Contributory Key Agreement in Groups: Quest for Authentication

T-110.7290 Research Seminar on Network Security 10 Nov 2006

Jan Hlinovsky Helsinki University of Technology jan.hlinovsky@tkk.fi

Introduction

- Secure group communications: establish a symmetric *group key*
- *Contributory*: every participant has an equal contribution to the resulting key
- *Implicit key authentication*: every protocol party is assured that no outsider can learn the key
- Typical approach: agree on a generator g, every participant chooses a random exponent as their contribution to the key (à la Diffie-Hellman)

Burmester and Desmedt 1994

- Each member m_i selects a random exponent r_i and broadcasts $z_i = g^{r_i}$
- Each member m_i computes and broadcasts $x_i = (z_{i+1}/z_{i-1})^{r_i}$
- Each member computes the session key $k_{i} = z_{i-1}^{nr_{i}} x_{i}^{n-1} x_{i+1}^{n-2} \cdots x_{i+n-2} =$ $z_{i-1}^{nr_{i}} \cdot \left(\frac{z_{i+1}}{z_{i-1}}\right)^{(n-1)r_{i}} \cdot \left(\frac{z_{i+2}}{z_{i}}\right)^{(n-2)r_{i+1}} \cdots =$ $g^{nr_{i-1}r_{i}} \cdot \frac{g^{(n-1)r_{i}r_{i+1}}}{g^{(n-1)r_{i-1}r_{i}}} \cdot \frac{g^{(n-2)r_{i+1}r_{i+2}}}{g^{(n-2)r_{i}r_{i+1}}} \cdots =$ $g^{r_{i-1}r_{i}} g^{r_{i}r_{i+1}} g^{r_{i+1}r_{i+2}} \cdots g^{r_{i+n-2}r_{i+n-1}} =$ $g^{r_{1}r_{2}} g^{r_{2}r_{3}} g^{r_{3}r_{4}} \cdots g^{r_{n}r_{1}}$

Group Diffie-Hellman Key Exchange Protocol

• Steiner, Tsudik, and Waidner 1996

- Three protocols, of which GDH.2 is used e.g. in Cliques
- Rounds 1 to n-1: Member m_i selects a random exponent r_i and sends $\{g^{(r_1 \cdots r_i)/r_j} | j \in [1, i]\}, g^{r_1 \cdots r_i} \equiv C_i \text{ to } m_{i+1}.$
- Round n: m_n selects a random r_n and broadcasts $\{g^{(r_1 \cdots r_n)/r_i} | i \in [1, n[\} \equiv C_n$

AuthenticatedGroupDiffie-Hellman Key Exchange

- All members need to share a separate key with m_n
- Rounds 1 to n-1: Member m_i selects a random exponent r_i and sends
 {g^{(r₁…r_i)/r_j} | j ∈ [1, i]}, g^{r₁…r_i} ≡ C_i to m_{i+1}.
- m_n selects a random r_n and broadcasts $\{g^{\frac{r_1 \cdots r_n}{r_i} \cdot K_{in}} | i \in [1, n[\}\}$

Pereira's and Quisquater's Attack, part 1

- We call exponentiation of a value by $r_i r_i$ -service
- In a group of size 3, m_1 provides r_1 -service, m_2 provides r_2 -service, and m_3 provides r_3K_{13} -service and r_3K_{23} -service.
- Suppose there is a protocol run going on between m_1 , m_2 , and m_3 , and a second protocol run between the intruder m_I , m_2 , and m_3

Pereira's and Quisquater's Attack, part 2

- intruder takes a random value g^y and uses the services provided by m_3 to get back values $g^{yr'_3K_{I3}}$ and $g^{yr'_3K_{23}}$
- intruder will then use the r_2 -service in the *first* protocol run to get $g^{yr'_3K_{I3}}$ exponentiated to $g^{yr'_3K_{I3}r_2}$ which the intruder can further exponentiate with K_{I3}^{-1} to get the value $g^{yr'_3r_2}$
- intruder then uses the value $g^{yr'_3K_{23}}$ to replace the value sent by m_3 to m_2 in the first protocol run.
- m_2 will now exponentiate this to $K_{23}^{-1}r_2$, believing this is the group key

Dutta & Barua

- Each member m_i selects a random exponent r_i and a random key k_i , calculates $z_i = g^{r_i}$ and broadcasts $z_i^* = \mathcal{E}_{pw}(z_i)$
- Each member m_i decrypts z_{i-1} and z_{i+1} and computes $K_i^L = \mathcal{H}(z_{i-1}^{r_i}) = \mathcal{H}(g^{r_i r_{i-1}})$ and $K_i^R = \mathcal{H}(z_{i+1}^{r_i}) = \mathcal{H}(g^{r_i r_{i+1}})$. Then for $i \in [1, n[$ m_i broadcasts $\mathcal{E}'_{pw}(k_i || K_i^L \oplus K_i^R)$, and m_n broadcasts $\mathcal{E}''_{pw}(k_n \oplus K_n^R)$.
- Each member decrypts the messages and computes the session key $sk = \mathcal{H}(k_1|| \dots ||k_n)$.

Attack against Dutta & Barua

- An attacker plays the role of U_3 with honest users U_1 and U_2 .
- He receives $z_1^* = \mathcal{E}_{pw}(z_1)$ and $z_2^* = \mathcal{E}_{pw}(z_2)$ and resends the first of these as his own contribution to the key, i.e. $z_3^* = z_1^*$
- Now m_2 is computing the values $K_2^L = \mathcal{H}(g^{x_1x_2})$ and $K_2^R = \mathcal{H}(g^{x_2x_3}) = \mathcal{H}(g^{x_1x_2})$ and broadcasts $\mathcal{E}'_{pw}(k_2||K_2^L \oplus K_i^R) = \mathcal{E}'_{pw}(k_2||0^k)$
- attacker can now do an offline dictionary attack to find a password that will decrypt the message to a nonce and k zeroes

Abdalla et al 1

- Each member m_i selects a random nonce N_i and broadcasts (m_i, N_i). The session is defined as S = m₁||N₁||...||m_i||N_i||...||m_n||N_n. Each member has a symmetric key k_i = H(S, i, pw), selects a random exponent r_i, calculates z_i = g^{r_i} and broadcasts z^{*}_i = E_{k_i}(z_i).
- Each member m_i decrypts z_{i-1} and z_{i+1} and computes and broadcasts $x_i = (z_{i+1}/z_{i-1})^{r_i}$

Abdalla et al 2

- Each member computes the secret $K_i = z_{i-1}^{nr_i} x_i^{n-1} \cdots x_{i+n-2}$ and broadcasts his key confirmation $Auth_i = Auth(S, \{z_j^*, x_j\}_j, K_i, i).$
- After receiving and checking each key confirmation, each player computes the session key sk_i = G(S, {z_j^{*}, x_j, Auth_j}_j, K_i)

Authentication with Auxiliary Channels

• Wong and Stajano 2006

- Modified version of the Cliques Initial Key Agreement protocol (GDH.2)
- Assumes auxiliary channels that have the property of *data-origin authenticity*

GDH.2 with Auxiliary Channels, rounds 1 to n - 1 (part1)

- m_i chooses a random nonce R_i and one-time key K_i , computes a $MAC_i = MAC_{K_i}(I_i|I_{i+1}|C_i|R_i)$ where I_i and I_{i+1} are identifiers and C_i is the same value as in GDH.2, and sends $C_i|MAC_i$ to m_{i+1} using "normal" open channel
- m_{i+1} responds with an ack message using pushbutton channel

- m_i sends R_i to m_{i+1} using visual channel
- m_i sends K_i to m_{i+1} using open channel
- m_{i+1} verfies MAC and sends the outcome over the pushbutton channel

GDH.2 with Auxiliary Channels, rounds 1 to n - 1 (part2)

- m_n sends $C_n | MAC_n$ to all m_i s using the open channel
- all m_i s respond with an ack message using pushbutton channel
- m_n sends R_n to all m_i s using visual channel
- m_n sends K_n to all m_i s using open channel

• all m_i s verify the MAC and send the outcome over the pushbutton channel

Summary

- Burmester-Desmedt and GDH popular starting points for authenticated extended versions
- Several approaches are based on pre-shared keys or passwords, some of them have been proved broken
- Auxiliary channels can make authenticated key agreement simpler