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Abstract Bounded model checking has been recently introduced as an
efficient verification method for reactive systems. In this work we ap-
ply bounded model checking to asynchronous systems. More specifically,
we translate the bounded reachability problem for 1-safe Petri nets into
constrained Boolean circuit satisfiability. We consider three semantics:
process, step, and interleaving semantics. We show that process seman-
tics has often the best performance for bounded reachability checking.

1 Introduction

Bounded model checking [3] has been proposed as a verification method for
reactive systems. The main idea is to look for counterexamples which are shorter
than some fixed length for a given property. If a counterexample can be found,
then the property does not hold for the system. If no counterexample can be
found using this bound, usually the result is inconclusive.

The decision procedure most often used in bounded model checking is propo-
sitional satisfiability. Given the transition relation of the reactive system to be
model checked, the property, and the bound n, the transition relation and prop-
erty are “unrolled” n times to obtain a propositional formula which is satisfiable
iff there is a counterexample with bound n. The implementation ideas are quite
similar to procedures used in AI planning [11,15].

In this work we apply bounded model checking to asynchronous systems.
More specifically, we translate the bounded reachability problem for 1-safe Petri
nets into constrained Boolean circuit satisfiability. This work can be seen as
a continuation of the work done in [9]. There we discuss using the step and
interleaving semantics for bounded reachability, while the formalism into which
the problem is translated being logic programs with stable model semantics.
The main contribution of this paper is that we show that the so called process
semantics of Petri nets [1,2] can be used to improve the efficiency of bounded
model checking. Namely, also the process semantics can be efficiently encoded
into constrained Boolean circuits.
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As an additional contribution we report on an implementation called punroll,
which uses the BCSat constrained Boolean circuit satisfiability checker to check
whether the generated constrained circuit is satisfiable, thus solving the bounded
reachability problem.

The structure of the rest of the paper is the following. First we introduce
Petri nets and the three different semantics in Sect. 2. Then we shortly introduce
constrained Boolean circuits in Sect. 3, and in Sect. 4 show how the bounded
reachability problem can be translated into them. After that we discuss our
implementation and experiments in Sect. 5, and finish with conclusions in Sect. 6.

2 Petri nets

We will now introduce Petri nets. A net is a triple (P, T, F), where P and T
are disjoint sets of places and transitions, respectively, and F' is a function (P x
T)U (T x P) — {0,1}. Places and transitions are generically called nodes. If
F(z,y) = 1 then we say that there is an arc from z to y. The preset of a node
x, denoted by ®x, is the set {y € PUT | F(y,z) = 1}. The postset of x, denoted
by z°, is the set {y € PUT | F(z,y) = 1}. In this paper we consider only finite
nets in which every transition has a nonempty preset and a nonempty postset.
A marking of a net (P,T, F) is a mapping P — IN (where IN denotes the
natural numbers including 0). We identify a marking M with the multiset con-
taining M (p) copies of p for every p € P. For instance, if P = {p1,p2} and
M(p1) =1, M(p2) = 2, we write M = {p1,p2,p2}. A 4-tuple X' = (P, T, F, My)
is a net system if (P, T, F) is a net and My is a marking of (P, T, F') (called the
initial marking of ). We will use as a running example the net system in Fig. 1.

2.1 Step Semantics

To save some space, we define the behavior of a net system through step seman-
tics. The (usual) interleaving semantics will then be defined later based on this
more general concept.

A step is a non-empty set of transitions S C T. ! We denote a step by [S).
A marking M enables a step S if for all p € P it holds that M (p) > > .o F(p,t).
If the step S is enabled at M, then it can fire or occur, and its occurrence leads
to a new marking M’ defined as M'(p) = M(p) + > ,c5(F(t,p) — F(p,t)) for
every place p € P. We denote this firing of a step by M[S)M’.

A (possibly empty) sequence of steps o = [So)|S1) - - [Sn—1) is a step ezecu-
tion of the net system X = (P, T, F, My) if there exist markings M;, M, ...,
M, such that My[So)M1[S1) -+ My—1[Sn—1)My. The marking reached by the
occurrence of o is M,,. A marking M is a reachable marking if there exists a step
execution o such M is reached by the occurrence of 0. A marking M is reachable

! We only consider a class of nets where the transitions cannot be self-concurrent.
Therefore a set suffices and multisets, i.e., bags are not needed.



Figure 1. Running Example

with bound n if there exists a step execution o consisting of (exactly) n steps
such M is reached by the occurrence o. Correspondingly we say that a marking
M is reachable within bound n if there exists an integer 0 < ¢ < n such that M
is reachable with bound 1.

In our running example the step [t1,¢2) is enabled in the initial marking and
thus {p1, p2}[t1,t2){p3,pa}. The marking {ps,ps} is reachable with bound 3, as
{p1, p2}[t2){p1, pat(ts, t3){p3, ps}te){p3, pe} is a step execution.

A marking M of a net is n-safe if M (p) < n for every place p. A net system X
is n-safe if all its reachable markings are n-safe. In this work we restrict ourselves
to net systems which are 1-safe. They are quite an interesting class, as e.g., net
systems arising from synchronization of state machines are 1-safe. Note that
for 1-safe net systems all reachable markings are reachable within bound n =
(2171 —1). Thus the set “marking reachable within bound n” can be seen as a lower
approximation of the set of reachable markings which improves as the bound n
increases. See discussion in [3] on how to check whether a bound is sufficient
for completeness. Quite often a much smaller bound than the one discussed
above suffices for completeness. For a general discussion of the computational
complexity of verification problems for 1-safe Petri nets, see e.g., [6].

2.2 Interleaving Semantics

An interleaving execution is a step execution Mo|So)M1|S1) - My—1[Sn—1) M,
such that for all 0 < ¢ < n — 1 it holds that |S;| = 1. A marking is reachable in



the interleaving semantics if there exists an interleaving execution o such that
M is reached by the occurrence of o. The bounded versions of reachability are
defined similarly to the step case.

Again in our example the marking {ps, ps} is reachable in the interleaving se-
mantics with a bound 4, as {p1, p2}t1){p2, ps}t2){ps, pa}ts){ps, ps}Hte){ps, ps}
is an interleaving execution. Notice however, that the marking {ps,ps} is not
reachable in the interleaving semantics with bound 3.

It is well known, see e.g., [1] that for the net class used here the set of
reachable markings in the step and interleaving semantics coincide. However,
in bounded model checking using step semantics might be useful, as in many
cases markings can be reached with a smaller bound than in the interleaving
semantics.

2.3 Process Semantics

However, there is a problem with steps. Namely, there can be several step exe-
cutions which intuitively represent the same “concurrent behavior”. These can in
bounded model checking introduce search space which can adversely effect the
running time of the solver used. To avoid this we will use a well known semantics
from the literature called the process semantics, see [1,2].

We will now recall from the literature a construction which constructs a
process from a finite step execution. The following is a modified version (simpler
because of 1-safeness) of the Construction 4.9 in [1].

For this definition we need some additional notation. For anet N = (P, T, F')
the function Maz(N) = {x € P | z* = 0}. Let L be a finite set. A labelled net is
a 4-tuple (P, T, F,l), where (P,T,F) isanet and [: P U T — L is a labelling.

Definition 1. (Derivation of process from step execution.) Let X = (P, T, F, M)
be a net system and let o = [So)[S1) -+ [Sn—1) be a sequence of steps such that
Mo[So)M1[S1) -+ [Sn—1)M,, is a step execution of X. We associate with o a la-
belled net II(o) by creating a sequence of labelled nets N; = (B;, E;, G;, ;) with
labelling l; : B; U E; — PUT by induction on i, where 0 < ¢ < n.

(i=0): Eg=0,Gy =10, and By contains for each p € P such that My(p) =1
a place b with lo(b) = p.
(i =i+ 1): Suppose that N; has been constructed.
First we require that everything in N; is also in N;41. For all x,y € B; UFE;:
2 €B;=>x € Bit1,x € E;,=x € Eiq, (v,y) € Gy = (x,y) € Gip1 and
Then for each t € S; do the following:
e for each p € *t find the place b(p) € Max(N;) such that 1;(b(p)) = p,
o add a new transition e to E; 11 with l;11(e) =1 and add (b(p),e) to Git1
for all p € °t,
o for each p € t* add a new place V' (p) to Bit1 with 1;1,(b'(p)) = p and
(e, b/(p)) S Gi+1.

Finally take II(0) = N,, = (Bn, En, Gn,ln)-



The construction above is fully deterministic (as this version is for 1-safe nets
only) and thus the result is unique up to isomorphism. This fact is well known,
see e.g., the discussion of a similar definition, Def. 3 in [12]. For simplicity, from
now on we will identify all isomorphic processes as being equivalent.

Consider now our running example in Figure 1. It has a step execution
{p1, p2}ta){p1, pa}lts, tas){p3, ps}te){p3, pe}. Now given o = [t2)[t1,13)[ts) we
can construct the process I1(o) given in Figure 2, where the labelling [ of nodes
is given in parenthesis.

b1(p2) e1(t2) b3 (pa) e3(t3) bs(ps) ea(te) be (p6)
O [ ] O [ ] O [ ] O
b2(p1) e2(t1) ba(ps)

]
O (1 O
Figure 2. A process 7 = (B, E,G,1)

It is easy to see that for example also the sequences of steps o’ = [t1, t2)[t3)[t6),
o = [ta)|ts)[t1,t6), and o = [t1)|t2)]ts)[ts) will yield the same process, i.e.,
H(c")y =1 (") = I (c"") = II(0). All of these step executions “solve the arising
conflicts” in the same way and lead to the same final marking of the process 7,
ie., l(Maz(m)) = {ps,pe}. Thus if we are only interested in the final marking it
should intuitively be sufficient to only generate one of them. We will now show
how this can be done in bounded reachability checking.

We present an algorithm which given a process 7 gives a sequence of steps
FNF(r) (for Foata normal form of w) which together with X' fully characterizes
the process . The Algorithm 1 computes the Foata normal form of a process. It
is the algorithm presented on page 47 of [16] (with small notational changes). We
define some notation for the algorithm. Given a set of transitions C' C F of the
process T = (B, E,G,1), let G* be the transitive closure of the flow relation G,
and define MinE(C) ={e € C | for all ¢ € (C'\ {e}) it holds that (¢’,e) & G*}.

Assume that we are given a Foata normal form FNF(7) = [So)[S1) - -+ [Sn—1)
for a process 7 of a 1-safe net system X. It is easy to prove that there are mark-
ings My, Ma, ..., M, such that in the initial state M, of X the step execution
M| So) M7 [S1)My - -+ My, _1|Sy—1) M, can occur.

This normal form is actually the Foata normal form from the theory of
Mazurkiewicz traces, see e.g., [5]. It is only (quite trivially) adapted to pro-
cesses of 1-safe net systems. To our knowledge it was first applied to processes of
1-safe net systems in the verification algorithm setting in [7]. (The fact that the
technique used is a Foata normal form is discussed in more detail in an extended
version [8], as well as in [16].)



Algorithm 1 The Foata normal form of a process

input: A process m = (B, E,G,1) of a 1-safe net.
output: Foata normal form of 7: A sequence of steps FNF = [So)[S1) - -+ [Sn—1)-
begin
C:=FE;
FNF =g
while C # () do
S :=1(MinE(C));
FNF := FNF - [S);
C:=C\ MinE(C);
endwhile
return FNF;
0 end

= © 0~ O Ok W

When run on the process 7 of Figure 2, we will get the result FNF(r) =
[t1,t2)[ts)[te)- This intuitively corresponds to a step execution which is “greedy”,
i.e., it always fires transitions at the earliest possible time moment, while still
respecting the structure of the process m. Thus the step execution in Foata
normal form is always among the shortest which yield the process .

The Algorithm 1 gives an easy way of generating a Foata normal form of
a process. We will in our implementation use a different definition, which is
equivalent but more suitable for the implementation techniques we use. (We have
not found this version in the literature. However, it is just a simple adaptation
of the version for traces, see e.g., [5].)

Definition 2. The sequence of steps o = [So)[S1) - [Sn—1) is a step execution
of a 1-safe net system X in Foata normal form if:

(a) 0 =€ (i.e., o is the empty step sequence), or
(b) There are markings My, M, ..., M, such that in the initial state My of X
the step execution Mo[So) My [S1)Ma - My_1[Sn—1)M,, can occur, and:
e For each 1 <i<n—1 and for each t € S; there exists a transition t' in
Si—1 such that t'* N *t # 0. (Fach transition t in step ¢ with i > 1 has
some transition t' in step i — 1 which generates some part of its preset.)

Now there is a bijection between processes and step executions in Foata
normal form. Given a step execution o one can construct the corresponding
process m = I1 (o), and given the process ™ we can construct the step execution
o' = FNF () and in fact ¢/ = o iff 0 was in Foata normal form (according to
Def. 2). Thus they both describe the same concurrent behavior. It is therefore
only a matter of taste whether one talks about processes or step executions
in Foata normal form. We have chosen to talk about processes and process
semantics, as that is the terminology most often used in Petri net literature [1,2].
Our actual implementation is, however, based on the definition of the Foata
normal form for step executions, namely Def. 2.

We thus define the process semantics as follows. A marking M is a reach-
able in the process semantics if there exists a step execution o in Foata normal



form, such that M is reached by the occurrence of o. The bounded versions of
reachability are again defined similarly to the step case.

To rephrase our discussion, here is the (not surprising) main result used in
bounded model checking with process semantics.

Theorem 1. Let X' be a 1-safe net system. A marking M is reachable within
bound n in X iff in the process semantics M is reachable within bound n in X. 2

3 Boolean Circuits

This section is largely based on the presentation of [10]. A Boolean circuit is
an directed acyclic graph where the nodes are called gates. The gates with no
outgoing edges are output gates and input gates are those gates which do not
have incoming edges nor an associated Boolean function. Each non-input gate
has a Boolean function associated with it and it “calculates” the output value
from the values of its children.

Boolean circuits can be expressed with Boolean expression systems. Given
a finite set V of Boolean variables, a Boolean equation system S over V is a
set of equations of the form v = f(vy,... ,v;), where v,v1,... ,v5 € V and f
is an arbitrary Boolean function. Boolean circuits can now be seen as Boolean
equation systems with the following two properties. (i) Each variable has at most
one equation. (ii) The equations are not recursive. (In the sense that the variable
dependency graph [10] is acyclic.)

A truth valuation for S is a function 7 : V — {true, false}. A valuation is
consistent if T(v) = f(r(v1),...,7(vg)) for each equation in S. The constrained
satisfiability problem for Boolean circuits is the following: given that variables
¢t C V must be true and variables in ¢~ C V must be false, is there a consistent
valuation that respects these constraints? We call such a truth assignment a sat-
isfying truth assignment. The constrained Boolean circuit satisfiability problem
is obviously an NP-complete problem under the plausible assumption that each
Boolean function in the system can be evaluated in polynomial time.

In the rest of this paper we use Boolean circuits where the following Boolean
functions are used as gates:

T is always true.
— 1 is always false.
— not(v) = true iff v is not true.

— or(v1,...,vr) = true iff at least one of v;, 1 <i < k is true.
— and(v1, ... ,vx) = true iff all of v;, 1 <14 < k are true.
— card¥ (v1,... ,v;) = true iff for the cardinality ¢ of the set of variables v;

which are true it holds that L < ¢ < U. (Where L and U are fixed constants
0<L<U)

2 Note the use of within instead of with. A marking may be reachable with a bound n
and only reachable with bound 7 in the process semantics, where i < n.



The function card¥ (v1,... ,v;) is actually a family of functions. We use in this
work only the special form cardy(v1, ... ,v;), which is true if less than two of the
variables in the set {vy,... ,v;} are true. We will show that this function is quite
useful for compactly encoding which transitions can not be fired concurrently.

4 Translating Bounded Reachability into Boolean
Circuits

We will now present how to translate the bounded reachability problem for 1-safe
nets into constrained satisfiability problem for Boolean circuits. The Figures 3-5
give parts of the translation for our running example of Figure 1. We suggest
the reader to consult them while reading the definition of the translation.

Consider a 1-safe net system X' = (P, T, F, M) and a fixed bound n. We first
construct (in (a)-(b) below) a constrained Boolean circuit which captures the
possible step executions of X' of length < n, where n > 0.

(a) To capture the initial marking, for each place p; € P we create a gate p;(0)
and associate T as the function if My(p;) =1, and L otherwise.
(b) For each step 0 <i <n —1 we add the following gates:

1. For each transition t; € T we create an input gate tj(¢). If this gate is
true, it intuitively means that the transition ¢; fires in step i.

2. For each place p; € P we create an or gate gp;j(i + 1) with the children
{t1(4), ... ,t(9)}, where {t1, ... ,tx} is the preset of p;. The gate gp;(i+1)
will be true if some transition in step ¢ generates a token to the place p;.

3. For each place p; € P we create an or gate rpj(i + 1) with the children
{t1(4), ... ,t(9)}, where {t1,... ,t;} is the postset of p;. The gate rp;j(i+
1) will be true if some transition in step ¢ removes a token from p;.

4. For each place p; € P we create a not gate nrpj(i + 1) with the child
rp; (i + 1).

5. For each place p; € P we create an and gate fp;(¢ + 1) with the children
pj(7) and nrpj(i + 1). The gate fpj(i + 1) is true when a place p; contains
a token before step i, and no transition removing tokens from it appears
in step i.

6. For each place p; € P we create an or gate pj(i + 1) with the children
gpj(i + 1) and fpj(i + 1). The gate pj(i + 1) is true when after step i the
place p; contains a token. (Either a token was generated in step i or a
token residing on the place p; before step i still remains on the place p;
after the step i.)

7. For each transition ¢; € T' we create an and gate ptj(¢) with the children
{p1(4),... ,px(?)}, where {p1,... ,px} is the preset of t;. The gate pt;(¢)
will be true if all the preset places of transition ¢; in step ¢ contain a
token.

8. For each transition t; € T we create a not gate ntj(¢) with the child t;(7).

9. For each transition ¢; € T we create an or gate ttj(¢) and constrain it
to be true. It has two children ntj(¢) and ptj(¢). The constrained gate
ttj(é) ensures that either the transition t; is not fired in step ¢ or all of
its preset tokens are available.



gps(i + 1) nrps (i + 1)

rps(i + 1)

Figure 5. Example: translation of the conflicts with respect to place ps



10. For each place p; € P such that [p®| > 2 we create a card] gate ncp;(i) and
constrain it to true. It has children {t;(7),... ,tk(?)}, where {¢t1,... ,tx}
is the postset of p;. The constrained gate ncp;j(i) ensures that at most
one of the transitions which have the place p; in preset can appear in
step 7. We say that this set of transitions is in conflict with respect to
the place p;.

The translation (a)-(b) as given above allows for “idle steps” in which no
transition occurs. Thus the program encodes all the step executions of length n
or less. We have chosen to remove the possibility of idling steps in our imple-
mentation.? Thus we always add the following gates to the system:

(c) For each step 0 <i <n—1 add an or gate ni(é) (for non-idle) and constrain
it to true. It has the children {t1(¢),... ,t(7)}, where {t1,... ,tx} = T. Thus
the gate ni() will be true if at least one transition fires in step i.

We denote by SC(X,n) (for step circuit) the translation given by (a)-(c).
Given a valuation 7 of the circuit SC(X,n), we can obtain the correspond-
ing sequence of markings and steps My, [So), M1,[S1), ... , Mp—1,[Sn—1), My, by
having transition t; € S; iff t;(¢) is true, and p; € M; iff pj(7) is true. Because
gates of form t;j(¢) are the only input gates, the mapping from sequences of steps
to consistent truth valuations is in fact a bijection.

Lemma 1. The constrained Boolean circuit SC(X,n) has a satisfying truth as-
signment T iff Mo[So)M1[S1) -+ Myp—1/Sn—1)M,, is a step execution of X, where
Moy, [So), M1, [S1), ..., Myp—1,[Sn-1), M, is the sequence of markings and steps
corresponding to T.

Thus we get our main result.

Theorem 2. The constrained Boolean circuit SC(X,n) encodes step executions
of length n.

4.1 The Interleaving Semantics

Sometimes we would also like to consider the interleaving semantics. It is easy to
add a set of constrained gates to the circuit which disallow non-singleton steps.

(i) For each step 0 <4 < n—1 add an card} gate nc(i) (for non-concurrent) and
constrain it to true. It has the children {t1(7), ... ,tk(¢)}, where {¢1,... ,tx} =
T. Thus the gate nc(i) will be true if at most one transition fires in step 1.

We call the translation given by (a)-(c),(i) the interleaving circuit IC (X, n).

Theorem 3. The constrained Boolean circuit IC(X,n) encodes interleaving ez-
ecutions of length n.

% Here the semantics of the translation differs from the one presented in [9].



4.2 The Process Semantics

The translation for the process semantics is the main contribution of this paper.
The main idea behind it is to modify the translation for step semantics in such a
way that all step executions which are not in Foata normal form are disallowed.

If one looks at Def. 2 it is easy to see that each transition ¢ in step S; (not
including the initial step Sp) has to have at least one transition ¢’ in step S;_1
which generates at least one token to the preset of ¢. It is now straightforward
to enforce this in a local way.

We change the preset of a transition in the following way. The part (b) of the
translation is replaced by (b’), which is identical to (b) except that 7 is replaced
by the 7’ and 7” (see Figure 6 for an example):

(b’) For each step 0 < i <n — 1 we add the following gates (1-6,8-10 omitted):

7. For each transition t; € T we create an or gate dpt;j(i) (for disjunctive
preset) with the children {gpi(),...,gp«(¢)}, where {p1,... ,pi} is the
preset of ¢;. The gate dpt;(¢) will be true if a token was generated to
some preset place of transition ¢; in step ¢ — 1. (The previous step!)

77, For each transition ¢; € T' we create an and gate ptj(¢) with the children
{p1(@),... ,px(7),dptj(z)}, where {p1,... ,pi} is the preset of t;. The gate
ptj(¢) will be true if all the preset places of transition ¢; in step ¢ contain
a token and the transition is locally in Foata normal form.

Note that the child gates of gates added by 7’ already existed in the step trans-
lation as they are generated by 2. The 77 is almost identical to 7 except that
the gate created in 7’ has been added to the list of children. The gate generated
by 77 now assures that both the preset of the transition is available and the
transition is locally in Foata normal form. These local constraints on transition
enabledness together imply that the step execution will as a whole be in Foata
normal form (again according to Def. 2).

Figure 6. Example: process semantics translation of ¢4



As in Def. 2, the initial step is special.
(p) For each place p; € P we create a gate gpj(0) and associate T with it.

We call the translation given by (a),(p),(b’),(c) the process circuit PC (X, n).
We say that a process 7 has depth n if the corresponding Foata normal form
step execution FNF(m) has length n. We have the following result.

Theorem 4. The constrained Boolean circuit PC(X,n) encodes processes of
depth n.

4.3 Checking Reachability

We have presented three translations which encode executions with bound n
in different semantics. We can now add any Boolean constraint on the final
marking M, as given by the syntax f:=pe€ P | =f1 | f1 V fa | f1 A fa. Given
a parse tree of the formula f, we convert it to a Boolean circuit FC(f,n) of
same size by replacing each atomic proposition p € P by the gate p(n), and all
other formula types with the corresponding gates having the same children as
in the parse tree. Finally the top-level gate f is constrained to true.

Theorem 5. Let C(X,n) be one of PC(X,n), SC(X,n), IC(X,n). The con-
strained Boolean circuit RC(X, f,n) = C(X,n) U FC(f,n) has a satisfying truth
assignment iff there exists a marking M which satisfies f and is reachable in X
with bound n in (process, step, interleaving) semantics.

The size of each translation RC(X, f,n) as the sum of number of gates and
connections between them is linear, i.e., O((n - (|P| + |T| + |F|)) + | f]).4

5 Experimental Results

We have implemented the reachability translations described in the previous
section in a tool called punroll (for process unroller). We have implemented the
following optimization which simplifies away places (transitions) which can never
have a token (can never fire). For each step 0 <i <n — 1:

(i) For each transition ¢; € T': If for some place p € *t; the gate p(4) has function
L associated with it (or alternatively in the process semantics: for all places
p € *t; the gate gp(¢) has function 1 associated with it), then associate gate
tj(¢) with function L.
(ii) For each place p; € T If for all transitions ¢ € *p; the gate t(¢) is associated
with L, then associate the gate gpj(i + 1) with L.
(iii) For each place p; € T If both gates pj(i) and gpj(¢ + 1) are associated with
1, then associate pj(i + 1) with L.
* This bound also holds if we restrict ourselves to Boolean circuits without card} gates,

because in principle each card} gate with & children can be simulated with (a simple
ripple-carry adder style) circuit of size O(k) which contains only and and or gates.



(iv) Simplify the circuits of step ¢ by substituting | when associated by (i)-(iii).

The punroll tool can also add a constraint which requires that the marking
reached is a deadlock, as given by the property f = dead = = \/,. 1 /\pe.tp.

As a constrained satisfiability checker for Boolean circuits we use BCSat [10].
It operates internally on Boolean circuits, and also directly supports cardé gates.
BCSat is available from: <http://www.tcs.hut.fi/ " tjunttil/bcsat/>.

We use a set of deadlock checking benchmarks collected by Corbett [4]. They
have been converted from communicating state machines to nets by Melzer and
Romer [13]. The BYZA4_2A example is an exception to this rule, it is from [14].
The models were picked by choosing the nontrivial ones which have a deadlock.

For each model and all three semantics we incremented the used bound n until
a deadlock was found. After that we stored the translation using that bound,
and report the time for BCSat 0.3 to find the first satisfying truth assignment. In
some cases a satisfying truth assignment could not be found within a reasonable
time in which case we report the time used to prove that there are no satisfying
truth assignments for the circuit with bound n.

The experimental results can be found in Fig. 7. The columns are:

— Problem: The problem name with the size of the instance in parenthesis.

|P|: Number of places in the net.

— |T'|: Number of transitions in the net.

— Pr. n: The smallest integer n such that a deadlock could be found using the
process semantics / in case of > n the largest integer n for which we could
prove that there is no deadlock with that bound using the process semantics.

— Pr. s: The time in seconds to find the first satisfying truth assignment / to
prove that there is no satisfying truth assignment. (See Pr. n above.)

— St. n and St. s: same as Pr. n and Pr. s but for the step semantics.

Int. n and Int. s: same as Pr. n and Pr. s but for the interleaving semantics.

— States: Number of reachable states of the net system, or a lower bound > n.?

The times reported are the average of 5 runs as reported by the /usr/bin/time
command on a Linux PC with an AMD Athlon 1GHz processor, 512MB RAM.

The set of experiments we used is too small to say anything conclusive about
the performance of the method. There are, however, still some interesting ob-
servations to be made. In the experiments the process and step semantics often
allow to use a smaller bound to find a deadlock. This partly explains their better
performance when compared to the interleaving semantics. The process seman-
tics has better performance than step semantics on e.g., BYZA4 2A, KEY(2),
and MMGT(4). Several of the benchmarks (14 out of the 54 circuits used) were
solved “with preprocessing” by BCSat, for example DARTES(1) in all semantics.
The KEY(x) examples do not have a large number of reachable states, but seem
to be still hard for bounded model checking, the results also indicate the reverse
to be sometimes true, see e.g., BYZA4 2A with process semantics.

The punroll tool, the net systems, and the circuits used are available from:
<http://www.tcs.hut.fi/ “kepa/experiments/Concur2001/>.

® These differ from the ones reported in [9], where there unfortunately are some errors.



[Problem [ TP[ ] ITT J[Pr. n][Pr. s[[St. n[ St. s[[Int. n]Int. s[| States]

BYZA4 2A 579 473 8] 5.6 8[179.8 >7| 6.8|] >2500000
DARTES(1) 331 257 32| 0.1 32| 1.5 32| 1.5]| >1500000
DP(12) 72 48 1| 0.0 1| 0.0 12| 1.5 531440
ELEV(1) 63 99 4| 0.0 4| 0.0 9| 0.6 163
ELEV(2) 146 299 6| 0.0 6] 0.2 12| 12.7 1092
ELEV(3) 327 783 8| 0.4 8| 2.7 15|126.5 7276
ELEV(4) 736 1939 10| 5.4 10| 67.7|| >13|560.5 48217
HART(25) 127 7 1| 0.0 1| 0.0 >5( 0.3|| >1000000
HART(50) 252 152 1| 0.0 1| 0.0 >5| 1.3|| >1000000
HART(75) 377|227 1| 0.0 1| 0.0 >5| 3.2|| >1000000
HART(100) 502| 302 1| 0.0 1| 0.0 >5| 5.9]| >1000000
KEY(2) 94 92 36| 22.7|| >27| 76.0(| >27| 30.1 536
KEY(3) 129 133|| >30|179.0|| >27|198.6|| >27| 47.3 4923
KEY(4) 164| 174|| >27| 32.9|| >27|221.0|| >27| 58.7 44819
MMGT(2) 86| 114 6/ 0.1 6/ 0.2 8] 1.3 816
MMGT(3) 122 172 7| 0.4 7 1.0 10| 40.4 7702
MMGT(4) 158| 232 8| 2.9 8(253.6|| >11|476.0 66308
Q(1) 163| 194 9] 0.1 9] 0.2|| >17|660.5 123596

Figure 7. Experiments

6 Conclusions

We have presented how bounded reachability checking for 1-safe Petri nets can
be done using constrained Boolean circuits. For step and interleaving semantics
these translations can be seen as circuit versions of the logic program translations
in [9]. The process semantics translation is new and is based on the notion of
Foata normal form for step executions.

We have created on an implementation called punroll. We report on a set
of benchmarks, where the BCSat tool is used to find whether the constrained
circuit is satisfiable or not. The experiments seem to indicate that the process
semantics translation is often the most competitive one.

It should be quite straightforward to also use other forms of concurrency
than 1-safe net systems with process semantics. The crucial point is to be able
to encode the constraints needed for a step execution to be in a Foata normal
form in a local manner.

The close connection of bounded reachability checking to AI planning tech-
niques [11,15] needs to be investigated further. It might be useful to use stochastic
methods [11] in the verification setting. Also applying process semantics for Al
planning needs to be investigated. (Step semantics has been used in [15].)

There are interesting topics for further research. We would like to extend the
tool to handle bounded LTL model checking [3]. For interleaving semantics this
is quite straightforward, but there are some subtle issues with step and process
semantics which need to be solved.

Acknowledgements The author would like to warmly thank T. A. Junttila
and I. Niemel4 for creating BCSat, and for fruitful discussions.
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