
Scalable Batch Processing in the Cloud
28.6-2011

1/49

Scalable Batch Processing in the Cloud

Keijo Heljanko

Department of Information and Computer Science
School of Science
Aalto University

keijo.heljanko@aalto.fi

28.6-2011



Scalable Batch Processing in the Cloud
28.6-2011

2/49

Business Drivers of Clouds

I Large data centers allow for economics of scale
I Cheaper hardware purchases
I Cheaper cooling of hardware

I Example: Google paid 40 MEur for a Summa paper mill site
in Hamina, Finland: Data center cooled with sea water from
the Baltic Sea

I Cheaper electricity
I Cheaper network capacity
I Smaller number of administrators / computer

I Unreliable commodity hardware is used
I Reliability obtained by replication of hardware components

and a combined with a fault tolerant software stack



Scalable Batch Processing in the Cloud
28.6-2011

3/49

Warehouse Scale Computing

I Thus the smallest unit of computation in Google scale is:
Warehouse full of computers

I Luiz André Barroso, Urs Hölzle: The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines Morgan & Claypool
Publishers 2009
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

I The book says:
“. . . we must treat the datacenter itself as one massive
warehouse-scale computer (WSC).”

http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006


Scalable Batch Processing in the Cloud
28.6-2011

4/49

Cloud Computing

A collection of technologies aimed to provide elastic “pay as
you go” computing

I Virtualization of computing resources: Amazon EC2,
Eucalyptus, OpenNebula, Open Stack Compute, . . .

I Scalable datastore: Amazon S3, Google Bigtable, HBase,
Amazon Dynamo, Apache Cassandra, . . .

I Scalable Web Applications hosting: Google App Engine,
Microsoft Azure, Heroku, . . .

I Scalable File Storage: GFS, HDFS, . . .
I Scalable batch processing: Google MapReduce / Apache

Hadoop, PACT, Microsoft Dryad, Google Pregel, . . .



Scalable Batch Processing in the Cloud
28.6-2011

5/49

Big Data

I As of May 2009, the amount of digital content in the world
is estimated to be 500 Exabytes (500 million TB)

I EMC sponsored study by IDC in 2007 estimates the
amount of information created in 2010 to be 988 EB

I Worldwide estimated hard disk sales in 2010:
≈ 675 million units

I Data comes from: Video, digital images, sensor data,
biological data, Internet sites, social media, . . .

I The problem of such large data massed, termed Big Data
calls for new approaches to storage and processing of data



Scalable Batch Processing in the Cloud
28.6-2011

6/49

Example: Simple Word Search

I Example: Suppose you need to search for a word in a 2TB
worth of text that is found only once in the text mass using
a compute cluster

I Assuming 100MB/s read speed, in the worst case reading
all data from a single 2TB disk takes ≈ 5.5 hours

I If 100 hard disks can be used in parallel, the same task
takes less than four minutes

I Scaling using hard disk parallelism is one of the design
goals of scalable batch processing in the cloud



Scalable Batch Processing in the Cloud
28.6-2011

7/49

Scaling Up vs Scaling Out

I Scaling up: When the need for parallelism arises, a single
powerful computer is added with more CPU cores, more
memory, and more hard disks

I Scaling out: When the need for parallelism arises, the task
is divided between a large number of less powerful
machines with (relatively) slow CPUs, moderate memory
amounts, moderate hard disk counts



Scalable Batch Processing in the Cloud
28.6-2011

8/49

Pros and Cons of Scaling Up vs Scaling Out

I Scaling up is more expensive than scaling out. Big
high-end systems have much higher pricing for a given:
CPU power, memory, and hard disk space

I Scaling out is more challenging for fault tolerance. A large
number of loosely coupled systems means more failures in
hardware and in networking. Solution: Software fault
tolerance

I Scaling out is more challenging for software development
due to larger number of components, larger number of
failures both in nodes and networking connecting them,
and increased latencies. Solution: Scalable software
development frameworks



Scalable Batch Processing in the Cloud
28.6-2011

9/49

Google MapReduce

I A scalable batch processing framework developed at
Google for computing the Web index

I The MapReduce framework takes care of all issues related
to parallelization, synchronization, load balancing, and fault
tolerance. All these details are hidden from the
programmer

I When deciding whether MapReduce is the correct fit for an
algorithm, one has to remember the fixed data-flow pattern
of MapReduce. The algorithm has to be efficiently mapped
to this data-flow pattern in order to efficiently use the
underlying computing hardware



Scalable Batch Processing in the Cloud
28.6-2011

10/49

MapReduce and Functional Programming

I Based on the functional programming in the large:
I User is only allowed to write side-effect free functions

“Map” and “Reduce”
I Re-execution is used for fault tolerance. Side effects in

functions would make this impossible
I The functions themselves are usually written in a standard

imperative programming language such as Java or C++



Scalable Batch Processing in the Cloud
28.6-2011

11/49

Why No Side-Effects?

I Side-effect free programs will produce the same output
irregardless of the number of computing nodes used

I Running the code on one machine for debugging purposes
produces the same results as running the same code in
parallel

I It is easy to introduce side-effect to MapReduce programs
as the framework does not enforce a strict programming
methodology. However, the behavior of such programs is
undefined by the framework, and should therefore be
avoided.



Scalable Batch Processing in the Cloud
28.6-2011

12/49

Map and Reduce Functions

I The framework only allows a user to write two functions: a
“Map” function and a “Reduce” function

I The Map-function is fed blocks of data (blocksize
64-128MB), and it produces (key, value) -pairs

I The framework groups all values with the same key to a
(key, (..., list of values, ...)) format, and these
are then fed to the Reduce function



Scalable Batch Processing in the Cloud
28.6-2011

13/49

MapReduce Diagram

22.1.2010 2

Worker

Worker

Worker

Worker

split 0

split 1

split 2

split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork

(2)assign
map

(6)write

Worker

(5)Remote 
read

(1)fork

(2)
assign
reduce

Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
phase

Output
files

Figure: J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004



Scalable Batch Processing in the Cloud
28.6-2011

14/49

Example: Word Count

I Classic word count example from the Hadoop MapReduce
tutorial:
http://hadoop.apache.org/common/docs/current/

mapred_tutorial.html

I Consider doing a word count of the following file using
MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html


Scalable Batch Processing in the Cloud
28.6-2011

15/49

Example: Word Count (cnt.)

I Consider a Map function that reads in words one a time,
and outputs (word, 1) for each parsed input word

I The Map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)



Scalable Batch Processing in the Cloud
28.6-2011

16/49

Example: Word Count (cnt.)

I The Shuffle phase between Map and Reduce phase
creates a list of values associated with each key

I The Reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))



Scalable Batch Processing in the Cloud
28.6-2011

17/49

Example: Word Count (cnt.)

I Consider a reduce function that sums the numbers in the
list for each key and outputs (word, count) pairs. The
output of the Reduce function is the output of the
MapReduce job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)



Scalable Batch Processing in the Cloud
28.6-2011

18/49

Phases of MapReduce

1. A Master (In Hadoop terminology: Job Tracker) is started
that coordinates the execution of a MapReduce job. Note:
Master is a single point of failure

2. The master creates a predefined number of M Map
workers, and assigns each one an input split to work on. It
also later starts a predefined number of R reduce workers

3. Input is assigned to a free Map worker 64-128MB split at a
time, and each user defined Map function is fed (key,

value) pairs as input and also produces (key, value)

pairs



Scalable Batch Processing in the Cloud
28.6-2011

19/49

Phases of MapReduce(cnt.)

4. Periodically the Map workers flush their (key, value)

pairs to the local hard disks, partitioning by their key to R
partitions (default: use hashing), one per reduce worker

5. When all the input splits have been processed, a Shuffle
phase starts where M × R file transfers are used to send
all of the mapper outputs to the reducer handling each key
partition. After reducer receives the input files, reducer
sorts the pairs by the key

6. User defined Reduce functions iterate over the (key,

(..., list of values, ...)) lists, generating output
(key, value) pairs files, one per reducer



Scalable Batch Processing in the Cloud
28.6-2011

20/49

Google MapReduce (cnt.)

I The user just supplies the Map and Reduce functions,
nothing more

I The framework can be used to implement a distributed
sorting algorithm by using a custom partitioning function

I The framework does automatic parallelization and fault
tolerance by using a centralized Job tracker (Master) and a
distributed filesystem that stores all data redundantly on
compute nodes

I Uses functional programming paradigm to guarantee
correctness of parallelization and to implement
fault-tolerance by re-execution



Scalable Batch Processing in the Cloud
28.6-2011

21/49

Apache Hadoop

I An Open Source implementation of the MapReduce
framework, originally developed by Doug Cutting and
heavily used by e.g., Yahoo! and Facebook

I “Moving Computation is Cheaper than Moving Data” - Ship
code to data, not data to code.

I Map and Reduce workers are also storage nodes for the
underlying distributed filesystem: Job allocation is first tried
to a node having a copy of the data, and if that fails, then to
a node in the same rack (to maximize network bandwidth)

I Project Web page: http://hadoop.apache.org/

http://hadoop.apache.org/


Scalable Batch Processing in the Cloud
28.6-2011

22/49

Apache Hadoop (cnt.)

I Builds reliable systems out of unreliable commodity
hardware by replicating most components (exceptions:
Master/Job Tracker and NameNode in Hadoop Distributed
File System)

I Tuned for large (gigabytes of data) files
I Designed for very large 1 PB+ data sets
I Designed for streaming data accesses in batch processing,

designed for high bandwidth instead of low latency
I For scalability NOT a POSIX filesystem
I Written in Java, runs as a set of userspace daemons



Scalable Batch Processing in the Cloud
28.6-2011

23/49

Hadoop Distributed Filesystem

I A distributed replicated filesystem: All data is replicated by
default on three different Data Nodes

I Inspired by the Google Filesystem
I Each node is usually a Linux compute node with a small

number of hard disks (4-12)
I A single NameNode that maintains the file locations, many

DataNodes (1000+)



Scalable Batch Processing in the Cloud
28.6-2011

24/49

Hadoop Distributed Filesystem (cnt.)

I Any piece of data is available if at least one datanode
replica is up and running

I Rack optimized: by default one replica written locally,
second in the same rack, and a third replica in another rack
(to combat against rack failures, e.g., rack switch or rack
power feed)

I Uses large block size, 128 MB is a common default -
designed for batch processing

I For scalability: Write once, read many filesystem



Scalable Batch Processing in the Cloud
28.6-2011

25/49

Implications of Write Once

I All applications need to be re-engineered to only do
sequential writes. Example systems working on top of
HDFS:

I HBase (Hadoop Database), a database system with only
sequential writes, Google Bigtable clone

I MapReduce batch processing system
I Apache Pig and Hive data mining tools
I Mahout machine learning libraries
I Lucene and Solr full text search



Scalable Batch Processing in the Cloud
28.6-2011

26/49

HDFS Architecture
I From: HDFS Under The Hood by Sanjay Radia of Yahoo

http://assets.en.oreilly.com/1/event/12/HDFS%20Under%20the%20Hood%20Presentation%201.pdf

http://assets.en.oreilly.com/1/event/12/HDFS%20Under%20the%20Hood%20Presentation%201.pdf


Scalable Batch Processing in the Cloud
28.6-2011

27/49

HDFS Architecture

I NameNode is a single computer that maintains the
namespace (meta-data) of the filesystem. Implementation
detail: Keeps all meta-data in memory, writes logs, and
does periodic snapshots to the disk

I All data accesses are done directly to the DataNodes
I Replica writes are done in a daisy chained (pipelined)

fashion to maximize network utilization



Scalable Batch Processing in the Cloud
28.6-2011

28/49

HDFS Scalability Limits

I 20PB+ deployed HDFS installations (10 000+ hard disks)
I 4000+ DataNodes
I Single NameNode scalability limits: The HDFS is

NameNode scalability limited for write only workloads to
around HDFS 10 000 clients, K. V. Shvachko: HDFS
scalability: the limits to growth:
http://www.usenix.org/publications/login/2010-04/

openpdfs/shvachko.pdf

I Currently a distributed NameNode design is being
implemented to address scalability (not fault tolerance)
issues

http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf
http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf


Scalable Batch Processing in the Cloud
28.6-2011

29/49

Hadoop Hardware

I Reasonable CPU speed, reasonable RAM amounts for
each node

I 4-12 hard disks per node seem to be the current
suggestion

I CPU speeds are growing faster than hard disk speeds, so
newer installations are moving to more hard disks / node

I Gigabit Ethernet networking seems to be dominant



Scalable Batch Processing in the Cloud
28.6-2011

30/49

Hadoop Network Bandwidth Consideration

I Hadoop is fairly network latency insensitive
I Mapper reads can often be read from the local disk or the

same rack (intra-rack network bandwidth is cheaper than
inter-rack bandwidth)

I For jobs with only small Map output, very little network
bandwidth is used

I For jobs with large Map output, Hadoop likes large
inter-node network bandwidth (Shuffle phase),

I To save network bandwidth, Mappers should produce a
minimum amount of output



Scalable Batch Processing in the Cloud
28.6-2011

31/49

Terasort Benchmark

I Hadoop won the Terasort benchmark in 2009 by sorting
100 TB in 173 minutes using: 3452 nodes x (2 Quadcore
Xeons, 8 GB memory, 4 SATA disks/node)



Scalable Batch Processing in the Cloud
28.6-2011

32/49

Two Large Hadoop Installations

I Yahoo! (2009): 4000 nodes, 16 PB raw disk, 64TB RAM,
32K cores

I Facebook (2010): 2000 nodes, 21 PB storage, 64TB RAM,
22.4K cores

I 12 TB (compressed) data added per day, 800TB
(compressed) data scanned per day

I A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J.
Sen Sarma, R. Murthy, H. Liu: Data warehousing and
analytics infrastructure at Facebook. SIGMOD Conference
2010: 1013-1020.
http://doi.acm.org/10.1145/1807167.1807278

http://doi.acm.org/10.1145/1807167.1807278


Scalable Batch Processing in the Cloud
28.6-2011

33/49

Cloud Software Project

I ICT SHOK Program Cloud Software (2010-2013)
I A large Finnish consortium, see:

http://www.cloudsoftwareprogram.org/
I Case study at Aalto: CSC Genome Browser Cloud Backend
I Co-authors: Matti Niemenmaa, André Schumacher (Aalto

University, Department of Information and Computer
Science), Aleksi Kallio, Eija Korpelainen, Taavi Hupponen,
and Petri Klemelä (CSC — IT Center for Science)

http://www.cloudsoftwareprogram.org/


Scalable Batch Processing in the Cloud
28.6-2011

34/49

CSC Genome Browser

I CSC provides tools and infrastructure for bioinformatics
I Bioinformatics is the largest customer group of CSC (in

user numbers)
I Next-Generation Sequencing (NGS) produces large data

sets (TB+)
I Cloud computing can be harnessed for analyzing these

data sets
I 1000 Genomes project (http://www.1000genomes.org):

Freely available 50 TB data set of human genomes

http://www.1000genomes.org


Scalable Batch Processing in the Cloud
28.6-2011

35/49

CSC Genome Browser

I Finland has limited resources to produce data
I Analysis software systems is area where Finland has

potential for global impact



Scalable Batch Processing in the Cloud
28.6-2011

36/49

CSC Genome Browser

I Cloud computing technologies will enable scalable NGS
data analysis

I There exists prior research into sequence alignment and
assembly in the cloud

I Visualization is needed in order to understand large data
masses

I Interactive visualization for 100GB+ datasets can only be
achieved with preprocessing in the cloud



Scalable Batch Processing in the Cloud
28.6-2011

37/49

Genome Browser Requirements

I Interactive browsing with zooming in and out, “Google
Earth”-style

I Single datasets 100GB-1TB+ with interactive visualization
at different zoom levels

I Preprocessing used to compute summary data for the
higher zoom levels

I Dataset too large to compute the summary data in real time
using the real dataset

I Scalable cloud data processing paradigm map-reduce
implemented in Hadoop used to compute the summary
data in preprocessing (currently upto 15 x 12 = 180 cores)



Scalable Batch Processing in the Cloud
28.6-2011

38/49

Genome Browser GUI



Scalable Batch Processing in the Cloud
28.6-2011

39/49

Read aggregation: problem

I A common problem in DNA sequence analysis is the
alignment of a large number of smaller subsequences to a
common reference sequence

I Once the alignment has been determined, one needs to
analyze how well the reference sequence is covered by the
subsequences (a.k.a. reads)

I For interactive visualization the large data set has to be
summarized

I Cloud computing enables interactive visualization of
sequencing data



Scalable Batch Processing in the Cloud
28.6-2011

40/49

Read aggregation: problem (cnt.)



Scalable Batch Processing in the Cloud
28.6-2011

41/49

Summary Files



Scalable Batch Processing in the Cloud
28.6-2011

42/49

Read aggregation via Hadoop

BAM sort summarize

I Center point of each read computed (Map)
I Reads sorted according to that center point
I For fixed summary-block size B, every B reads are merged

into a single aggregated read (Reduce)
I Note: in the previous example we had B = 2



Scalable Batch Processing in the Cloud
28.6-2011

43/49

Triton Cloud Testbed

I Cloud computing testbed at Aalto
University

I 112 AMD Opteron 2.6 GHz compute
nodes with 12 cores, 32-64GB memory
each, totalling 1344 cores

I Infiniband and 1 GBit Ethernet networks
I 30 TB+ local disk
I 40 TB+ fileserver work space



Scalable Batch Processing in the Cloud
28.6-2011

44/49

Triton Cloud Testbed Fileserver



Scalable Batch Processing in the Cloud
28.6-2011

45/49

Experiments

I One 50 GB (compressed) BAM input file from 1000
Genomes

I Run on the Triton cluster 1-15 compute nodes with 12
cores each

I Four repetitions for increasing number of worker nodes
I Two types of runs: sorting according to starting position

(“sorted”) and read aggregation using five summary-block
sizes at once (“summarized”)



Scalable Batch Processing in the Cloud
28.6-2011

46/49

Mean speedup

0

2

4

6

8

10

12

14

16

1 2 4 8 15

M
e
a
n
 s
p
e
e
d
u
p

Workers

50 GB sorted

Ideal

Input file import

Sorting

Output file export

Total elapsed

0

2

4

6

8

10

12

14

16

1 2 4 8 15
M

e
a

n
 s

p
e

e
d

u
p

Workers

50 GB summarized for B=2,4,8,16,32

Ideal

Input file import

Summarizing

Output file export

Total elapsed



Scalable Batch Processing in the Cloud
28.6-2011

47/49

Results

I An updated CSC Genome browser GUI
I Chipster: Tools and framework for producing visualizable

data
I An implementation of preprocessing for visualization using

Hadoop
I Scalability studies for running Hadoop on 50 GB+ datasets

on the Triton cloud testbed
I Software released:

http://sourceforge.net/projects/hadoop-bam/

http://sourceforge.net/projects/hadoop-bam/


Scalable Batch Processing in the Cloud
28.6-2011

48/49

Future plans

I Further implementation of data analysis for the cloud
I Continued development of the genome browser GUI and

bioinformatics tools
I Prestudy comparing the Genome Analysis Toolkit



Scalable Batch Processing in the Cloud
28.6-2011

49/49

Current Research Topics

I Aalto and CSC both have datacenters which can be used
as testbeds for cloud computing technologies

I Focus on cloud based data analysis for “Big Data”
I MapReduce (Hadoop) scalable batch processing

technologies in the cloud
I Scalable datastores: HBase (Hadoop Database) has been

evaluated, also other cloud based datastores such as
Cassandra are of interest


