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Semidefinite Programming

1. Strict Quadratic Programs and Vector
Programs

» A quadratic program concerns optimising a quadratic function of
integer variables, with quadratic constraints.
» A quadratic program is strict if it contains no linear terms, i.e.
each monomial appearing in it is either constant or of degree 2.
» E.g. a strict quadratic program for weighted MAX CUT:
» Given a weighted graph G = (N,E,w), N =[n] ={1,...,n}.
» Associate to each vertexi € N a variable y; € {+1, —1}. A cut

(S,S) is determined as S = {i | yi = +1}, S= {i|yi=—1}.
» The program:
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The vector program relaxation

» Given a strict quadratic program on n variables y;, relax the
variables into n-dimensional vectors v; € R", and replace
quadratic terms by inner products of these.

» E.g.the MAX CUT vector program:

1
max = wi (1—vv))
1<i<)<n
st.ovv =1, i €N
vi € R", i €N.

» Feasible solutions correspond to families of points on the
n-dimensional unit sphere S,,_1.

» Original program given by restriction to 1-dimensional solutions,
e.g. all points along the x-axis: v; = (y;,0,...,0).

» We shall see that vector programs can in fact be solved in
polynomial time, and projections to 1 dimension yield nice
approximations for the original problem.
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2. Semidefinite Programming

» A vector program on n n-dimensional vectors {vi,...,Vv,} can
also be viewed as a linear program on the n x n matrix Y of their
inner products, Y = [v"v;.

» However there is a “structural” constraint on the respective matrix
linear program: the feasible solutions must be specifically inner
product matrices.

» This turns out to imply (cf. later) that the feasible solution matrices
Y are symmetric and positive semidefinite, i.e.

xTYx >0, forall x € R".

» Thus vector programming problems can be reformulated as
semidefinite programming problems.
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» Define the Frobenius (inner) product of two n x n matrices
A,B € R™"as

n n
AeB = ajb; =tr(A"B).

» Denote the family of symmetric n x n real matrices by M,,, and
the condition that Y € M, be positive semidefinite by Y > 0.

» Let C,Dq,...,Dx € Myjand dy,...,dx € R. Then the general
semidefinite programming problem is

max /min CeY
st.DieY =d, i=1,....k
Y =0,
Y € M.
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» E.g.the MAX CUT semidefinite program relaxation:
1
max — Z wii (1 —yji)
1<i<i<n
s.t. yi =1, ieN
Y =0,
Y € M.

» Or, equivalently:

min WeY

st. DjeY =1, i €N
Y =0,
Y € M.

where Y = [y;lij, W = [w;lij, Di = [1];.
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Properties of positive semidefinite matrices

Let A be a real, symmetric n x n matrix. Then A has n (not necessarily
distinct) real eigenvalues, and associated n linearly independent
eigenvectors.

Theorem 1. Let A € M,,. Then the following are equivalent:

1. xTAx >0 for all x € R".
2. All eigenvalues of A are nonnegative.
3. A=WTW for some W € R"*",
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Proof (1 = 2).

> Let A be an eigenvalue of A, and v a corresponding eigenvector.
» ThenAv =Avandv' Av =Av'v.

» By assumption (1), vT Av > 0, and since v'v > 0, necessarily
A>o0.
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Proof (2 = 3).
» Decompose A as A = QAQT, where A = diag(A1,...,A,), with
A1,...,An > 0 the n eigenvalues of A.

> Since by assumption (2), A; > 0 for each i, we can further
decompose A =DD", where D = diag(v/A1, ..., vVAn).

» Denote W = (QD)". ThenA=QAQ" =QDD'Q =WTw,
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Proof (3= 1).

» By assumption (3), A can be decomposed asA=WTW.
» Then for any x € R™:

xTAx =x"WTwx = (Wx)" (Wx) >0. O
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From vector programs to semidefinite programs

Given a vector program ‘V/, define a corresponding semidefinite
program S on the inner product matrix of the vector variables, as
described earlier.

Corollary 2. Vector program 4’ and semidefinite program § are
equivalent (have essentially the same feasible solutions).

Proof. Let vq,...,V, be a feasible solution to V. Let W be a matrix
with columns vy, ...,v,. Then Y = WTW is a feasible solution to S
with the same objective function value as v4,..., V.

Conversely, let Y be a feasible solution to §. By Theorem 1 (iii), Y can
be decomposed as Y =WTW. Letv,...,v, be the columns of W.
Then va,...,V, is a feasible solution to 4/ with the same objective
function value as Y . O
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Notes on computation

» Using Cholesky decomposition, a matrix A € M, can be
decomposed in polynomial time as A = UAUT, where Ais a
diagonal matrix whose entries are the eigenvalues of A.

» By Theorem 1 (ii), this gives a polynomial time test for positive
semidefiniteness.

» The decomposition of Theorem (i), A= WW T, is not in general
polynomial time computable, because W may contain irrational
entries. It may however be approximated efficiently to arbitrary
precision. In the following this slight inaccuracy is ignored.

» Note also that any convex combination of positive semidefinite
matrices is again positive semidefinite.
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» Semidefinite programs can be solved (to arbitrary accuracy) by
the ellipsoid algorithm.

» To validate this, it suffices to show the existence of a polynomial
time separation oracle.

Theorem 3. Let S be a semidefinite program and A € R". One can
determine in polynomial time whether A is feasible for S and, if not,
find a separating hyperplane.
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Proof. A is feasible for § if it is symmetric, positive semidefinite, and
satisfies all of the linear constraints. Each of these conditions can be
tested in polynomial time. In the case of infeasible A, a separating
hyperplane can be determined as follows:

» If Ais not symmetric, then a;; > a; for some i,j. Theny; <yj isa
separating hyperplane.

» If A is not positive semidefinite, then it has a negative eigenvalue,
say A. Let v be a corresponding eigenvector. Then
(wT)eY =vTYv > 0is a separating hyperplane.

» If any of the linear constraints is violated, it directly yields a
separating hyperplane. O
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3. Randomised Rounding of Vector Programs

» Recall the outline of the present approximation scheme:

1. Formulate the problem of interest as a strict quadratic program P.

2. Relax P into a vector program V.

3. Reformulate ¥ as a semidefinite program S and solve
(approximately) using the ellipsoid method.

4. Round the solution of 4 back into P by projecting it on some
1-dimensional subspace.

» We shall now address the fourth task, using the MAX CUT
program as an example.
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Randomised rounding for MAX CUT

» Letvy,...,vy, € S,_1 be an optimal solution to the MAX CUT
vector program, and let OPT, be its objective function value. We
want to obtain a cut (S,S) whose weight is a large fraction of
OPT,.

> The contribution of a pair of vectors v;, v; (i <j) to OPT, is
W..
?”(1 —cos ),

where 6; denotes the (unsigned) angle between v; and v;.

» We would like vertices i,j to be separated by the cut if cos 6; is
large (close to ).
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Here is an idea: pick a vector r on the unit sphere S,_; uniformly at
random, and define the cut by:

s={i|vr>0}, s={i|vr<ol
Theorem 4. For any pair of vertices i,j:

Pr[i andj are separated by the ¢ut e—T'é

Proof. Let r’ be the projection of r onto the plane containing vectors v;
and v;. Vertices i and j are separated iff v; and v; have “different
orientation” w.r.t. r’, i.e. are on opposite sides of the normal line
determined by r’, i.e. the normal line falls in the angle of width Gij
between v; and v;. Since r has been picked from a spherically
symmetric distribution, r’ will determine a random direction in the
plane. The lemma follows. O

T-79.7001 Postgraduate Course on Theoretical Computer Science 24.4.2008



Semidefinite Programming

A technical issue: how to generate n-dimensional unit vectors u.a.r.?

Lemma 5. LetXy,...,X, be independent N(0, 1) distributed random
variables, and let d = (x2 + - -- +x2)/2. Then the random vector

r =(xi1/d,...,xn/d) has uniform distribution on S,_;.

Proof. Random vector x = (x1,...,Xn) has density

5.t —xZ/2 _ 1 e*%Zi Xt

=||—=e

Dl Vamn (2mm)n/2
Since the density depends only on the distance from the origin, the
distribution of x is spherically symmetric. Hence, dividing by the length
of x, i.e. d, yields a uniformly distributed random vector on S,,_;. O

f(Xl,...,Xn)
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» Now let us consider how close to OPT, the weight of our random
cut is likely to be.

» Let W be a random variable denoting the weight of the cut, i.e.

W= Z wijl[i andj are separated by the ¢ut
1<i<)<n

» Also, denote

2 . 0
oOd=— mn ——.
Tt0<6<ml —cosB

By elementary calculus, o > 0.87856.

Theorem 6. E[W]| > a-OPT,.
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Proof. By the definition of q,

(1—0036)
>o — ),
- 2

31

forany8,0<0<T
Thus, by Lemma 4:

EW]= Z wIJ Pr]i andj are separated by the ¢ut
1<)<

I/\
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By using repeated trials, this result can be strengthened:
Theorem 7. There is a randomised approximation algorithm for MAX

CUT that with “arbitrarily high probability” achieves approximation
factor > 0.87856.
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