
Bounded Rea
hability Che
king withPro
ess Semanti
s ⋆Keijo HeljankoHelsinki University of Te
hnologyLaboratory for Theoreti
al Computer S
ien
eP.O. Box 5400, FIN-02015 HUT, FinlandKeijo.Heljanko�hut.fiAbstra
t Bounded model
he
king has been re
ently introdu
ed as ane�
ient veri�
ation method for rea
tive systems. In this work we ap-ply bounded model
he
king to asyn
hronous systems. More spe
i�
ally,we translate the bounded rea
hability problem for 1-safe Petri nets into
onstrained Boolean
ir
uit satis�ability. We
onsider three semanti
s:pro
ess, step, and interleaving semanti
s. We show that pro
ess seman-ti
s has often the best performan
e for bounded rea
hability
he
king.1 Introdu
tionBounded model
he
king [3℄ has been proposed as a veri�
ation method forrea
tive systems. The main idea is to look for
ounterexamples whi
h are shorterthan some �xed length for a given property. If a
ounterexample
an be found,then the property does not hold for the system. If no
ounterexample
an befound using this bound, usually the result is in
on
lusive.The de
ision pro
edure most often used in bounded model
he
king is propo-sitional satis�ability. Given the transition relation of the rea
tive system to bemodel
he
ked, the property, and the bound n, the transition relation and prop-erty are �unrolled� n times to obtain a propositional formula whi
h is satis�ablei� there is a
ounterexample with bound n. The implementation ideas are quitesimilar to pro
edures used in AI planning [11,15℄.In this work we apply bounded model
he
king to asyn
hronous systems.More spe
i�
ally, we translate the bounded rea
hability problem for 1-safe Petrinets into
onstrained Boolean
ir
uit satis�ability. This work
an be seen asa
ontinuation of the work done in [9℄. There we dis
uss using the step andinterleaving semanti
s for bounded rea
hability, while the formalism into whi
hthe problem is translated being logi
 programs with stable model semanti
s.The main
ontribution of this paper is that we show that the so
alled pro
esssemanti
s of Petri nets [1,2℄
an be used to improve the e�
ien
y of boundedmodel
he
king. Namely, also the pro
ess semanti
s
an be e�
iently en
odedinto
onstrained Boolean
ir
uits.
⋆ The �nan
ial support of the A
ademy of Finland (Proje
ts 43963 and 47754), andTekniikan Edistämissäätiö foundation are gratefully a
knowledged.

As an additional
ontribution we report on an implementation
alled punroll,whi
h uses the BCSat
onstrained Boolean
ir
uit satis�ability
he
ker to
he
kwhether the generated
onstrained
ir
uit is satis�able, thus solving the boundedrea
hability problem.The stru
ture of the rest of the paper is the following. First we introdu
ePetri nets and the three di�erent semanti
s in Se
t. 2. Then we shortly introdu
e
onstrained Boolean
ir
uits in Se
t. 3, and in Se
t. 4 show how the boundedrea
hability problem
an be translated into them. After that we dis
uss ourimplementation and experiments in Se
t. 5, and �nish with
on
lusions in Se
t. 6.2 Petri netsWe will now introdu
e Petri nets. A net is a triple (P, T, F), where P and Tare disjoint sets of pla
es and transitions, respe
tively, and F is a fun
tion (P ×
T) ∪ (T × P) → {0, 1}. Pla
es and transitions are generi
ally
alled nodes. If
F (x, y) = 1 then we say that there is an ar
 from x to y. The preset of a node
x, denoted by •x, is the set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denotedby x•, is the set {y ∈ P ∪ T | F (x, y) = 1}. In this paper we
onsider only �nitenets in whi
h every transition has a nonempty preset and a nonempty postset.A marking of a net (P, T, F) is a mapping P → IN (where IN denotes thenatural numbers in
luding 0). We identify a marking M with the multiset
on-taining M(p)
opies of p for every p ∈ P . For instan
e, if P = {p1, p2} and
M(p1) = 1, M(p2) = 2, we write M = {p1, p2, p2}. A 4-tuple Σ = (P, T, F, M0)is a net system if (P, T, F) is a net and M0 is a marking of (P, T, F) (
alled theinitial marking of Σ). We will use as a running example the net system in Fig. 1.2.1 Step Semanti
sTo save some spa
e, we de�ne the behavior of a net system through step seman-ti
s. The (usual) interleaving semanti
s will then be de�ned later based on thismore general
on
ept.A step is a non-empty set of transitions S ⊆ T . 1 We denote a step by [S〉.A marking M enables a step S if for all p ∈ P it holds that M(p) ≥

∑
t∈S F (p, t).If the step S is enabled at M , then it
an �re or o

ur, and its o

urren
e leadsto a new marking M ′ de�ned as M ′(p) = M(p) +

∑
t∈S(F (t, p) − F (p, t)) forevery pla
e p ∈ P . We denote this �ring of a step by M [S〉M ′.A (possibly empty) sequen
e of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step exe
u-tion of the net system Σ = (P, T, F, M0) if there exist markings M1, M2, . . . ,

Mn su
h that M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn. The marking rea
hed by theo

urren
e of σ is Mn. A marking M is a rea
hable marking if there exists a stepexe
ution σ su
h M is rea
hed by the o

urren
e of σ. A marking M is rea
hable1 We only
onsider a
lass of nets where the transitions
annot be self-
on
urrent.Therefore a set su�
es and multisets, i.e., bags are not needed.

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6Figure 1. Running Examplewith bound n if there exists a step exe
ution σ
onsisting of (exa
tly) n stepssu
h M is rea
hed by the o

urren
e σ. Correspondingly we say that a marking
M is rea
hable within bound n if there exists an integer 0 ≤ i ≤ n su
h that Mis rea
hable with bound i.In our running example the step [t1, t2〉 is enabled in the initial marking andthus {p1, p2}[t1, t2〉{p3, p4}. The marking {p3, p6} is rea
hable with bound 3, as
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6} is a step exe
ution.A marking M of a net is n-safe if M(p) ≤ n for every pla
e p. A net system Σis n-safe if all its rea
hable markings are n-safe. In this work we restri
t ourselvesto net systems whi
h are 1-safe. They are quite an interesting
lass, as e.g., netsystems arising from syn
hronization of state ma
hines are 1-safe. Note thatfor 1-safe net systems all rea
hable markings are rea
hable within bound n =
(2|P |−1). Thus the set �marking rea
hable within bound n�
an be seen as a lowerapproximation of the set of rea
hable markings whi
h improves as the bound nin
reases. See dis
ussion in [3℄ on how to
he
k whether a bound is su�
ientfor
ompleteness. Quite often a mu
h smaller bound than the one dis
ussedabove su�
es for
ompleteness. For a general dis
ussion of the
omputational
omplexity of veri�
ation problems for 1-safe Petri nets, see e.g., [6℄.2.2 Interleaving Semanti
sAn interleaving exe
ution is a step exe
ution M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mnsu
h that for all 0 ≤ i ≤ n − 1 it holds that |Si| = 1. A marking is rea
hable in

the interleaving semanti
s if there exists an interleaving exe
ution σ su
h that
M is rea
hed by the o

urren
e of σ. The bounded versions of rea
hability arede�ned similarly to the step
ase.Again in our example the marking {p3, p6} is rea
hable in the interleaving se-manti
s with a bound 4, as {p1, p2}[t1〉{p2, p3}[t2〉{p3, p4}[t3〉{p3, p5}[t6〉{p3, p6}is an interleaving exe
ution. Noti
e however, that the marking {p3, p6} is notrea
hable in the interleaving semanti
s with bound 3.It is well known, see e.g., [1℄ that for the net
lass used here the set ofrea
hable markings in the step and interleaving semanti
s
oin
ide. However,in bounded model
he
king using step semanti
s might be useful, as in many
ases markings
an be rea
hed with a smaller bound than in the interleavingsemanti
s.2.3 Pro
ess Semanti
sHowever, there is a problem with steps. Namely, there
an be several step exe-
utions whi
h intuitively represent the same �
on
urrent behavior�. These
an inbounded model
he
king introdu
e sear
h spa
e whi
h
an adversely e�e
t therunning time of the solver used. To avoid this we will use a well known semanti
sfrom the literature
alled the pro
ess semanti
s, see [1,2℄.We will now re
all from the literature a
onstru
tion whi
h
onstru
ts apro
ess from a �nite step exe
ution. The following is a modi�ed version (simplerbe
ause of 1-safeness) of the Constru
tion 4.9 in [1℄.For this de�nition we need some additional notation. For a net N = (P, T, F)the fun
tion Max (N) = {x ∈ P | x• = ∅}. Let L be a �nite set. A labelled net isa 4-tuple (P, T, F, l), where (P, T, F) is a net and l : P ∪ T → L is a labelling.De�nition 1. (Derivation of pro
ess from step exe
ution.) Let Σ = (P, T, F, M0)be a net system and let σ = [S0〉[S1〉 · · · [Sn−1〉 be a sequen
e of steps su
h that
M0[S0〉M1[S1〉 · · · [Sn−1〉Mn is a step exe
ution of Σ. We asso
iate with σ a la-belled net Π(σ) by
reating a sequen
e of labelled nets Ni = (Bi, Ei, Gi, li) withlabelling li : Bi ∪ Ei → P ∪ T by indu
tion on i, where 0 ≤ i ≤ n.(i = 0): E0 = ∅, G0 = ∅, and B0
ontains for ea
h p ∈ P su
h that M0(p) = 1a pla
e b with l0(b) = p.(i = i + 1): Suppose that Ni has been
onstru
ted.First we require that everything in Ni is also in Ni+1. For all x, y ∈ Bi ∪Ei:

x ∈ Bi ⇒ x ∈ Bi+1, x ∈ Ei ⇒ x ∈ Ei+1, (x, y) ∈ Gi ⇒ (x, y) ∈ Gi+1 and
li+1(x) = li(x).Then for ea
h t ∈ Si do the following:
• for ea
h p ∈ •t �nd the pla
e b(p) ∈ Max (Ni) su
h that li(b(p)) = p,
• add a new transition e to Ei+1 with li+1(e) = t and add (b(p), e) to Gi+1for all p ∈ •t,
• for ea
h p ∈ t• add a new pla
e b′(p) to Bi+1 with li+i(b

′(p)) = p and
(e, b′(p)) ∈ Gi+1.Finally take Π(σ) = Nn = (Bn, En, Gn, ln).

The
onstru
tion above is fully deterministi
 (as this version is for 1-safe netsonly) and thus the result is unique up to isomorphism. This fa
t is well known,see e.g., the dis
ussion of a similar de�nition, Def. 3 in [12℄. For simpli
ity, fromnow on we will identify all isomorphi
 pro
esses as being equivalent.Consider now our running example in Figure 1. It has a step exe
ution
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6}. Now given σ = [t2〉[t1, t3〉[t6〉 we
an
onstru
t the pro
ess Π(σ) given in Figure 2, where the labelling l of nodesis given in parenthesis.

b1(p2)

b2(p1)

b3(p4)

b4(p3)

b5(p5) b6(p6)e1(t2)

e2(t1)

e3(t3) e4(t6)

Figure 2. A pro
ess π = (B, E, G, l)It is easy to see that for example also the sequen
es of steps σ′ = [t1, t2〉[t3〉[t6〉,
σ′′ = [t2〉[t3〉[t1, t6〉, and σ′′′ = [t1〉[t2〉[t3〉[t6〉 will yield the same pro
ess, i.e.,
Π(σ′) = Π(σ′′) = Π(σ′′′) = Π(σ). All of these step exe
utions �solve the arising
on�i
ts� in the same way and lead to the same �nal marking of the pro
ess π,i.e., l(Max (π)) = {p3, p6}. Thus if we are only interested in the �nal marking itshould intuitively be su�
ient to only generate one of them. We will now showhow this
an be done in bounded rea
hability
he
king.We present an algorithm whi
h given a pro
ess π gives a sequen
e of steps
FNF (π) (for Foata normal form of π) whi
h together with Σ fully
hara
terizesthe pro
ess π. The Algorithm 1
omputes the Foata normal form of a pro
ess. Itis the algorithm presented on page 47 of [16℄ (with small notational
hanges). Wede�ne some notation for the algorithm. Given a set of transitions C ⊆ E of thepro
ess π = (B, E, G, l), let G∗ be the transitive
losure of the �ow relation G,and de�ne MinE (C) = {e ∈ C | for all e′ ∈ (C \ {e}) it holds that (e′, e) 6∈ G∗}.Assume that we are given a Foata normal form FNF (π) = [S0〉[S1〉 · · · [Sn−1〉for a pro
ess π of a 1-safe net system Σ. It is easy to prove that there are mark-ings M1, M2, . . . , Mn su
h that in the initial state M0 of Σ the step exe
ution
M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn
an o

ur.This normal form is a
tually the Foata normal form from the theory ofMazurkiewi
z tra
es, see e.g., [5℄. It is only (quite trivially) adapted to pro-
esses of 1-safe net systems. To our knowledge it was �rst applied to pro
esses of1-safe net systems in the veri�
ation algorithm setting in [7℄. (The fa
t that thete
hnique used is a Foata normal form is dis
ussed in more detail in an extendedversion [8℄, as well as in [16℄.)

Algorithm 1 The Foata normal form of a pro
essinput: A pro
ess π = (B, E, G, l) of a 1-safe net.output: Foata normal form of π: A sequen
e of steps FNF = [S0〉[S1〉 · · · [Sn−1〉.1 begin2 C := E;3 FNF := ǫ;4 while C 6= ∅ do5 S := l(MinE(C));6 FNF := FNF · [S〉;7 C := C \ MinE (C);8 endwhile9 return FNF ;10 endWhen run on the pro
ess π of Figure 2, we will get the result FNF (π) =[t1, t2〉[t3〉[t6〉. This intuitively
orresponds to a step exe
ution whi
h is �greedy�,i.e., it always �res transitions at the earliest possible time moment, while stillrespe
ting the stru
ture of the pro
ess π. Thus the step exe
ution in Foatanormal form is always among the shortest whi
h yield the pro
ess π.The Algorithm 1 gives an easy way of generating a Foata normal form ofa pro
ess. We will in our implementation use a di�erent de�nition, whi
h isequivalent but more suitable for the implementation te
hniques we use. (We havenot found this version in the literature. However, it is just a simple adaptationof the version for tra
es, see e.g., [5℄.)De�nition 2. The sequen
e of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step exe
utionof a 1-safe net system Σ in Foata normal form if:(a) σ = ǫ (i.e., σ is the empty step sequen
e), or(b) There are markings M1, M2, . . . , Mn su
h that in the initial state M0 of Σthe step exe
ution M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn
an o

ur, and:
• For ea
h 1 ≤ i ≤ n − 1 and for ea
h t ∈ Si there exists a transition t′ in

Si−1 su
h that t′• ∩ •t 6= ∅. (Ea
h transition t in step i with i ≥ 1 hassome transition t′ in step i− 1 whi
h generates some part of its preset.)Now there is a bije
tion between pro
esses and step exe
utions in Foatanormal form. Given a step exe
ution σ one
an
onstru
t the
orrespondingpro
ess π = Π(σ), and given the pro
ess π we
an
onstru
t the step exe
ution
σ′ = FNF (π) and in fa
t σ′ = σ i� σ was in Foata normal form (a

ording toDef. 2). Thus they both des
ribe the same
on
urrent behavior. It is thereforeonly a matter of taste whether one talks about pro
esses or step exe
utionsin Foata normal form. We have
hosen to talk about pro
esses and pro
esssemanti
s, as that is the terminology most often used in Petri net literature [1,2℄.Our a
tual implementation is, however, based on the de�nition of the Foatanormal form for step exe
utions, namely Def. 2.We thus de�ne the pro
ess semanti
s as follows. A marking M is a rea
h-able in the pro
ess semanti
s if there exists a step exe
ution σ in Foata normal

form, su
h that M is rea
hed by the o

urren
e of σ. The bounded versions ofrea
hability are again de�ned similarly to the step
ase.To rephrase our dis
ussion, here is the (not surprising) main result used inbounded model
he
king with pro
ess semanti
s.Theorem 1. Let Σ be a 1-safe net system. A marking M is rea
hable withinbound n in Σ i� in the pro
ess semanti
s M is rea
hable within bound n in Σ. 23 Boolean Cir
uitsThis se
tion is largely based on the presentation of [10℄. A Boolean
ir
uit isan dire
ted a
y
li
 graph where the nodes are
alled gates. The gates with nooutgoing edges are output gates and input gates are those gates whi
h do nothave in
oming edges nor an asso
iated Boolean fun
tion. Ea
h non-input gatehas a Boolean fun
tion asso
iated with it and it �
al
ulates� the output valuefrom the values of its
hildren.Boolean
ir
uits
an be expressed with Boolean expression systems. Givena �nite set V of Boolean variables, a Boolean equation system S over V is aset of equations of the form v = f(v1, . . . , vk), where v, v1, . . . , vk ∈ V and fis an arbitrary Boolean fun
tion. Boolean
ir
uits
an now be seen as Booleanequation systems with the following two properties. (i) Ea
h variable has at mostone equation. (ii) The equations are not re
ursive. (In the sense that the variabledependen
y graph [10℄ is a
y
li
.)A truth valuation for S is a fun
tion τ : V → {true, false}. A valuation is
onsistent if τ(v) = f(τ(v1), . . . , τ(vk)) for ea
h equation in S. The
onstrainedsatis�ability problem for Boolean
ir
uits is the following: given that variables
c+ ⊆ V must be true and variables in c− ⊆ V must be false, is there a
onsistentvaluation that respe
ts these
onstraints? We
all su
h a truth assignment a sat-isfying truth assignment. The
onstrained Boolean
ir
uit satis�ability problemis obviously an NP-
omplete problem under the plausible assumption that ea
hBoolean fun
tion in the system
an be evaluated in polynomial time.In the rest of this paper we use Boolean
ir
uits where the following Booleanfun
tions are used as gates:� ⊤ is always true.� ⊥ is always false.� not(v) = true i� v is not true.� or(v1, . . . , vk) = true i� at least one of vi, 1 ≤ i ≤ k is true.� and(v1, . . . , vk) = true i� all of vi, 1 ≤ i ≤ k are true.� cardU

L (v1, . . . , vk) = true i� for the
ardinality c of the set of variables viwhi
h are true it holds that L ≤ c ≤ U . (Where L and U are �xed
onstants
0 ≤ L ≤ U .)2 Note the use of within instead of with. A marking may be rea
hable with a bound nand only rea
hable with bound i in the pro
ess semanti
s, where i < n.

The fun
tion cardU
L (v1, . . . , vk) is a
tually a family of fun
tions. We use in thiswork only the spe
ial form card1

0(v1, . . . , vk), whi
h is true if less than two of thevariables in the set {v1, . . . , vk} are true. We will show that this fun
tion is quiteuseful for
ompa
tly en
oding whi
h transitions
an not be �red
on
urrently.4 Translating Bounded Rea
hability into BooleanCir
uitsWe will now present how to translate the bounded rea
hability problem for 1-safenets into
onstrained satis�ability problem for Boolean
ir
uits. The Figures 3-5give parts of the translation for our running example of Figure 1. We suggestthe reader to
onsult them while reading the de�nition of the translation.Consider a 1-safe net system Σ = (P, T, F, M0) and a �xed bound n. We �rst
onstru
t (in (a)-(b) below) a
onstrained Boolean
ir
uit whi
h
aptures thepossible step exe
utions of Σ of length ≤ n, where n ≥ 0.(a) To
apture the initial marking, for ea
h pla
e pj ∈ P we
reate a gate pj(0)and asso
iate ⊤ as the fun
tion if M0(pj) = 1, and ⊥ otherwise.(b) For ea
h step 0 ≤ i ≤ n − 1 we add the following gates:1. For ea
h transition tj ∈ T we
reate an input gate tj(i). If this gate istrue, it intuitively means that the transition tj �res in step i.2. For ea
h pla
e pj ∈ P we
reate an or gate gpj(i + 1) with the
hildren
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the preset of pj . The gate gpj(i+1)will be true if some transition in step i generates a token to the pla
e pj .3. For ea
h pla
e pj ∈ P we
reate an or gate rpj(i + 1) with the
hildren
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the postset of pj . The gate rpj(i+
1) will be true if some transition in step i removes a token from pj.4. For ea
h pla
e pj ∈ P we
reate a not gate nrpj(i + 1) with the
hild
rpj(i + 1).5. For ea
h pla
e pj ∈ P we
reate an and gate fpj(i + 1) with the
hildren
pj(i) and nrpj(i + 1). The gate fpj(i + 1) is true when a pla
e pj
ontainsa token before step i, and no transition removing tokens from it appearsin step i.6. For ea
h pla
e pj ∈ P we
reate an or gate pj(i + 1) with the
hildren
gpj(i + 1) and fpj(i + 1). The gate pj(i + 1) is true when after step i thepla
e pj
ontains a token. (Either a token was generated in step i or atoken residing on the pla
e pj before step i still remains on the pla
e pjafter the step i.)7. For ea
h transition tj ∈ T we
reate an and gate ptj(i) with the
hildren
{p1(i), . . . , pk(i)}, where {p1, . . . , pk} is the preset of tj . The gate ptj(i)will be true if all the preset pla
es of transition tj in step i
ontain atoken.8. For ea
h transition tj ∈ T we
reate a not gate ntj(i) with the
hild tj(i).9. For ea
h transition tj ∈ T we
reate an or gate ttj(i) and
onstrain itto be true. It has two
hildren ntj(i) and ptj(i). The
onstrained gate
ttj(i) ensures that either the transition tj is not �red in step i or all ofits preset tokens are available.

or

or

or notgp5(i + 1)

and

p5(i)t3(i) t4(i) t5(i) t6(i)

rp5(i + 1)

fp5(i + 1)

nrp5(i + 1)

p5(i + 1)

Figure 3. Example: translation for the pla
e p5

and

p3(i) p5(i)

pt4(i)

or

notnt4(i)

tt4(i)

⊤

t4(i)Figure 4. Example: translation for the transition t4

t4(i) t5(i) t6(i)

card1

0ncp5(i)

⊤

Figure 5. Example: translation of the
on�i
ts with respe
t to pla
e p5

10. For ea
h pla
e pj ∈ P su
h that |p•| ≥ 2 we
reate a card1

0 gate ncpj(i) and
onstrain it to true. It has
hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk}is the postset of pj . The
onstrained gate ncpj(i) ensures that at mostone of the transitions whi
h have the pla
e pj in preset
an appear instep i. We say that this set of transitions is in
on�i
t with respe
t tothe pla
e pj .The translation (a)-(b) as given above allows for �idle steps� in whi
h notransition o

urs. Thus the program en
odes all the step exe
utions of length nor less. We have
hosen to remove the possibility of idling steps in our imple-mentation.3 Thus we always add the following gates to the system:(
) For ea
h step 0 ≤ i ≤ n− 1 add an or gate ni(i) (for non-idle) and
onstrainit to true. It has the
hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk} = T . Thusthe gate ni(i) will be true if at least one transition �res in step i.We denote by SC (Σ, n) (for step
ir
uit) the translation given by (a)-(
).Given a valuation τ of the
ir
uit SC (Σ, n), we
an obtain the
orrespond-ing sequen
e of markings and steps M0, [S0〉, M1, [S1〉, . . . , Mn−1, [Sn−1〉, Mn byhaving transition tj ∈ Si i� tj(i) is true, and pj ∈ Mi i� pj(i) is true. Be
ausegates of form tj(i) are the only input gates, the mapping from sequen
es of stepsto
onsistent truth valuations is in fa
t a bije
tion.Lemma 1. The
onstrained Boolean
ir
uit SC (Σ, n) has a satisfying truth as-signment τ i� M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn is a step exe
ution of Σ, where
M0, [S0〉, M1, [S1〉, . . . , Mn−1, [Sn−1〉, Mn is the sequen
e of markings and steps
orresponding to τ .Thus we get our main result.Theorem 2. The
onstrained Boolean
ir
uit SC (Σ, n) en
odes step exe
utionsof length n.4.1 The Interleaving Semanti
sSometimes we would also like to
onsider the interleaving semanti
s. It is easy toadd a set of
onstrained gates to the
ir
uit whi
h disallow non-singleton steps.(i) For ea
h step 0 ≤ i ≤ n−1 add an card1

0 gate nc(i) (for non-
on
urrent) and
onstrain it to true. It has the
hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk} =
T . Thus the gate nc(i) will be true if at most one transition �res in step i.We
all the translation given by (a)-(
),(i) the interleaving
ir
uit IC (Σ, n).Theorem 3. The
onstrained Boolean
ir
uit IC (Σ, n) en
odes interleaving ex-e
utions of length n.3 Here the semanti
s of the translation di�ers from the one presented in [9℄.

4.2 The Pro
ess Semanti
sThe translation for the pro
ess semanti
s is the main
ontribution of this paper.The main idea behind it is to modify the translation for step semanti
s in su
h away that all step exe
utions whi
h are not in Foata normal form are disallowed.If one looks at Def. 2 it is easy to see that ea
h transition t in step Si (notin
luding the initial step S0) has to have at least one transition t′ in step Si−1whi
h generates at least one token to the preset of t. It is now straightforwardto enfor
e this in a lo
al way.We
hange the preset of a transition in the following way. The part (b) of thetranslation is repla
ed by (b'), whi
h is identi
al to (b) ex
ept that 7 is repla
edby the 7' and 7� (see Figure 6 for an example):(b') For ea
h step 0 ≤ i ≤ n − 1 we add the following gates (1-6,8-10 omitted):7'. For ea
h transition tj ∈ T we
reate an or gate dptj(i) (for disjun
tivepreset) with the
hildren {gp1(i), . . . , gpk(i)}, where {p1, . . . , pk} is thepreset of tj . The gate dptj(i) will be true if a token was generated tosome preset pla
e of transition tj in step i − 1. (The previous step!)7�. For ea
h transition tj ∈ T we
reate an and gate ptj(i) with the
hildren
{p1(i), . . . , pk(i), dptj(i)}, where {p1, . . . , pk} is the preset of tj . The gate
ptj(i) will be true if all the preset pla
es of transition tj in step i
ontaina token and the transition is lo
ally in Foata normal form.Note that the
hild gates of gates added by 7' already existed in the step trans-lation as they are generated by 2. The 7� is almost identi
al to 7 ex
ept thatthe gate
reated in 7' has been added to the list of
hildren. The gate generatedby 7� now assures that both the preset of the transition is available and thetransition is lo
ally in Foata normal form. These lo
al
onstraints on transitionenabledness together imply that the step exe
ution will as a whole be in Foatanormal form (again a

ording to Def. 2).

or

or

pt4(i) and

notnt4(i)

tt4(i)

⊤

t4(i) p5(i)p3(i) gp3(i) gp5(i)

dpt4(i)

Figure 6. Example: pro
ess semanti
s translation of t4

As in Def. 2, the initial step is spe
ial.(p) For ea
h pla
e pj ∈ P we
reate a gate gpj(0) and asso
iate ⊤ with it.We
all the translation given by (a),(p),(b'),(
) the pro
ess
ir
uit PC (Σ, n).We say that a pro
ess π has depth n if the
orresponding Foata normal formstep exe
ution FNF (π) has length n. We have the following result.Theorem 4. The
onstrained Boolean
ir
uit PC (Σ, n) en
odes pro
esses ofdepth n.4.3 Che
king Rea
habilityWe have presented three translations whi
h en
ode exe
utions with bound nin di�erent semanti
s. We
an now add any Boolean
onstraint on the �nalmarking M , as given by the syntax f ::= p ∈ P | ¬f1 | f1 ∨ f2 | f1 ∧ f2. Givena parse tree of the formula f , we
onvert it to a Boolean
ir
uit FC(f, n) ofsame size by repla
ing ea
h atomi
 proposition p ∈ P by the gate p(n), and allother formula types with the
orresponding gates having the same
hildren asin the parse tree. Finally the top-level gate f is
onstrained to true.Theorem 5. Let C (Σ, n) be one of PC (Σ, n), SC (Σ, n), IC (Σ, n). The
on-strained Boolean
ir
uit RC(Σ, f, n) = C (Σ, n) ∪ FC (f, n) has a satisfying truthassignment i� there exists a marking M whi
h satis�es f and is rea
hable in Σwith bound n in (pro
ess, step, interleaving) semanti
s.The size of ea
h translation RC(Σ, f, n) as the sum of number of gates and
onne
tions between them is linear, i.e., O((n · (|P | + |T | + |F |)) + |f |).45 Experimental ResultsWe have implemented the rea
hability translations des
ribed in the previousse
tion in a tool
alled punroll (for pro
ess unroller). We have implemented thefollowing optimization whi
h simpli�es away pla
es (transitions) whi
h
an neverhave a token (
an never �re). For ea
h step 0 ≤ i ≤ n − 1:(i) For ea
h transition tj ∈ T : If for some pla
e p ∈ •tj the gate p(i) has fun
tion
⊥ asso
iated with it (or alternatively in the pro
ess semanti
s: for all pla
es
p ∈ •tj the gate gp(i) has fun
tion ⊥ asso
iated with it), then asso
iate gate
tj(i) with fun
tion ⊥.(ii) For ea
h pla
e pj ∈ T : If for all transitions t ∈ •pj the gate t(i) is asso
iatedwith ⊥, then asso
iate the gate gpj(i + 1) with ⊥.(iii) For ea
h pla
e pj ∈ T : If both gates pj(i) and gpj(i + 1) are asso
iated with
⊥, then asso
iate pj(i + 1) with ⊥.4 This bound also holds if we restri
t ourselves to Boolean
ir
uits without card1

0 gates,be
ause in prin
iple ea
h card1

0 gate with k
hildren
an be simulated with (a simpleripple-
arry adder style)
ir
uit of size O(k) whi
h
ontains only and and or gates.

(iv) Simplify the
ir
uits of step i by substituting ⊥ when asso
iated by (i)-(iii).The punroll tool
an also add a
onstraint whi
h requires that the markingrea
hed is a deadlo
k, as given by the property f = dead = ¬
∨

t∈T

∧
p∈•t p.As a
onstrained satis�ability
he
ker for Boolean
ir
uits we use BCSat [10℄.It operates internally on Boolean
ir
uits, and also dire
tly supports card1

0 gates.
BCSat is available from: <http://www.t
s.hut.fi/�tjunttil/b
sat/>.We use a set of deadlo
k
he
king ben
hmarks
olle
ted by Corbett [4℄. Theyhave been
onverted from
ommuni
ating state ma
hines to nets by Melzer andRömer [13℄. The BYZA4_2A example is an ex
eption to this rule, it is from [14℄.The models were pi
ked by
hoosing the nontrivial ones whi
h have a deadlo
k.For ea
h model and all three semanti
s we in
remented the used bound n untila deadlo
k was found. After that we stored the translation using that bound,and report the time for BCSat 0.3 to �nd the �rst satisfying truth assignment. Insome
ases a satisfying truth assignment
ould not be found within a reasonabletime in whi
h
ase we report the time used to prove that there are no satisfyingtruth assignments for the
ir
uit with bound n.The experimental results
an be found in Fig. 7. The
olumns are:� Problem: The problem name with the size of the instan
e in parenthesis.� |P |: Number of pla
es in the net.� |T |: Number of transitions in the net.� Pr. n: The smallest integer n su
h that a deadlo
k
ould be found using thepro
ess semanti
s / in
ase of > n the largest integer n for whi
h we
ouldprove that there is no deadlo
k with that bound using the pro
ess semanti
s.� Pr. s: The time in se
onds to �nd the �rst satisfying truth assignment / toprove that there is no satisfying truth assignment. (See Pr. n above.)� St. n and St. s: same as Pr. n and Pr. s but for the step semanti
s.� Int. n and Int. s: same as Pr. n and Pr. s but for the interleaving semanti
s.� States: Number of rea
hable states of the net system, or a lower bound > n.5The times reported are the average of 5 runs as reported by the /usr/bin/time
ommand on a Linux PC with an AMD Athlon 1GHz pro
essor, 512MB RAM.The set of experiments we used is too small to say anything
on
lusive aboutthe performan
e of the method. There are, however, still some interesting ob-servations to be made. In the experiments the pro
ess and step semanti
s oftenallow to use a smaller bound to �nd a deadlo
k. This partly explains their betterperforman
e when
ompared to the interleaving semanti
s. The pro
ess seman-ti
s has better performan
e than step semanti
s on e.g., BYZA4_2A, KEY(2),and MMGT(4). Several of the ben
hmarks (14 out of the 54
ir
uits used) weresolved �with prepro
essing� by BCSat, for example DARTES(1) in all semanti
s.The KEY(x) examples do not have a large number of rea
hable states, but seemto be still hard for bounded model
he
king, the results also indi
ate the reverseto be sometimes true, see e.g., BYZA4_2A with pro
ess semanti
s.The punroll tool, the net systems, and the
ir
uits used are available from:<http://www.t
s.hut.fi/�kepa/experiments/Con
ur2001/>.5 These di�er from the ones reported in [9℄, where there unfortunately are some errors.

Problem |P | |T | Pr. n Pr. s St. n St. s Int. n Int. s StatesBYZA4_2A 579 473 8 5.6 8 179.8 >7 6.8 >2500000DARTES(1) 331 257 32 0.1 32 1.5 32 1.5 >1500000DP(12) 72 48 1 0.0 1 0.0 12 1.5 531440ELEV(1) 63 99 4 0.0 4 0.0 9 0.6 163ELEV(2) 146 299 6 0.0 6 0.2 12 12.7 1092ELEV(3) 327 783 8 0.4 8 2.7 15 126.5 7276ELEV(4) 736 1939 10 5.4 10 67.7 >13 560.5 48217HART(25) 127 77 1 0.0 1 0.0 >5 0.3 >1000000HART(50) 252 152 1 0.0 1 0.0 >5 1.3 >1000000HART(75) 377 227 1 0.0 1 0.0 >5 3.2 >1000000HART(100) 502 302 1 0.0 1 0.0 >5 5.9 >1000000KEY(2) 94 92 36 22.7 >27 76.0 >27 30.1 536KEY(3) 129 133 >30 179.0 >27 198.6 >27 47.3 4923KEY(4) 164 174 >27 32.9 >27 221.0 >27 58.7 44819MMGT(2) 86 114 6 0.1 6 0.2 8 1.3 816MMGT(3) 122 172 7 0.4 7 1.0 10 40.4 7702MMGT(4) 158 232 8 2.9 8 253.6 >11 476.0 66308Q(1) 163 194 9 0.1 9 0.2 >17 660.5 123596Figure 7. Experiments6 Con
lusionsWe have presented how bounded rea
hability
he
king for 1-safe Petri nets
anbe done using
onstrained Boolean
ir
uits. For step and interleaving semanti
sthese translations
an be seen as
ir
uit versions of the logi
 program translationsin [9℄. The pro
ess semanti
s translation is new and is based on the notion ofFoata normal form for step exe
utions.We have
reated on an implementation
alled punroll. We report on a setof ben
hmarks, where the BCSat tool is used to �nd whether the
onstrained
ir
uit is satis�able or not. The experiments seem to indi
ate that the pro
esssemanti
s translation is often the most
ompetitive one.It should be quite straightforward to also use other forms of
on
urren
ythan 1-safe net systems with pro
ess semanti
s. The
ru
ial point is to be ableto en
ode the
onstraints needed for a step exe
ution to be in a Foata normalform in a lo
al manner.The
lose
onne
tion of bounded rea
hability
he
king to AI planning te
h-niques [11,15℄ needs to be investigated further. It might be useful to use sto
hasti
methods [11℄ in the veri�
ation setting. Also applying pro
ess semanti
s for AIplanning needs to be investigated. (Step semanti
s has been used in [15℄.)There are interesting topi
s for further resear
h. We would like to extend thetool to handle bounded LTL model
he
king [3℄. For interleaving semanti
s thisis quite straightforward, but there are some subtle issues with step and pro
esssemanti
s whi
h need to be solved.A
knowledgements The author would like to warmly thank T. A. Junttilaand I. Niemelä for
reating BCSat, and for fruitful dis
ussions.

Referen
es1. E. Best and R. Devillers. Sequential and
on
urrent behaviour in Petri net theory.Theoreti
al Computer S
ien
e, 55(1):87�136, 1987.2. E. Best and C. Fernández. Nonsequential Pro
esses: A Petri Net View, volume 13of EATCS monographs on Theoreti
al Computer S
ien
e. Springer-Verlag, 1988.3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symboli
 model
he
king withoutBDDs. In Tools and Algorithms for the Constru
tion and Analysis of Systems(TACAS'99), pages 193�207. Springer, 1999. LNCS 1579.4. J. C. Corbett. Evaluating deadlo
k dete
tion methods for
on
urrent software.Te
hni
al report, Department of Information and Computer S
ien
e, University ofHawaii at Manoa, 1995.5. V. Diekert and Y. Métivier. Partial
ommutation and tra
es. In Handbook offormal languages, Vol. 3, pages 457�534. Springer, Berlin, 1997.6. J. Esparza. De
idability and
omplexity of Petri net problems � An introdu
tion.In Le
tures on Petri Nets I: Basi
 Models, pages 374�428. Springer-Verlag, 1998.LNCS 1491.7. J. Esparza, S. Römer, and W. Vogler. An improvement of M
Millan's unfoldingalgorithm. In Pro
eedings of 2nd International Workshop on Tools and Algorithmsfor the Constru
tion and Analysis of Systems (TACAS'96), pages 87�106, 1996.LNCS 1055.8. J. Esparza, S. Römer, and W. Vogler. An improvement of M
Millan's unfoldingalgorithm, 2001. A

epted for publi
ation in Formal Methods for System Design.9. K. Heljanko and I. Niemelä. Answer set programming and bounded model
he
king.In Pro
eedings of the AAAI Spring 2001 Symposium on Answer Set Programming:Towards E�
ient and S
alable Knowledge Representation and Reasoning, pages90�96, Stanford, USA, Mar
h 2001. AAAI Press, Te
hni
al Report SS-01-01.10. T. A. Junttila and I. Niemelä. Towards an e�
ient tableau method for Boolean
ir-
uit satis�ability
he
king. In Computational Logi
 � CL 2000; First InternationalConferen
e, pages 553�567, London, UK, 2000. LNCS 1861.11. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logi
 andsto
hasti
 sear
h. In Pro
eedings of the Thirteenth National Conferen
e on Arti-�
ial Intelligen
e and the Eighth Innovative Appli
ations of Arti�
ial Intelligen
eConferen
e, pages 1194�1201. AAAI Press / MIT Press, 1996.12. H. C. M. Kleijn and M. Koutny. Pro
ess semanti
s of P/T-nets with inhibitor ar
s.In Pro
eedings of the 21st International Conferen
e on Appli
ation and Theory ofPetri Nets, pages 261�281, 2000. LNCS 1825.13. S. Melzer and S. Römer. Deadlo
k
he
king using net unfoldings. In Pro
eedingsof 9th International Conferen
e on Computer-Aided Veri�
ation (CAV '97), pages352�363, 1997. LNCS 1254.14. S. Merkel. Veri�
ation of fault tolerant algorithms using PEP. Te
hni
al Re-port TUM-19734, SFB-Beri
ht Nr. 342/23/97 A, Te
hnis
he Universität Mün
hen,Mün
hen, Germany, 1997.15. I. Niemelä. Logi
 programming with stable model semanti
s as a
onstraintprogramming paradigm. Annals of Mathemati
s and Arti�
ial Intelligen
e,25(3,4):241�273, 1999.16. S. Römer. Theorie und Praxis der Netzentfaltungen als Basis für die Veri�kationnebenläu�ger Systeme. PhD thesis, Te
hnis
he Universität Mün
hen, Fakultät fürInformatik, Mün
hen, Germany, 2000.

