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Proof idea

• First choose a restriction that removes all large clauses

• Argue that the restricted formula is random enough to
require any proof it to contain long clauses

• Contradiction!
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Sparsity (1)

Definition (n′ − sparsity )
A formula F is n′ − sparse if every set of s ≤ n′ variables
contains at most s clauses of F .

Excuse me?
Consider the following unsatisfiable set of four clauses:
• { 1, 2 }
• { 1, -2 }
• { -1, 3 }
• { -1, -3 }

This formula is 2− sparse as for every possible set of two
variables from this formula there are at most two clauses that
contain all variables in that set.
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Sparsity (2)

Definition ((n′, n′′, y)− sparsity )
A formula F is (n′,n′′, y)− sparse if every set of s variables,
n′ < s ≤ n′′, contains at most ys clauses.



Proof idea Definitions Lemma’s Results Conclusion

Boundary set

Definition (Boundary set)
The boundary set of a set S is the set of variables that appear
in only one clause of S.
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Satisfiable subsets

Lemma (5.4.11)
If a CNF formula F is n′ − sparse then every subset of up to n′

of its clauses is satisfiable.

Proof.
Every subset S of the n′ − sparse formula F with |S| ≤ n′

contains at least |S| distinct variables and it is therefore
satisfiable.
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Size of boundary set

Lemma (5.4.12)
Let F be a CNF formula with clause size at most k and
suppose F is:

(n′
k + ε

2
,n′′

k + ε

2
,

2
k + ε

)− sparse.

Then every set S of size l clauses of F , with n′ < l ≤ n′′ has a
boundary size of at least εl
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Size of boundary set

Proof.
Suppose S has boundary of size less then εl . There are at
most kl variable occurences in S. So, the maximum number of
different variables occuring in S must be less than:

εl +
kl − εl

2
≤ kl

2
+
εl
2
≤ l

k + ε

2
≤ n′′

k + ε

2

Since each boundary variable occurs once and every one of
the remaining variables occurs at least twice. This contradicts
with the assumption that F is:

(n′
k + ε

2
,n′′

k + ε

2
,

2
k + ε

)− sparse.
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Size of boundary set

Excusé-moi?
Why does the maximum number of different variables occuring
in S must be less than l k+ε

2 contradict with the assumption that
F is:

(n′
k + ε

2
,n′′

k + ε

2
,

2
k + ε

)− sparse ???

Note
Analysing this proof with the right hand side of the expression
l k+ε

2 ≤ n′′ k+ε
2 leads to an incomplete result, I therefore continue

with the left hand side expression.
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Size of boundary set

Excusé-moi?
Why does the maximum number of different variables occuring
in S must be less than l k+ε

2 contradict with the assumption that
F is:

(n′
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z =
k + ε
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Size of boundary set

Excusé-moi?
Why does the maximum number of different variables occuring
in S must be less than lz contradict with the assumption that:

z =
k + ε

2
and F is (n′z,n′′z,

1
z

)− sparse ???
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Size of boundary set

Excusé-moi?
Why does the maximum number of different variables occuring
in S must be less than lz contradict with the assumption that:

z =
k + ε

2
and F is (n′z,n′′z,

1
z

)− sparse ???

Definition ((n′z, n′′z, 1
z )− sparsity )

A formula F is (n′z,n′′z, 1
z )− sparse if every set of s variables,

n′z < s ≤ n′′z, contains at most s
z clauses.
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Size of boundary set

Excusé-moi?
S should contain less then lz variables. This means that it must
contain less then lz

z = l clauses. However, S is of size l which is
a contradiction.

Definition ((n′z, n′′z, 1
z )− sparsity )

A formula F is (n′z,n′′z, 1
z )− sparse if every set of s variables,

n′z < s ≤ n′′z, contains at most s
z clauses.
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Complex clause lemma

Lemma (5.4.13)
Let n′ ≤ n and F be an unsatisfiable k − CNF formula with n
variables. If F is n′ − sparse and:

(n′
k + ε

4
,n′

k + ε

2
,

2
k + ε

)− sparse

then every resolution refutation of F must include a clause of
length at least εn

′

2
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Complex clause lemma

Definition (Clause complexity)
The complexity of a clause C is the smallest number of clauses
whose conjunction implies C.

Start of proof.

• The complexity of the empty clause must be > n′.

• Since the complexity of the resolvent is at most the sum of
the complexities of the clauses from which it is derived
there must exist a clause C in the proof whose complexity
is bigger then n′

2 and at most n′.
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Complex clause lemma

Continued proof.

• Let S be a set of clauses witnessing the complexity of C
with n′

2 < |S| ≤ n′.

• The boundary set b(S) is at least of size ε|S| > εn′
2 .

• S implies C, and S − {C′} does not imply C.
• C must contain all variables in b(S) and is therefore of

length > εn′
2
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Restriction effect

Lemma (5.4.14)
Let P be a resolution refutation of F . The large clauses of P
are those clauses mentioning more then αn distinct variables.
With probability greater then 1− 2(1−αt

4 )|P|, a random
restriction of size t sets all large clauses to 1.
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Restriction effect

Start of proof.

• Let C be a large clause of P

• Expected number of variables assigned a value by random
restriction of size t is αn t

n = αt

• Pr [|C ∩ D| ≤ αt
4 ] ≤ 2−

αt
2

Anteeski?
The probability that the number of variables in a clause is less
then or equal to a quarter of the expected number. This
includes the case where |C ∩ D| = ∅.



Proof idea Definitions Lemma’s Results Conclusion

Restriction effect

Start of proof.

• Let C be a large clause of P
• Expected number of variables assigned a value by random

restriction of size t is αn t
n = αt

• Pr [|C ∩ D| ≤ αt
4 ] ≤ 2−

αt
2

Anteeski?
The probability that the number of variables in a clause is less
then or equal to a quarter of the expected number. This
includes the case where |C ∩ D| = ∅.



Proof idea Definitions Lemma’s Results Conclusion

Restriction effect

Start of proof.

• Let C be a large clause of P
• Expected number of variables assigned a value by random

restriction of size t is αn t
n = αt

• Pr [|C ∩ D| ≤ αt
4 ] ≤ 2−

αt
2

Anteeski?
The probability that the number of variables in a clause is less
then or equal to a quarter of the expected number. This
includes the case where |C ∩ D| = ∅.



Proof idea Definitions Lemma’s Results Conclusion

Restriction effect

Start of proof.

• Let C be a large clause of P
• Expected number of variables assigned a value by random

restriction of size t is αn t
n = αt

• Pr [|C ∩ D| ≤ αt
4 ] ≤ 2−

αt
2

Anteeski?
The probability that the number of variables in a clause is less
then or equal to a quarter of the expected number. This
includes the case where |C ∩ D| = ∅.



Proof idea Definitions Lemma’s Results Conclusion

Restriction effect

Continued proof.

• Pr [|C ∩ D| ≤ αt
4 ] ≤ 2−

αt
2

• Given that |C ∩ D| = s the probability that Cdp is not
satisfied is 2−s

• The probability that |C ∩ D| > αt
4 and C is not satisfied is at

most 2−
αt
4

• The probability that C is not satisfied is at most:

2−
αt
2 + 2−

αt
4 < 2(1−αt

4 )
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Restriction effect

Entschuldigen Sie bitte!
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Restriction effect
Lemma (5.4.14)
Let P be a resolution refutation of F . The large clauses of P
are those clauses mentioning more then αn distinct variables.
With probability greater then 1− 2(1−αt

4 )|P|, a random
restriction of size t sets all large clauses to 1.

Proof.

• The probability that a clause C in P is not satisfied is at
most 2(1−αt

4 )

• The probability that a clause is satisfied is therefore at
least 1− 2(1−αt

4 )

• The probability that all clauses are satisfied is therefore at
least 1− 2(1−αt

4 )|P|
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Probability of sparsity

Lemma (5.4.15)
Let x, y, z be such that x ≤ 1, 1

k−1 < y ≤ 1,2
1
k ≤ z, and let ρ

be any restriction of size t variables with

t ≤ min{xn
2 ,

x (1− 1+1/y
k )n1−2/k

z }.

If F is chosen as a random k − CNF formula with at most
y

e1+1/y 2k+1/y x1/y−(k−1)n clauses then:

Pr [Fdp is both xn − and (
xn
2
, xn, y)− sparse] ≥ 1− 2−t − 2z−k − 1

n
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What is the general idea?

• Basically, with large probability after applying this type of
refutation ρ the random k − CNF formula still has a certain
sparsity.

• By the complex clause lemma each resolution refutation
for a formula with that sparsity must contain a long clause.

• The refutation ρ removed all long clauses from the formula.
• Contradiction!
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The result

• Exponential size proofs are required
for random k − CNF formulas with m ≤ n(k−1)/4.
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Conclusion

• Proving that refutations for random k − CNF formulas are
of exponential size is far from trivial.

• We have seen some definitions and lemma’s that helped
us get the general idea behind the proof.

• And as an analogue to Petri’s conclusion:

Bravery and stupidity are closely related.
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