
1

T-79.5502 Advanced Course
in Cryptology

Lecture 2, March 21, 2006
Computational Complexity
•Turing Machines
•Deterministic Polynomial Time
•Probabilistic Polynomial Time
•Non-deterministic Polynomial Time
•Non-Polynomial Bounds
•Polynomial-time Indistinguishability

Turing Machine

Tape 1

Tape 2

Tape 3

. . .

. . .

. . .

blank

blank

Finite-state
control unit

. . .

tape-head

ce
ll

blank

2

Turing computation
• A finite number of symbols are placed in the leftmost

cells of the tape. The remaining cells to the right are set
to blank.

• When in initial state the scanning starts from the leftmost
cell.

• The tapeheads read contents of the cells. A step of
access by tapehead is called a legal move.

• When a termination condition is reached, the machine is
said to recognize the input.

• An input which can reach a termination condition is
called an instance in a recognizable language.

Deterministic Polynomial Time – Class P

Definition 4.1: We write P to denote the class of languages
with the following characteristics. A language L is in P if
there exists a Turing machine M and a polynomial p(n)
such that M recognizes any instance I ∈ L in time TM(n)
with TM(n) ≤ p(n), for all n ≥ 0, where n is an integer
representing the size of an instance I. Then we say that
L is recognizable in polynomial time.

Languages in P can always be recognized with a
deterministic Turing machine. A deterministic Turing
machine outputs a result which is entirely determined by
the input to, and the initial state of the machine.

Example: Language DIV3

3

The finite state control unit of DIV3

Current state Symbol on the
tape

Next move New state

q0 0
1

“blank”

right
right

“yes” and stop

q0

q1

-
q1 0

1
“blank”

right
right

“no” and stop

q2

q0

-
q2 0

1
“blank”

right
right

“no” and stop

q1

q2

-

Polynomial-Time Computational
Problems

• The problems in P are decisional problems, output is
one bit.

• Since Turing machines can also write symbols on the
tape, they can handle polynomial-time computational
problems.

• E.g., using DIV3 repeatedly a Turing machine can
compute base-3 representation of a given non-negative
integer x, and hence a Turing machine can compute
division with 3 in time C·|x| .

4

Von Neumann Architecture
• Building blocks: counter, memory, CPU
• Micro-instructions: Load, Store, Add, Comp, Jump,

JumpZ, Stop
• Any problem solvable using von Neumann computer in

polynomial time, is in P.
• Turing machine has a uniform cost measure
• Von Neumann (circuit based) computers have non-

uniform cost measure.

Order notations
Definition 4.2. We write O(f(n)) to denote a function g(n)

such that there exists a constant c > 0 and a natural
number N with |g(n)| ≤ c|f(n)|, for all n ≥ N.

Bitwise Computation Model: All variables have the values 0
or 1, and the operations used are logical rather than
arithmetic: ⊕, ∧, ∨, ¬

Definition 4.3. We write OB(f(n)) to denote O(f(n)) in the
bitwise computation model.

Example. Extended Euclidean Algorithm has time
complexity O(|a|) (Thm 4.1) and OB((log |a|)3) (can be
shown using Fibonacci sequences).

5

Basic Modular Arithmetic
Operations

Operation for a, b ∈[1,n-1] Time Complexity

a±b (mod n)
a·b (mod n)
b-1 (mod n)
a/b (mod n)
ab(mod n)

OB(log n)
OB((log n)2)
OB((log n)2)
OB((log n)2)
OB((log n)3)

Probabilistic Polynomial Time - PP
Non-deterministic Turing machines make random moves,

and errors become possible. Non-deterministic Turing
machine with a bounded error is a probabilistic Turing
machine.

Definition 4.5. We write PP to denote the class of
languages with the following characteristics. A language
L is in PP if there exists a probabilistic Turing machine
PM and a polynomial p(n) such that PM recognizes any
instance I ∈ L with certain error probability, which is a
random variable of PM’s random move, in time TPM(n)
with TPM(n) ≤ p(n) for all nonnegative integers n, where n
is an integer parameter representing the size of the
instance I.

6

Error Probabilities
Prob[PM recognizes I ∈ L | I ∈ L] ≥ ε
Prob[PM recognizes I ∈ L | I ∉ L] ≤ δ
where the probabilities are taken over the random tape

(random moves) of PM.
The bounds ε and δ are constans such that
½ < ε ≤ 1 and 0 ≤ δ < ½ . That is
Prob[PM recognizes I ∉ L | I ∈ L] ≤ 1- ε < ½
ε is the completeness probability bound (1- ε is the upper

bound for probabilities of false rejection)
δ is the soundness probability bound (that is, the

upperbound of probability for false acceptance)

Always fast and always correct - ZPP

ε = 1 and δ = 0
Example: Searching Through Phone Book

7

Always Fast and Probably Correct-
PP(MonteCarlo)

ε = 1 and δ > 0
Example: Solovay-Strassen primality test
Input: p a positive integer
a, 1 < a < p - 1, check if

no-biased algorithm: rejection is always correct

)(mod1 pa
p
a p−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Probably Fast and Always Correct
PP(Las Vegas)

ε < 1 and δ = 0
May terminate without output, but if there is output it is

always correct
Example 1: Finding collisions
Example 2: Quantum Factorization
For any N composite, the proportion of a, for which the

least integer r such that ar = 1(mod N) is even, is non-
negligible. Then one can find non-trivial square roots of
1, which is sufficient to factor N.

8

Probably Fast and Probably Correct BPP

½ + α ≤ ε < 1 and 0 < δ ≤ ½ - β ,
where α, β ∈ (0, ½)
Bounded error probability Probabilistic

Polynomial time
“Atlantic City Algorithms”

Example: Quantum Key Distribution

Efficient Algorithms

P ⊆ ZPP ⊆ PP(Monte Carlo) ⊆ BPP ⊆ PP
PP(Las Vegas)

Definition4.6: An algorithm is said to be
efficient if it is deterministic or randomised
with execution time bounded from above
by a polynomial in the size of the input.

9

Non-deterministic Polynomial Time NP
Example: Square-Freeness
Input: N a positive and odd composite integer
Question: Is N square-free? Answer YES if there exists no

prime p such that p2|N.
Solution: Use witness φ(N). If p2|N then p | gcd(N, φ(N))
An algorithm to recognize languages in NP has at each

step a finite number of possible moves. The algorithm
recognizes L if there exists at least one sequence of
legal moves (recognition sequence) leading to the
terminating condition. Such a sequence may be difficult
to find, but its existence is can be verified in polynomial
time given a witness.

Complexity hierarchy
P ⊆ ZPP, PP(Monte Carlo) ⊆ NP ⊆ PP

Definition 4.10. We say that a language L is polynomially
reducible to another language L0 if there exists a
deterministic polynomially-bounded Turing machine M
which will convert each instance I ∈ L into instance I0 ∈
L0, such that I ∈ L if and only if I0 ∈ L0 .

Definition 4.11. A language L0 ∈ NP is NP-complete if any
L ∈ NP is polynomially reducible to L0.

Example: Satisfiability

10

Non-Polynomial Bounds

Definition 4.12. A function f (n): N → R is said to be
unbounded by any polynomial in n (or, non-
polynomially bounded quantity) if for any
polynomial p(n) there exists a natural number n0
such that f(n) > p(n), for all n > n0.

Definition 4.13. A function ε(n): N → R is said to be
a negligible in n if its inverse 1/ε(n) is a non-
polynomially bounded quantity.

Polynomial-time Indistinguishability
Definition 4.14. Let S be a set and E and E’ be subsets of S.

A distinguisher D is a probabilistic algorithm, which makes
use of l elements a ∈ S where l ≤ k and which halts in time
polynomial in k with output in {0,1}. D satisfies D(a,E) = 1
if a ∈ E, and D(a,E’) = 1 if a ∈ E’. Then we say that D
distinguishes E, E’ with advantage Adv(D) > 0, if

Adv(D) = |Prob[D(a,E) = 1] – Prob[D(a,E’) = 1]| > 0.
Definition 4.15. Let sets E and E’ and security parameter k be

as defined in Definition 4.14. Then E, E’ are said to be
polynomially indistiguishable if there exists no
distinguisher for E, E’ for which Adv(D)> 0 is non-
negligible in k for sufficiently large k.

11

Example: Prime_Gen(k)
Algorithm 4.7: Random k-bit Probabilistic Prime Generation
INPUT: k: a positive integer (input to be written to have size k)
OUTPUT: a k-bit random prime
Prime_Gen(k)
1. p∈U(2k-1,2k-1] with p odd;
2. if Prime_Test(p) = NO, return (Prime_Gen(k));
3. Return (p)

Here we make use of Prime_Test (p) which is PP(Monte
Carlo) with ε = 1 and δ = 2-k. E.g., Solovay-Strassen
repeated k times.

Prime_Gen(k)
Prime_Gen(k) is an PP(Atlantic City) with ε > 1/2 and δ ≅ 2-k.
(After k rounds the probability that the algorithm has halted

is at least ½ as proportion of primes in k-bit odd numbers
is about 1/k)

“input k to be written to have size k”
Unary representation of a number
Definition 4.7. The unary representation of a positive

natural number is
1n = 111…1

n times

