j p ji = π j ·
1
d j

·1

(Note that in both casesπi pi j = π j p ji = min{πi
di

,
π j
d j
}.) Henceπ is a stationary

distribution of the chain.

Furthermore, the chain is guaranteed to be aperiodic if there is at least onei ∈ S
such thatπ jdi

πid j
< 1 (⇒ pii > 0) i.e. it is not the case that for alli, j ∈ S:

πi

di
=

π j

d j
= const.
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In the latter case the chain reduces to a simple random walk onthe graph(S,N)
with stationary distribution

π =

[
d1

d
d2

d
· · · dn

d

]

as seen earlier. Such a random walk is aperiodic, if and only if the graph(S,N)
contains at least one odd cycle, i.e. if(S,N) is not bipartite.

3 Estimating the Convergence Rate of a Markov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on state setS= {1, . . . ,n}, with transition prob-
ability matrixP = (pi j ) and stationary distributionπ.

We would like to measure the rate of convergence of the chain to π, e.g. in terms
of thetotal variation distance:

∆(i)
V (t) = dV(π(i,t),π),

whereπ(i,t)
j = p(t)

i j , and

dV(ρ,π) = max
A⊆S

|ρ(A)−π(A)|= 1
2 ∑

j∈S

|ρ j −π j |.

However, we get somewhat tighter results by using instead ofdV therelative point-
wise distance

dU
rp(ρ,π) = max

j∈U

|ρ j −π j |
π j

.

Hence, we define our convergence rate function as:

∆U(t) = max
i∈U

dU
rp(π

(i,t),π) = max
i, j∈U

|p(t)
i j −π j |

π j
.

When we consider convergence over the whole state space, i.e. U = S, we denote
simply:

∆(t) = ∆S(t).
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Proposition 3.1 For any two distributionsρ, π, whereπ j > 0 for all j:

dV(ρ,π) ≤ 1
2

dS
rp(ρ,π)≤ 1

minj π j
dV(ρ,π).

Consequently,∆(i)
V (t)≤ 1

2∆(t) for all i , t. 2

Define themixing timeof a given regular chain as

τ(ε) = min{t | ∆(t ′) ≤ ε ∀ t ′ ≥ t}.

In algorithmic applications, the details of the chain are often determined by some
inputx, in which case we write∆x(t), τx(ε) correspondingly.

A chain (more precisely, a family of chains determined by inputs x) is rapidly
mixing if

τx(ε) = poly

(

|x|, ln 1
ε

)

.

Our goal is now to establish some techniques for analysing the convergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and stationary dis-
tribution π is reversible, if and only if the matrix D1/2PD−1/2 is symmetric, where
D1/2 = diag(

√
π1,

√
π2, . . . ,

√
πn).

Proof. D1/2PD−1/2 =
(

D1/2PD−1/2
)T

⇔ DP = PTD.

Inspecting this condition coordinatewise shows that it is exactly the same as the
reversibility conditionπi pi j = p ji π j ∀ i, j. 2

Now it is easy to see that the matrixA = D1/2PD−1/2 has the same eigenvalues as
P: if λ is an eigenvalue ofP with left eigenvectoru, then for the vectorv= uD−1/2

we obtain

vA= uD−1/2
(

D1/2PD−1/2
)

= uPD−1/2 = λuD−1/2 = λv.

Since matrixA is symmetric for reversibleP, this shows that reversibleP have
real eigenvalues. By the Perron-Frobenius theorem they canthus be ordered as

λ1 = 1 > λ2 ≥ λ3 ≥ ·· · ≥ λn > −1.

Denoteλmax= max{|λi| : 2≤ i ≤ n} = max{λ2,−λn}.
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Theorem 3.3 Let P be the transition matrix of a regular, reversible Markov chain,
and other notations as above. Then for any U⊆ S,

∆U(t)≤ λt
max

min
i∈U

πi
.

Proof.Let e1, . . . ,en be an orthonormal basis forRn consisting of left eigenvectors
of A, where vectorei is associated to eigenvalueλi . Especially,e1 = πD−1/2 =
[
√

π1,
√

π2, . . . ,
√

πn].

ThenA has a spectral representation

A =
n

∑
i=1

λi(e
i)Tei =

n

∑
i=1

λiEi ,

whereEi = (ei)Tei . ClearlyE2
i = Ei, andEiE j = 0 if i 6= j.

Thus, for anyt ≥ 0, At = ∑n
i=1 λt

iEi , and hence

Pt = D−1/2AtD1/2 =
n

∑
i=1

λt
i

(

D−1/2(ei)T
)(

eiD1/2
)

= 1π+
n

∑
i=2

λt
i

(

D−1/2(ei)T
)(

eiD1/2
)

.

In component form, this means:

p(t)
jk = πk +

√
πk

π j

n

∑
i=2

λt
ie

i
je

i
k.

Computing the relative pointwise distance convergence rate, we thus get for any
U ⊆ S:

∆U(t) = max
j ,k∈U

∣
∣
∣
∣
∣

n

∑
i=2

λt
ie

i
je

i
k

∣
∣
∣
∣
∣

√π jπk
(4)

≤ λt
max

max
j ,k∈U

∣
∣
∣
∣
∣

n

∑
i=2

ei
je

i
k

∣
∣
∣
∣
∣

min
j∈U

π j

≤ λt
max

min
j∈U

π j
(by the Cauchy-Schwarz inequality and normality).2
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Theorem 3.4 With notation and assumptions as above,

∆(t)≥ λt
max

for all even t. Moreover, if all eigenvalues of P are nonnegative, then the bound
holds for all t.

Proof. Continuing from equation (4) above, whent is even or all eigenvalues are
nonnegative, the following holds:

∆(t) = ∆S(t)≥ max
j∈S

∣
∣
∣
∣
∣

n

∑
i=2

λt
i(e

i
j)

2

∣
∣
∣
∣
∣

π j
≥ λt

maxmax
j∈S

(ei0
j )2

π j
,

whereei0 is a normalised eigenvector corresponding to eigenvalue with absolute
valueλmax. Necessarily(ei0

j )2 ≥ π j for somej for otherwise

||ei0|| =
n

∑
j=1

(ei0
j )2 <

n

∑
j=1

π j = 1,

contradicting the normality ofei0. 2

Negative eigenvalues are often a nuisance, but they can always be removed, with-
out affecting the convergence properties of the chain much,by adding appropriate
self-loops to the states. E.g.:

Proposition 3.5 With notation and assumptions as above, consider the chain de-
termined by transition matrix P′ = 1

2(I +P). This chain is then also regular and

reversible, has same stationary distributionπ, and its eigenvalues satisfyλ′
n > 0

andλ′
max= λ′

2 = 1
2(1+λ2). 2

With Theorem 3.3 and Proposition 3.5 in mind, it is clear thatthe key to analysing
convergence rates of reversible Markov chains is to find goodtechniques for
bounding the second eigenvalueλ2 away from 1.

An interesting and intuitive approach to this task is via thenotion of “conduc-
tance” of a chain.

Given a finite, regular, reversible Markov chainM on the state spaceS= {1, . . . ,n},
transition probability matrixP= (pi j ) and stationary distributionπ = (πi), we as-
sociate toM a weighted graphG = (S,E,W), whereE = {(i, j) | pi j > 0}, and
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the weights, or “capacities” on the edges correspond to theergodic flowsbetween
states:

wi j = πi pi j = π j p ji .

Given a state setA⊆ S, thevolumeof A is defined as

VA = π(A) = ∑
i∈A

πi,

and theergodic flowout ofA as

FA = ∑
i∈A
j /∈A

πi pi j = ∑
i∈A
j /∈A

wi j = w(A, Ā).

(Note that 0< FA ≤VA < 1.)

Then theconductanceof the cut(A, Ā), or the(weighted) expansionof A is

ΦA =
FA

VA
=

w(A, Ā)

π(A)
,

and finally theconductanceof M , or G, is obtained as

ΦM = Φ(G) = min
0<π(A)≤1/2

ΦA.

Since clearlyFA = FĀ for any∅ 6= A S, this may equally well be defined as:

Φ = min
∅ 6=A S

max(ΦA,ΦĀ).

Theorem 3.6 For a regular reversible Markov chain with underlying graphG,
the second eigenvalue of the transition matrix satisfies:

(i)

λ2 ≤ 1− Φ(G)2

2
;

(ii)

λ2 ≥ 1−2Φ(G).

Proof. Later.2
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Corollary 3.7 With notation and assumptions as above, the convergence rates for
the chain under consideration satisfy, for any∅ 6= A S and t≥ 0:

(i)

∆A(t)≤
(
1−Φ2/2

)t

min
i∈A

πi
;

(ii)

∆(t)≥ (1−2Φ)t .

Corollary 3.8 Consider a family of regular reversible chains where all eigenval-
ues are nonnegative, parameterised by some input string x, and with underlying
graphs Gx. Then the chains are rapidly mixing, if and only if

Φ(Gx) ≥
1

p(|x|) ,

for some polynomial p and all x.

Proof. According to Corollary 3.7 (i):

∆(t) ≤ ε

if
(1−Φ2/2)

t

mini∈A πi
≤ ε

if t · ln
(

1− Φ2

2

)

︸ ︷︷ ︸

≤−Φ2/2

≤ ln ε+ ln πmin

if −tΦ2/2 ≤ ln ε+ ln πmin

if t ≥ 2
Φ2

(

ln 1
ε + ln 1

πmin

)

.

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

∆(t) > ε
if λt

2 > ε
if t lnλ2 > ln ε
if t ln 1

λ2
< ln 1

ε

if t · 1−λ2
λ2

< ln 1
ε ln 1

λ = ln
(

1+ 1−λ
λ

)

≤ 1−λ
λ , 0 < λ ≤ 1

if t < λ2
1−λ2

· ln 1
ε

if t < 1−2Φ
2Φ ln 1

ε
λ

1−λ increasing inλ, 1−2Φ ≤ λ2.
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Figure 11: Random walk on a ring.

Consequently,

1−2Φ(Gx)

2Φ(Gx)
ln

1
ε
≤ τx(ε) ≤

2
Φ(Gx)2

(

ln
1
ε

+ ln
1

πx
min

)

.2

Example 3.1 Random walk on a ring.Consider the regular, reversible Markov
chain described by the graph in Figure 11.

Clearly the stationary distribution isπ = [1
n,

1
n, · · · , 1

n].

The conductanceΦA = FA/VA of a cut(A, Ā) is minimised by choosingA to consist
of anyn/2 consecutive nodes on the cycle, e.g.A = {1,2, . . . ,n/2}. Then

Φ = ΦA =
FA

VA
=

∑
i∈A
j /∈A

πi pi j

∑
i∈A

πi
=

2 · 1
n · 1

4
n
2 · 1

n

=
1/2n
1/2

=
1
n
.

Thus, by Theorem 3.6, the second eigenvalue satisfies:

1− 2
n
≤ λ2 ≤ 1− 1

2n2 ,

by Corollary 3.7, the convergence rate satisfies

(

1− 2
n

)t

≤ ∆(t)≤ n ·
(

1− 1
2n2

)t

,

and by Corollary 3.8, the mixing time satisfies:

1−2/n
2/n

ln
1
ε
≤ τ(ε) ≤ 2n2

(

ln
1
ε

+ lnn

)

⇔
(n

2
−1

)

· ln 1
ε
≤ τ(ε) ≤ 2n2

(

lnn+ ln
1
ε

)

.


