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BOOLEAN FUNCTIONS

The purpose of this section is to introduce the basic concepts of Boolean algebras, the algorithm
for computing the algebraic normal form of a Boolean function, and nonlinearity of Boolean func-
tions. The first two topics are relevant in cryptography in the design of hardware and software
implementations of cryptographic functions. The result of the third area come to use when cre-
ating cryptographic algorithms that are resistant against attacks that exploit linearity properties.
Such attacks are, for example, linear and differential cryptanalysis of block ciphers, and correla-
tion attacks on stream ciphers.

1 Boolean Algebras and Rings

1.1 Boolean Algebra
Example 1.For a setF, denote byP(E) the set algebra of, that is,
P(E)={x|z C E}.

Forx,y € P(E), denote

addition x +y the union ofr andy
with neutral element 0 the empty set

multiplication xy  theintersection of andy
with neutral element 1 the entire sBt

P(E) equipped with these operations has the following properties:
(i) Addition is commutative and associative, and-0 =z, 1 +x = 1, forallx € P(FE).
(i) Multiplication is commutative and associative ahd = z, 0 = 0, for all z € P(E).
(iii) The distributive law:z(y + z) = zy + xzz, forall z, y, z € P(E).
(iv) Eachx € P(FE) has a unique complement € P(FE) such thatr + 2’ = 1 andzz’ = 0.

Definition 1.Boolean algebrais a sé& = {0, 1, z,y, ...} with three operations:

addition T, Yy—xT+y
multiplication T,y — 1Y
complementation x — z’

with the properties (i) - (iv) listed above.



1.2 Finite Boolean Rings

Let B be a Boolean algebra. As defined above, there is no inverse with respect to addition. Define
a new addition, the exclusive-or addition or xor-addition

r®y=ay +2'y, forx, y € B.

Fact 1. xor-addition satisfies properties (i) - (iv), except that, instead ef z = 1, we have
1oz =2

Fact 2. xor-addition has neutral element 0 and inverses. Indeed, e&cIB is its own inverse,
sincex dr =zax' +x2’ =0+0=0.

Let B be a Boolean algebra. Théhwith xor-addition and its algebra-multiplication is a ring with
unit 1.

Definition 2. Boolean ring is a ring with the property that = z for all elements:.

Example 2. E = {a} a set of one element. ThéA(E) = {0,1} = Z,. Equipped with multi-
plication and or-addition (1+1 = 1R (FE) is a Boolean algebra. Equipped with multiplication and
xor-addition ( & 1 = 0), P(F) is a Boolean ring.

1.3 Representations of Boolean Polynomials

Let B be a Boolean algebra. A Boolean polynomialBnis a string which results from a finite
number of Boolean operations on a finite number of elemenis in

Example 3. Boolean polynomials can be represented in different equivalent ways. Polynomials
x +yz and(x + y)(x + z) are two different representations of the same polynomial. Similarily,
z(y + z) is the same asy + xz (distributivity law).

Boolean algebra has a partial ordering defined as follows:
rTZ>2yYS Ty =1y.

As usual, we denote > y in caser > y andx # y. An elementr € B is said to be a minimal
element or atom, i6 < x and there is ng € B such that) < y < z. Similarily, z € B is said to

be a maximal element, if < 1, and there is ng € B such thatr < y < 1. Clearly, complements

of atoms are maximal elements and vice versa.

Assume now that the Boolean algelBais finite. Then for any giver € B the set of atoms
contained byr is uniquely determined, and moreoverhas a unique representation as a sum of
the atoms contained by, Such a representation is called thsjunctive normal form

Similarily, any givenz € B has a unique representation as the product of the maximal elements
that are larger than or equal to This representation is trenjunctive normal form

1.4 Algebraic Normal Form

Let B be a Boolean algebra, and consider the associated Boolean ring. Then we can form the set
U, Blz1, xe, . .., x,] Of all finite multivariate polynomials oveB. A multivariate polynomial over
a ring has a unique representation as an xor-sum of monomials. This gives a third kind of normal
form for Boolean polynomials:

D allw

Jc{1.2,..n}  jEJ
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wherea; € B are uniquely determined. This representation is calleclipebraic normal form
Let us now consider the Boolean algelf#a= Z, = {0, 1}. A Boolean polynomial of. indeter-

minatesr, . . ., z, over B = Z, has a unique representation in its algebraic normal form
g(z1,...,2n) = aD a1 B+ D ATy D A1221T2 D - - -
D A(n—1)nTn—-1Tn D a123T120223 D -+ - D A12. nX1T2 "+ * Thy.

with coefficientsa;, . ;, € B = Zs.

Let us now consider a functiofi: Z; — Z,. Such a function is called a Boolean functionrof
variables. We can always associate with it a Boolean polynomial by deriving an algebraic normal
form representation using the following algorithm:

ANF Algorithm.
1. Setg(zq,...,z,) = f(0,0,....0)
2. Fork=1to2" —1,do

3. compute the binary representation of the intéger
k=0by+b2+b322+ .- +0,2"!
4, ifg(bl,bg,...,bn) #f(bl,b%...,bn> then

setg(zy,..., 1) = g(x1,..., 1) & 1, (2)%

5. ANF(f) = g(x1, ..., xy)

Example 4.
x1 x9 x3 | flr1,m0,23) | k| g(x1, 79, 23)
O 0 O 0 0
1 0 O 0 1 0
0O 1 O 1 2 T
1 1 O 0 3 To B 129
0 0 1 1 4 To D x1T2 D T3
1 0 1 1 5 ) D T1T2 D T3
0 1 1 0 6 To D X119 D T3
1 1 1 1 7 To D X119 D T3

2 Non-linearity of Boolean Functions

2.1 Correlations
Letz = (x4,...,2,) € Z3'. TheHamming weighof = is defined as

For two vectorse = (z1,...,2,) € Zy andy = (y1,...,ym) € Z3' the Hamming distancés
defined as

dun(e,y) = Hy(e ®y) = |{i € {1.2.....m} | 2 £y}
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Given two Boolean functiong : Z; — Z, andg : Z; — Z, the Hamming weightf f is
defined as
Hw (f) = {z € Z | f(x) = 1}],

and theHamming distancéetweenf andg is

du(f,9) = {z € Z3 | f(x) # 9(x)}].

A Boolean functionf : Z, — Z, is balancedf Hy, (f) = 2", which happens if and only if

{z e Zy | f(x) =1} = [{z € Z3 | f(x) = O}].

Example 5. Let fy, : Z; — Z, be the Boolean function defined as the first outputbit of the s-box
S; of the DES, when the first and the last (sixth) input bits are set equal to zero. fijleas the
following values

foo = (1,0,1,0,0,1,1,1,0,1,0,1,0,1,0,0)
arranged in thdexicographical orderwith respect to the inputzs, 3, x4, x5). Clearly, foo is
balanced, that ity (foo) = 8. Further we see that

dr(foo, s5) = 6, andd g ( foo, s2) = 10,

where we have denoted Bytheith input bit to.S; as a Boolean function of the four middle input
bits. That is,s;(zs, x3, x4, x5) = ;, fori = 2,3,4,5.
Let f : Z) — Z, andg : Z; — Z, be two Boolean functions. Therrelationbetweenf andg
is defined as

c(f,9) = 27"({z € Zy | f(z) = g(2)} — {z € Z | f(z) # g(2)}])

272" —2{x € Zy | f(2) # g(2)}]) = 1 = 2'"du(f, g).

A Boolean functionf : Z; — Z, islinear if it has an ANF of the form

fx)=a -2 =a1xy @ asxs ® - ayz,

for somea = (ay,as,...,a,) € Z;. Thenf is just a linear combination of its input bits. In such a
case we denotg¢ = L,. A Boolean function isffineif it has an ANF of the formf(z) = a-z® 1.
Nonlinearityof a Boolean functiory : Z; — Z, is defined as its minimum distance from the set
consisting all affine and linear Boolean functions

N(f) =min, lineartmin{dy (f, L), dg(f, L © 1)}}.

Example 5 continued)
From dg(foo, s5) = 6 anddg(foo, s2) = 10, it follows that the nonlinearity off is at most 6.
Further we see that

1 1
C(f00785> = 1—§'6:—, and

4
10 1
c(foo,s2) = 1— ] = I



2.2 Walsh Transforms

In this section we discuss the Walsh transform of a Boolean function. It is an application of another
slightly more general transform called as Walsh-Hadamard Transforn@Given an integer-valued
function f : Z; — Z the Walsh-Hadamard transform is defined as

= > fl@)(=1)"" weZy,
weZ;

where the sum is taken over integers.

The Walsh-Hadamard Transform can also be inverted. Actually, it is its own inverse upto a
constant multiplier. Given the Walsh-Hadamard transfdf(w), w € Z;, of an integer valued
function f we can compute the values ffas

fl) = 27" > F(w ) forallx € Z5.
weZ,

A fast algorithm for calculating the Walsh-Hadamard transform is depicted in Figure 1. It
takesn layers of2"~! parallel “2-DFT” operations followed by “decimation by 2”. This is a
permutation, which skips every second entry in the row, and after that takes the skipped elements
without changing their order. If the numbéf of the entries is even, the permutation goes as
follows:

(1,2,3,4,5,...,N —1,N) — (1,3,5,...,N —1,2,4,...,N).

The [2-DFT] operation is the Discrete Fourier Transform of two inputs, defined as follows: [2-
DFT](m,n) = (m+n,m—n), forintegersn andn. Hence it takes2" additions and subtractions
to compute the Walsh-Hadamard Transform for a function Bbolean variables.

Given a Boolean functiorf : Z; — Z, there are two possible ways of interpret it as an
integer-valued function. Hence there are two ways of apply Walsh-Hadamard transform on it. The
first approach is to také¢ as it is, and compute its Walsh-Hadamard transform as above

Flw) = 27" > f(z )y forallw e Z5. (1)
we

The second approach is to consider a reldted, 1}-valued functionf defined as follows:
225 -2 j@) = (-1,
Applying the Walsh-Hadamard transform gnwe get a transfornt’ : Z, — Z defined as

Fw) = 3 f@) (=)= 3 ()@ wez;. (@)
xGZ; erZ

This transform£ is called thewWalsh transformof the Boolean functiory. There exists an easy
conversion rule from Walsh-Hadamard Transform to Walsh Transform:

F(w) = —2F(w) 4+ 2" - §(w),



Fast Calculation of the Walsh-Hadamard Transform
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Figure 1: Calculating the Walsh-Hadamard Transform

whered is theKronecker symbol

5(0) = 1,
d(w) = 0, forw # 0.

Hence, the Walsh transform of a Boolean function can be computed by computing first its Walsh-
Hadamard Transform and then converting it to the Walsh Transform.

Next we show that given a Boolean function its correlations with all linear functions can be
computed simultaneously using the Walsh Transform. This is due to the fact that there is a close
connection between the Walsh Transform and the correlations betfvead linear functions.
Indeed

Fw) = HrezZy|fz)dw z=0}-{reZ;|f(z)dw v =1}
= 2n'C<f,Lw)

recalling the notation for a linear functiah, : L, (z) = w - z. The values of the Walsh Trans-
form are called thespectral coefficientswhich are up to a constant, the same as the correlation
coefficients betweerf and the linear functions.

The next theorem gives one of the basic properties of correlations. It shows that linear ap-
proximations with non-zero correlation cannot be avoided. Every Boolean function contains some
nonzero terms in itSourier spectrum(w), w € Z.

Theorem 1.Parseval’'s Theorerhet f : Z; — Z, be a Boolean function. Then

Z C(faLw)z - 11
weZy



or what is the same,

~

> F(w)® = 2"
we,

Proof.

ST Fw)? = Y F(w)F(w)
weZy weZy

= X (T ) (X (e
we, v yeZ,

= Y (—1)/@esW) 3 (—1)@ey-w)
— 9n Z (_1)f(r)69f(:v) :2211,
weZ,

where we have used the following property of linear functions:

2" foru =0
Z (_1)uw — { )
for
vz 0, u#0
withu =z ® y.
It takesn layers of2"~! parallel “2-DFT” operations followed by “decimation by 2". This is a

permutation, which skips every second entry in the row, and after that takes the skipped elements
without changing their order. If the numbéf of the entries is even, the permutation goes as

follows:
(1,2,3,4,5,...,N —1,N) — (1,3,5,...,N —1,2,/4,...,N).

The [2-DFT] operation is the Discrete Fourier Transform of two inputs, defined as follows: [2-
DFT](m,n) = (m+n,m—n), forintegersn andn. Hence it takes2™ additions and subtractions

to compute the Walsh-Hadamard Transform for a function Bbolean variables.

Example 6. The standard hash-function SHA-1 makes use of the following two functions for
combining three 32-bit blockX;,i =0, 1, 2.

G(Xo, X1, X5) = (XoAXy) V(=X A Xo)
T(Xo, Xla XQ) - (XO A Xl) V (XO A XQ) V (Xl A XQ)

where

A bitwise “and” multiplication

Vv  bitwise “or” addition

= bitwise complementation
The bitwise operations are the Boolean algebra operations as defined in Section 1.1. Let us now
consider one bit component 6f, and denote it by. Using the Boolean algebra notation we have

/
g(zo, 21, 22) = ToT1 + T(HT2.



The disjunctive normal form af is
g(xo, 21, 22) = XY Ty + THT1T2 + ToT1Ty + ToT1Ta.
To determine the ANF of we have two possibilities: either
a) by direct algebraic manipulation,or
b) make the value table gfand use the ANF algorithm.

The representation @fin its ANF form is
9(x0, 1, 22) = 1971 © ToT2 D To.
We can also compute the distance betwgand the linear function,, and get

dri(g,72) = Hw (g9 ® 2) = 2,
from where we get the correlation

( =1 1 5 1

clg,r2)=1——--2=—.

g, 4 9

To calculate the other correlations betwegeand the linear functions we use the Walsh Transform,
and show the calculations:

000 001 010 011 100 101 110 111

ff 0 1 0 1 0 0 1 1
1 -1 1 -1 0 0 2 o0
1 1 0 2 -1 -1 0 o
2 0 2 =2 =2 0 0 O©
2 2 2 0 0 =2 0 o0©
4 0 2 2 2 2 0 0
Fi 4 2 =2 0 0 -2 2 0
Fm 0 4 4 0 0 4 -4 0

2.3 Differential Properties

The differential proerties of a binary substitution transformafipnan be investigated by creating
the difference distribution table Denote the number of input bits to the S-box/wnd the the
number of output bits byn. Then the DDT is g2 — 1) x 2™ table, where the input difference

indicates the row and the output difference indicates the column of the table. The entry in the row

labeled bya € Z;, a # 0, and in the column labeled byc Z3" is denoted by (a, b) and it is
defined as

d(a,b) ={x € Zy| f(x) ® f(x & a) = b}.

This table can be created directly or by computing first the Walsh Transforms for each of the
2™ — 1 Boolean functions representing the non-zero linear combinations of the output bits. Let

f1, f2, ..., fm denote the Boolean functions defined by the output components of the 5-hek
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¢ = (c1,...,cn) be a non-zero vector iZ7'. If we denote byF, the Walsh Transform of the
Boolean function:- f = ¢ f1 ® - - - ® ¢ frm, then we have the following equality

~

Oab) =27 50 Fuw) (=),

(c,w)EZ;nJrH

Typically the entries in the DDT vary a lot, and such non-uniformity can be exploited in differential
cryptanalysis. There exist functions (S-boxes) for which all valuésab), a # 0 are equal. Such
functions are called perfect nonlinear, and they exist if and only if the number of input bits is even
and, moreover, at least twice as large as the number of output bits. The s-boxes of the block cipher
Rijndael arealmost perfect nonlineathat is,é(a, b) = 2 or §(a, b) = 0, for all a # 0 andb.



	Boolean Algebras and Rings
	Boolean Algebra
	Finite Boolean Rings
	Representations of Boolean Polynomials
	Algebraic Normal Form

	Non-linearity of Boolean Functions
	Correlations
	Walsh Transforms
	Differential Properties


