Key Management in IP Multicast

17.11.2006

Petri Jokela petri.jokela@nomadiclab.com

IP multicast

IP multicast

Multicast Security

- IETF Multicast Security (MSEC) WG
- Initial target:
 - Security for one source, large number of receivers
- Currently:
 - Finish current work before next summer
 - Rechartering?

Multicast Security issues

- Integrity of data
 - Receiver: data is not modified
- Secrecy
 - Data cannot be seen by non-group members
- Source authentication
 - The data is coming from the correct source
 - With shared traffic encryption keys, requires other functions in IP multicast
 - Not considered in Key Management

Keying

- Keys
 - Shared: Traffic Enc. Key (TEK), Key Enc. Keys (KEK)
 - Point-to-Point: Registration association
- Problem: How to distribute shared keys?
 - Currently we have centralized server
- Use point-to-point link to deliver the KEK
 - Use a KEK to encrypt TEK; deliver e.g. using multicast data path
- Re-key: member joins or leaves a group

Security Architecture

Group Security Association

Logical Key Hierarchy

Logical Key Hierarchy Keys and hierarchy

- Change in group (originally n users)
 - Only TEK + Ku_n
 - join: n+1 encryptions (TEK with Ku)
 - leave: n-1 encryptions (TEK with Ku)
 - TEK + 1 KEK + Ku
 - join: 1 encr. (TEK with KEK), n encr. (TEK with Ku)
 - leave: n-1 encr. (KEK with Ku), 1 encr (TEK with KEK)

Logical Key Hierarchy

- RFC2627
- Key Encryption Keys hierarchically
 - Less encryption operations
 - Less transmitted messages
- GSAKMP and GDOI define this as optional
- Defined but is it used?
 - E.g. not in 3GPP

Logical Key Hierarchy Keys and hierarchy

Data Encryption key

Logical Key Hierarchy Node leaving, keys that have to be renewed

Logical Key Hierarchy Keys and hierarchy

Logical Key Hierarchy Table of required storage and re-key transmissions

		Storage	Re-key transmissions	
Users	Degree	per User	(single key)	(multi key)
8	2	4	5	3
9	3	3	5	4
16	2	5	7	4
2048	2	12	21	11
2187	3	8	20	14
131072	2	18	33	17
177147	3	12	32	22

Key Exchange Protocols

- Protocols defined in the IETF
 - Group Security Association Key Management Protocol (GSAKMP)
 - Multimedia Internet Keying (MIKEY)
 - Group Domain of Interpretation (GDOI)
- All define only multicast keying
 - Re-key SA, Data SA
- Registration not defined
 - E.g. IKE used for creating registration SA

Group Security Association Key Management Protocol (GSAKMP)

Subordinate GCKS

GSAKMP Assumptions

- GCKS or GO <u>never</u> compromized
- PKI is trustworthy (for cert validation)
- Compromized GM reported to GO
- No precise time dependency (in security related actions)
- Compromized GM cannot decrypt further traffic
- Confidentiality, integrity, multicast source authentication, and anti-replay protection for GSAKMP messages

GSAKMP Message Exchange

GSAKMP Message Exchange

GSAKMP

- Diffie-Hellman used for key generation
 - protecting further downloads from the GCKS
- GM leaves the group
 - LKH MAY be used for re-keying
 - "Many times it is best to rebuild the group"
 - Problem: This doesn't work with large groups

Multimedia Internet Keying

- Originally designed for real-time applications
 - Secure RTP
- Issues
 - Lower latency
 - heterogeneous networks
 - better performance for small, interactive groups

- Source handles GCKS functions (usually)
- No actual re-keying
 - Changes in groups handled by setting up a new connection
 - Cannot efficiently support big and unstable groups
 - MBMS (3GPP) defines re-keying

MIKEY - scenarios

MIKEY - scenarios

MIKEY - scenarios

MIKEY – Generating a TGK

- TGK = TEK Generation Key
- Three methods
 - Pre-shared key
 - TGK transferred using the pre-shared key
 - Efficient but not scalable
 - Public-key based method
 - PKI needed for distributing public keys
 - Diffie-Hellman key exchange
 - For peer-to-peer case

MIKEY: pre-shared key

MIKEY: public keys

MIKEY: Diffie-Hellman

Group Domain Of Interpretation

- Registration association with ISAKMP phase 1
- GDOI defines
 - Re-key association setup
 - Data association setup
- TEK & KEK key transfer
 - GROUPKEY_PULL: initiated by the member
 - GROUPKEY_PUSH: initiated by the GCKS

- HASH: prf(SKEYID_a, M-ID | Ni_b | Nr_b [| KE_I] [| CERT] [|POP_I])
- KE I: Diffie-Hellman value for key generation
- CERT: Certificate, if some other identity is used (than in Phase 1)
- POP_I: Proof of Possession (signature)

HDR*, HASH(3), [KE_I], [CERT], [P

HDR*, HASH(4), [KE_R], [SEQ], KD, [CERT], [POP_R]

Liveliness check: If Nr in HASH(3), calculate DH, create SA

GDOI: GROUPKEY_PUSH

Host Identity Protocol

Host Identity Protocol

- IP address roles currently
 - Locator: describes the host's topological location in the network
 - Identifier: identifies the host
- Problems
 - How to know who is at the other end IP address is not enough
 - Mobility difficult

HIP: Host Identities

- Host Identity (HI): public key of a key pair
 Hosts can authenticate each other
- Secure binding between HI and IP address
- Locator is used only for data routing
 - IP address not needed once the packet arrives
 - ESP mandatory (currently)
 - SPI used to find a correct ESP SA
 - HITs are mapped to the SA
 - Checksums using HITs

A new layer

- IP <-> HI mapping
- Sockets bound to HIs, not IPs
- Transparent to applications

HIP: negotiation

- 4-way message exchange
 - Base Exchange (BEX)
 - Host authentication: public and private keys
 - Diffie-Hellman: common keying material
 - Creates HIP association
- Data traffic protection
 - ESP currently mandatory
 - ESP SA setup during BEX
 - Other protocols may be defined later

Other HIP features

- HI long => HIT (IPv6), LSI (IPv4)
- IPv4/v6 interoperability
 - mobility between v4 and v6 networks
 - v4 and v6 applications can communicate
 - Some limitations due to applications
- Easy mobility
 - Dynamic IP HIT mapping
 - invisible to applications
- Multihoming support (based on mobility)
 Independent of access technology

HIP Base Exchange

HIP: v4 and v6 interoperability

HIP and current solutions

- IPsec: considered ~hard to configure
- Mobile IP large and complex
- Mobile IPv4 and IPv6 do not work together
- No simple solution for multihoming
- LOC: >100.000 vs. ~20.000

HIP Registration Protocol

Merging HIP and GDOI

GDOI and HIP

- GDOI: two phases
- 1) replace phase 1 with HIP
 - Registration association
 - New "service" needed (GCKS)
- 2) Group Key Exchange
 - For now, use the GDOI phase 2
 - SKEYID_a (for hashes) from the negotiated keying material
 - In the future; HIP has UPDATE mechanism, define multicast key transfer in UPDATE

HIP "Phase 1: registration"

HIP "Phase 2: group keys (PULL)"

UPDATE messages are <u>not</u> encrypted, key information has to be inside ENCRYPTED parameter.

Member

GCKS

UPDATE <SEQ, GK_REQ, HMAC, SIGN>

UPDATE <SEQ, ACK, ENCRYPTED (Kmember, {SA, KD})>

UPDATE <ACK>

HIP "Phase 2: group keys (PUSH)"

UPDATE messages are <u>not</u> encrypted, key information has to be inside ENCRYPTED parameter.

Member

GCKS

UPDATE <SEQ, ACK, ENCRYPTED (KEK, {SA, KD}, HMAC, SIGN)>

UPDATE <ACK> (?)

Advantages / disadvantages

- For HIP hosts
 - Small updates to existing HIP implementations
 - No need for other types of security negotiations
- Mobility management
 - Mobile Member updates location to the GCKS
 - Does not solve the IP multicast ("data connection") mobility
- Future work
 - Further optimization: Group UPDATE