Online bin packing with delay and holding costs

Lauri Ahlroth*, André Schumacher, Pekka Orponen

Aalto University School of Science, Department of Information and Computer Science and

Helsinki Institute for Information Technology HIIT

Abstract

We consider online bin packing where in addition to the opening cost of each bin, the arriving items collect delay costs until their
assigned bins are released (closed), and the open bins themselves collect holding costs. Besides being of practical interest, this
problem generalises several previously unrelated online optimisation problems. We provide a general online algorithm for this
problem with competitive ratio 7, with improvements for the special cases of zero delay or holding costs and size-proportional item

delay costs.

Keywords: competitive analysis, online algorithm, bin packing, rent-to-buy

1. Introduction

Online bin packing and its variants can be used to model a
large number of application scenarios, such as transportation of
goods, telecommunications, and jobshop scheduling. Consider
for instance the task of shipping items from a shipping depot
(factory, warehouse) to another destination. Posting a shipment
incurs a cost, and so the overall cost of the task can be reduced
by including several items in the same shipment. However,
shipping containers have bounded capacity, so only a limited
number of items can be sent together, where the number may
depend on the sizes of the items. This example scenario, and
many similar ones, can be formulated in terms of the classical
NP-complete bin packing problem. Bin packing and its online
variant, in which items must be assigned to bins upon their ar-
rival without knowledge of future arrivals, have been studied
extensively [1, 2, 3, 4].

Continuing with the example, one may consider the case
where the items are perishable goods that lose value while wait-
ing, or collect some other type of delay cost over time until they
arrive at their destination. If one further accounts for the cap-
ital costs or rents of the containers themselves, then the depot
should also not let the containers wait too long before shipping
them. This is an example for an often encountered situation that
calls for layered decisions. Items arriving in an online fashion
need to be packed into bins (containers, packets, machines),
where both the items and the bins themselves collect cost until
they are released for further processing (shipping, transmission,
tooling).

*Corresponding address: Aalto University School of Science, Department
of Information and Computer Science, P.O.Box 15400, FI-00076 Aalto, Fin-
land. Tel. +358 9 47025141, fax: +358 9 47023277

Email addresses: lauri.ahlroth@aalto.fi (Lauri Ahlroth),
andre.schumacher@aalto.fi (André Schumacher),
pekka.orponenfaalto.fi (Pekka Orponen)

Preprint submitted to Operations Research Letters

We study versions of the online bin packing problem that
can be used to model these types of scenarios. In addition to
the opening cost per each bin used, we assume that the arriving
items collect delay costs while waiting for their assigned bins
to be released, and the bins themselves collect corresponding
holding costs. In addition to transportation problems, similar
issues are frequently encountered e.g. in the context of commu-
nication networks, where packets collect delay while waiting
for transmission and transmission slots have limited capacity.

We study online algorithms within the context of compet-
itive analysis. An (online) algorithm A4 has performance ratio
0 > 1 for a given problem instance if it achieves a cost of ¢
times the optimal (offline) cost. The supremum of these ratios
over all possible instances is called the competitive ratio of 4.
In the model of this paper, we show in Appendix A that under
reasonable assumptions for online algorithms the value of the
usual asymptotic competitive ratio is equal to the strict compet-
itive ratio defined above.

Besides its direct interpretation in terms of online bin pack-
ing, the problem we study can be considered as an extension of
the TCP acknowledgement problem [5, 6, 7, 8]. In this setting
one seeks to acknowledge a sequence of arriving packets with
as few acknowledgement messages as possible, taking into ac-
count the delay accumulated between the arrival times and the
eventual acknowledgement of each packet. There is no restric-
tion on the number of packets that can be acknowledged by
a single message, so that this setting corresponds to a single-
bin uncapacitated version of our problem. The TCP acknowl-
edgement problem is also closely related to the well-known ski
rental problem [9]. Both problems have an asymptotically tight
upper and lower bound of 2 for their competitive ratio [5].

In the context of operations research, the discrete-time ver-
sion of the TCP acknowledgement problem is also known as
the single-commodity economic lot-sizing problem. In this set-
ting, the problem was first studied by Wagner and Whitin [10],

October 22, 2012

who also proposed a polynomial time algorithm solving the of-
fline version to optimality. Variations of this problem have been
studied with and without capacity constraints [11, 12], typi-
cally however only in an offline setting. It is interesting that
the frequently used Part-Period-Balancing (PPB) heuristic for
the lot-sizing problem [13] is essentially identical to the online
algorithm given in [5] for the TCP acknowledgement problem,
where the holding cost due to inventory kept in a warehouse
takes the role of item delay cost and ordering cost is replaced
by transmission cost.

When comparing results between the two families of related
problems, online bin packing and TCP acknowledgement, one
notes that for online bin packing the best possible asymptotic
competitive ratio is between 1.5403 [14] and 1.5889 [2]. This is
in contrast to the TCP acknowledgement problem, which has an
asymptotic lower bound of 2, matching its upper bound [5]. It
appears that the combination of these two problems, viz. taking
into account both the opening costs of capacity-limited bins and
costs induced by item delays, has not been previously explored.

We propose a general type of algorithm that is inspired by
the PPB heuristic. Following the general principle of the heuris-
tic, the algorithm simply releases a bin when the sum of its ac-
cumulated delay and holding cost approximately equals the bin
opening cost. The assignment of items to bins is handled via
one of the traditional bin packing heuristics, whose operation is
limited to opening a new bin and assigning items to bins that
have not yet been released. In general, the algorithm may de-
cide to keep multiple bins open at the same time.

For the special case in which there are only delay costs but
no holding costs, we obtain slightly improved results under the
additional assumption that items collect delay cost at a rate that
is proportional to their size. This second algorithm is inspired
by the Next-Fit bin packing heuristic [4], which we extend to
our new problem. Next-Fit maintains a single active bin, to
which it assigns newly arriving items until bin is full and a new
bin must be opened, which then becomes the active bin. For
both algorithms, we establish constant worst-case competitive
ratios for our generalisation of the bin packing problem. The
actual values of the constants obtained are summarised at the
end of the paper in Table 1.

The rest of the paper is organised as follows. Section 2
formalises the problem and introduces our model. Section 3 in-
troduces a class of online algorithms and proves constant upper
bounds on their competitive ratio, including improved results
for special cases. We then turn to the case when the delay cost
that an item collects is proportional both to its size and the time
it spends waiting for its bin to be released. Section 4 gives per-
formance results for a different algorithm that hold under this
assumption and improve on our results for the general case. Fi-
nally, Section 6 presents our conclusions and outlines future
work. In Appendix A we further show that the asymptotic and
strict competitive ratios have mutually equal values for most
intuitive algorithm classes.

2. The model

Our model resembles the classical online bin packing prob-
lem in the sense that items arrive in an online fashion and have
to be assigned to bins upon their arrival. Each item has a size
and the load of a bin (the total size of items assigned to it) must
not exceed its capacity. As also in the classical setting, we pe-
nalise algorithms that choose to open many bins by charging
an opening cost. However, our model differs from the classical
one in that the items await further processing after they were
assigned to their bin at their arrival time. More precisely, we
require that each opened bin needs to eventually be released,
thereby making it unavailable for the assignment of further items
arriving in the future. This variation is motivated by various
problems from the context of communication and transporta-
tion networks.

In the setting of our problem, the most natural way to model
item arrivals is in the model that is typically referred to as online-
time model in the scheduling literature (e.g., see [15]). In the
online-time model the item arrival times correspond to job re-
lease dates, and the problem instance is revealed to the algo-
rithm over time as jobs are released (not to be confused with
the release of bins in our model). The online-time model is dif-
ferent from the online-list model, which is typically used in the
context of bin packing but does not immediately allow for the
introduction of costs relating to time since the instance is solely
defined by the sequence of items (and their sizes) arriving.

Any algorithm for this problem needs to split the sequence
of items into some number of opened bins and decide on a re-
lease time for each of these, which then determines the total
delay and holding cost incurred by the bin. We denote the cost
for opening a new bin by B. One could w.l.o.g. assume B = 1
by scaling all costs by 1/B. We however prefer to retain the ex-
plicit reference to B in order to indicate the dependence of the
various algorithms on this parameter.

We study the effect of two different types of additional costs
on the performance of algorithms. Our first variation assumes
that each item collects a delay cost from time of item arrival to
release of the item. Different items may in general have differ-
ent delay cost functions. Fix an item k and denote by ¢ the time
elapsed from the arrival of item k. The accumulated delay cost
function D (#) is assumed to satisfy the following properties:

1. Dy(0) =0,
2. Dy (-) is non-decreasing and continuous,
3. sup,.o D (t) > B.

The third assumption guarantees that an optimal solution re-
leases items instead of keeping them in an open bin forever.
This notion of delay cost allows us to model a great variety of
settings, for example these in which items belong to classes that
collect delay costs at different rates, depending on a notion of
urgency of being released. We point out a bilinear special case
where the delay cost is

D(k)(t) =d-s-t,

with s; being the size of item k and d a constant common to all
items.

The second cost variation assumes that each bin collects a
holding cost from the time it was opened until the time it was
released. The holding cost is assumed to have a linear structure:
there is a constant 2 > 0 such that bin i collects holding cost
H; = h-t when it has been open for 7 time units. Observe that the
holding cost also satisfies all three properties of the delay cost
function given above. The third cost variation of our problem,
that is when both delay and holding cost are present, simply
considers the sum of both delay and holding costs.

Similar cost functions have been studied by Dooly et al. [5]
for the TCP acknowledgement problem. A special case of our
first variant, where D<k> (1) =d -t for some constant d, is referred
to as fy,m and the second holding cost variant corresponds to the
fmax cost function, while their combination satisfies the condi-
tions on the cost function fj, defined in [5]. We use this fact
for obtaining some lower bounds by corollaries from the TCP
acknowledgement problem.

Following the classical bin packing problem, we assume
uniform bin capacities, which means that we consider bins with
capacity 1. Let I/ denote the load of bin i at time ¢, which is
defined as the sum of the size of all items assigned to i up to
and including time 7. Due to the capacity constraint we thus re-
quire that [/ < 1 for each bin i at any time 7. Also let /; := sup, [}
denote the final load present in bin i after the whole input is
processed.

No more items can be assigned to i that arrive after its re-
lease time. More specifically, let 7; be the time interval between
the opening time of bin i and its release time (endpoints in-
cluded). We can always assume that the opening time is equal
to the arrival time of the first item that was assigned to bin i.
During 7; bin i collects holding cost of & |T;| and all items that
are assigned to it collect delay cost.

Let further D; denote the total delay cost contributed by the
items placed in i. If [is a set of bins opened in a solution,
D;:=Y,D; and H; := Y ;c;H;. The notion D;(Ty), for some
bin 7/, is a refinement of D; referring to the delay cost incurred
for items in bin i over the interval T;.

Let N be the total number of bins opened in a given solution.
We define

N N
Cs:=NB, Cp:=)Y D Cy:=) H,
i=1 =1

so that the total cost incurred by the solution is equal to
Cior :=Cp+Cp+Cy.

In the special case of the optimal solution, denoted by OPT, we
introduce the corresponding terms D;‘-, H; for each opened bin
J» and Cg, Cj;, C}, for total costs of each type.

3. Release-On-Balance algorithm

We present an algorithm combining PPB with the Any-Fit
bin packing scheme [4]. Any-Fit is a class of bin packing algo-
rithms that open a new bin only when the current item does not
fit into any of the open but unreleased bins. Items that fit to one
of the opened bins can be placed into any of these. Fix any bin
packing algorithm A4 from the Any-Fit family.

Definition 3.1. Release-On-Balance (ROB) is an algorithm that
uses A to assign items into bins. For a fixed o. > 0, each bin i is
released exactly when

1
H, +D; = aB. (1)

The constant o, > 0 is introduced to obtain the best possible
bounds in the chosen analysis framework. We start by proving
some useful properties for ROB.

3.1. Properties of ROB

Lemma 3.2. If ROB has different bins i and i’ open at the same
time t, then Ij +1,, > 1.

Corollary 3.3. Ifi and i’ are different bins used by ROB such
that l; +1y <1, then T; and Ty are disjoint.

Lemma 3.4. Let I be a set of bins in ROB that has l; > % for
alli € I. Then the number of bins in I satisfies |I|B < 2Cj.

Proof. The total item load in the instance is at least §|I|, and
since any optimum solution must fit the items to unit size bins

the total bin count is %B > 411 O

Lemma 3.5. Let B > 0 and let I be a set of bins in ROB that
has I; < % and D; > éB for alli € 1. Then the number of bins

in I satisfies |I|B < Cj+ B C;,.

Proof. Fix a bin i € I and consider the time span 7; from the
opening to the release of i. No other bin i’ € I, i’ # i, can remain
open during 7; due to Lemma 3.2. Thus the intervals 7;, Ty must

be disjoint. Further, OPT must either release a bin j during 7; or
collect a delay cost of at least D; > %B during 7;. Considering

all i € I we can write |I| < %E—F% and hence |I|B < Cj +B C},.
O

Lemma 3.6. Let B > 0 and let I be a set of bins in ROB that
has I; < % and satisfies H; > %Bfor alli € I. Then the number
of bins in I satisfies |I|\B < 2C; + B Cj;.
Proof. No two different bins i € I and i’ € I can be open at
the same time by Lemma 3.2. By definition of /, we further
conclude that the time during which ROB keeps the bins in /
open is at least %.

If OPT bin j contains an item placed in a bin i € I by ROB,
we say bin j overlaps with bin i. Define

I(j):={i eI] joverlaps with i}.

From the definition of holding costs, we see that an OPT bin j

H*
is open for time . Since each of the bins in () is open for at
least time & but no two of them are open simultaneously, we
get the following:

H;/h o B H;
B/(Bh) B
This is illustrated in Figure 1. Taking a sum over all OPT bins
j and observing that U;I(j) = I we get

il <2+

Figure 1: An illustration of the upper bound for the number of ROB bins i
overlapping with OPT bin j. The thin segments correspond to each 7; and the
thick segment corresponds to 7; on a horizontal time axis.

H|B <Y, |I(j)|B<Y;(2B+BH})<2C;+BCj.

3.2. Bounds on ROB competitive ratio
Theorem 3.7. In the model with both delay and holding costs,
ROB with o. = 3 has competitive ratio at most 7.

Proof. Because D; + H; = éB for each ROB bin i, we can par-
tition the bins used by ROB into three sets as follows:

I;: bins with [; >

—_ =

b: bins with [; < 5 and D; > 2
I: bins with [; < } and H; > £
We have Cror = (|| + |B| +|55]) (B+ £). We apply Lemma

3.4 to upper bound |/;| and Lemmas 3.5 and 3.6 with § = 2a to
upper bound || and |55], yielding

1
Cor= (14 3) (nlB+ 118 + 118
1
< (1 + a) (2C5 + Cy +20Ch 4 2C5 +20C)

1
= (1 + a) (5C5+20.(ChH+Cy)).

Using o0 = 3 gives Cyoy < 7(Cjy+Cj,+Cjy) =7C;,. O

If there are no holding costs, i.e. & = 0, a competitive ratio
of 4 is attainable.

Theorem 3.8. When the holding cost rate is zero (h = 0), ROB

with . = 3 has competitive ratio at most 4.

Proof. We split the bins used by ROB into two disjoint sets:
I;: bins with [; >
I: bins with [; <

We have D; = LB foreach bin i, so Gy = (|I | + ||) (B+ £).

We apply Lemma 3.4 to upper bound |/;| and Lemma 3.5 with

B = o to upper bound |L|, yielding

B[— 12—

1
Cor= (145) (n1B+ 113
1
< (1 + a) (2Cg +Cg +0Cp).

Using o = 3 gives Cypy < 3 (3C}; +3Cj) = 4C;,,.]

If there are no delay costs, similar techniques yield another
bound. We omit the full proof due to a forthcoming improved
result in Corollary 4.3.

Theorem 3.9. Ifitem delay costs are zero, ROB with o. = 4 has
competitive ratio at most 5.

4. Fast release-on-balance algorithm

We now turn to the special case of bilinear cost functions,
for which we are able to improve on the bounds for ROB by
considering a different algorithm, which is also based on the
same idea of balancing delay, holding and release costs.

Definition 4.1. Fast release-on-balance (FROB) is an algo-
rithm that releases a bin i when either of the conditions is sat-
isfied:

e bin i collects holding and delay of Hi+D; = B

e the next item does not fit in bin i; a new bin is opened for
the item.

Observe that FROB never has more than one bin open at a
time. Before analysing its performance, define

(X)* := max(X,0),
whence also X + (Y — X)* = max(X,Y).

Theorem 4.2. If delay costs are bilinear, FROB has competitive
ratio at most 3.

Proof. Consider the sequence (1,2,...,N) of bins that are used
by FROB for a given instance. We assume bin i is opened and
released before bin i/ whenever i < i’. We divide the bins into
a set of bin pairs P and individual bins Q such that each bin is
either in Q or a part of exactly one pair in P. Let ¢; = H; + D;.
For each bin i with ¢; < B, we set (i,i+ 1) as a pair in P and
remove bin i+ 1 from further considerations. The remaining
bins all have ¢; = B and they belong to Q.

Fix a sequence s of 2M + 1 consecutive bins used by FROB,
with s consisting of M = M (s) pairs from P in the beginning and
one bin from Q at the end. Let 7; be the interval between the
opening of the first bin that belongs to P and the release of the
single type Q bin in the sequence s. This partition of FROB
bins, which are opened and released during the time interval T,
into two sets is illustrated in Figure 2. We prove that during
T;, FROB costs are at most three times the cost of an offline
optimal algorithm OPT. Each bin opening cost is considered to
occur at the time of release. Making a split of all FROB bins
into disjoint subsequences s and summing over s then yields

Crot < 3Ciyy- @

Hence, the proof is reduced to the case of a single sequence s.
To make a finer distinction, denote the interval between
ROB’s opening of the first type P bin and the release of the
second bin of the last pair of type P bins by Tp. Denote by
Tp the time interval during which the only type Q bin of s is

Tp Ty
- L -
| | || | | | |
I I L I 1 I 1
1 2 i i+1 2M + 1
P Q

Figure 2: An illustration of the two classes of bins P and Q in a sequence s.
FROB released bins 1 and i due to the next item not fitting in the bins, while
bin 2M + 1 was released due to time-dependent costs ¢; reaching the value B.
The bins 2 and i + 1 may have been released due to either reason.

open. Since for each of the bin pairs in P, the second bin was
opened due to the arrival of a new item whose size exceeded
the remaining capacity of the first bin, we conclude that FROB
is assigning an item load strictly over 1 in each of these pairs.
Hence FROB is assigning an item load strictly over M during
Tp, and the same holds for OPT.

Assume OPT releases r bins during 7p and 7 bins during
Ty, which corresponds to OPT having opening costs of exactly

(r+7r)B

over this time interval. Denote again by 7; the time interval that
starts from the arrival of the first item that FROB assigns to bin
i and ends with FROB’s release of i. Considering the bins that
belong to P, at least 2M — r of their intervals 7; do not contain an
OPT release. Denote the set of these type P bins without OPT
release in their interval by Py, |Po| > 2M — r. The lack of OPT
releases implies we can charge a combined delay and holding
cost of at least ¢; to OPT during T; for each i € Py. Thus OPT
delay and holding costs on 7p are at least

Y

icPy

We still need a lower bound on OPT delay and holding
costs during Tp. Let Igp < 1 be the average load that FROB
: 7 1
achieves over Tp. Formally expressed, [y =] fTQ lo(r)dt,

where [p(¢) < 1 is the instantaneous item load for FROB. Con-
sider first a solution that does not release any bins over the time
interval T;. In this case there would be a load of at least M
remaining before the start of Tp. Thus, a solution without re-
leases in 7y would achieve an average load over Ty of at least
M +7Q. Taking into account that in OPT there are -+ 1’ releases
during the complete time interval Ty, we conclude the average
item load for OPT in Ty is at least M +[p — r — r. Hence, OPT
collects a delay cost over Ty of at least
N+ /
(M—I—le—r—r) Dy = (1 —|—M_,#
0 lo
>(1+M—r—r)"Dg.

)"Dg

Consider now OPT holding costs during Tp. The number of
bins that are open during the complete 7Ty is equal to at least the
average load and hence [M + 1y —r — '], implying that OPT
holding costs are at least (M + 1 —r—r')THp.

model any D | bilinear D

H=0 4 3

D=0 3
H,D>0 7 3

Table 1: Proven upper bounds for FROB and ROB competitive ratios depending
on the different costs types. For the case D = 0 the delay model is trivially
bilinear.

By combining the previous results, we thus establish that
OPT costs over the interval T; are at least

(r+r)B+ Z ci+M+1—r—r)Y"Do+M~+1—r—+)"Hy
i€Py
=(r+r)B+M+1-r—r)"B+ Y ¢
icPy
=max(M+1,r+7)B+ Z ci.
i€Py

Algorithm FROB achieves a cost of 2MB + Y**, ¢; + 2B over
time interval 7;. Recall that ¢; < B due to FROB release rule
and that |Py| > 2M — r. Thus, the ratio between FROB and
OPT costs is

2MB+ Yy ¢ci+2B
max(M + 1,7 +7")B+ Ycp ¢i

2IM+1)B+Yicp ¢i . Lign, i<amCi
T (M+1)B+Yiep i (r+r)B
rB
<24 <3
=TT S

O

The special case of all delay costs being identically zero
satisfies bilinearity, and we get the following corollary.

Corollary 4.3. If there are no delay costs, FROB has competi-
tive ratio at most 3.

5. Lower bounds

Theorem 5.1. No deterministic online algorithm can achieve a
competitive ratio for the online bin packing problem with delay
and holding costs smaller than 2. Moreover, this bound holds if
either one (but not both) of holding cost rate or delay cost rate
is zero and the bin capacity is unlimited.

Proof. The result is a corollary of Theorem 23 in [5] that ap-
plies to generalisations of the TCP acknowledgement problem
(without capacities). O

6. Conclusions and further work

In this paper we extend online bin packing by introducing
delay and holding costs, which allows the modelling of a wide
range of interesting real-world problems. We provide constant-
competitive algorithms when bins have uniform capacity and

study relevant special cases. Our results are collected in Table 1.
Although the lower bounds from the TCP acknowledgement
problem carry over in this case, one may ask whether these
could be improved upon when there bin capacities and delay
or holding costs. We reserve this question for future work. On
the other hand, it may be possible to further improve the upper
bounds as well, which may be interesting from a practical point
of view.

Further, one should note that if the problem involves an ad-
ditional cost layer, so that there is a second layer the bins need
to be released via and bins of the first layer may be packed into
bins of the second layer, then the problem with unlimited ca-
pacities corresponds to the online version of the well known
NP-complete joint-replenishment problem [16], which has ap-
plications in sensor-network data aggregation and supply chain
optimisation. In the future we want to consider extensions of
the ROB scheme to these more complicated cost structures.

Acknowledgement

The first author was supported by Helsinki Graduate School
for Computer Science and the Nokia Foundation. The second
author was supported by the Cloud Software Programme of the
Finnish Strategic Centre for Science, Technology and Innova-
tion TiViT.

References

[11 A. van Vliet, An improved lower bound for on-line bin packing algo-
rithms, Information Processing Letters 43 (1992) 277 — 284.

[2] S. S. Seiden, On the online bin packing problem, J. ACM 49 (2002)
640-671.

[3] E. G. Coffman, M. R. Garey, D. S. Johnson, Approximation Algorithms
for NP-Hard Problems, PWS Publishing Company, pp. 46-93.

[4] G. Galambos, G. J. Woeginger, On-line bin packing - a restricted survey,
Mathematical Methods of Operations Research 42 (1995) 25-45.

[5] D. R. Dooly, S. A. Goldman, S. D. Scott, On-line analysis of the TCP
acknowledgment delay problem, Journal of the ACM 48 (2001) 243-273.

[6] S. Albers, H. Bals, Dynamic TCP acknowledgement: penalizing long
delays, SIAM J. on Discrete Mathematics 19 (2005) 938-951.

[7] J. Frederiksen, K. Larsen, Packet bundling, in: M. Penttonen, E. Schmidt
(Eds.), Algorithm Theory - SWAT 2002, volume 2368 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2002, pp. 1-38.

[8] Karlin, Kenyon, Randall, Dynamic TCP acknowledgment and other sto-
ries about e /(e - 1), Algorithmica 36 (2008) 209-224.

[9] H. Fujiwara, K. Iwama, Average-case competitive analyses for ski-rental
problems, Algorithmica 42 (2005) 95-107.

[10] H. M. Wagner, T. M. Whitin, Dynamic version of the economic lot size
model, Management Science 5 (1958) 89-96.

[11] N. Brahimi, S. Dauzere-Peres, N. M. Najid, A. Nordli, Single item lot
sizing problems, European Journal of Operational Research 168 (2006) 1
- 16.

[12] S. Anily, M. Tzur, L. Wolsey, Multi-item lot-sizing with joint set-up costs,
Mathematical Programming 119 (2009) 79-94.

[13] U. Wemmerlov, The part-period balancing algorithm and its look ahead-
look back feature: A theoretical and experimental analysis of a single
stage lot-sizing procedure, Journal of Operations Management 4 (1983)
23 -39.

[14] J. Balogh, J. Békési, G. Galambos, New lower bounds for certain classes
of bin packing algorithms, in: K. Jansen, R. Solis-Oba (Eds.), Approx-
imation and Online Algorithms, volume 6534 of Lecture Notes in Com-
puter Science, Springer Berlin / Heidelberg, 2011, pp. 25-36.

[15] J. Y. T. Leung, Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis, Chapman & Hall/CRC, 1 edition, 2004.

[16] E. Arkin, D. Joneja, R. Roundy, Computational complexity of uncapaci-
tated multi-echelon production planning problems, Operations Research
Letters 8 (1989) 61-66.

Appendix A.

In this Appendix we prove that in the bin packing problem
with delay and holding costs the strict and asymptotic compet-
itive ratios are equal under only mild assumptions. The strict
competitive ratio is the smallest oo > 1 such that ALG < o0 OPT
for all instances, whereas the asymptotic competitive ratio is
the smallest oo > 1 for which there exists a constant ¢ such that
ALG < o OPT + ¢ for all instances.

At first we need a sanity assumption on the algorithms:
there exists a finite time 7 such that if no new items arrive in
to time units, all bins have been released and there are no open
bins anymore. Any algorithm that aims to achieve a good per-
formance should have this property, since otherwise delay or
holding cost may grow without limits.

Secondly, we assume the algorithm resets its memory buffer
every time it releases the last bin. More accurately, if for some
input sequence S the last bin is released at a time ¢, consider S as
the concatenation S = Sj o S, of the item arrival subsequences
before and after . The algorithm is assumed to operate on the
S» part in exactly the same way as if the input was S alone.

In particular, these assumptions allow us to construct self-
concatenations S" consisting of n copies of a base input S, with
gaps of length 7y between consecutive Ss, while maintaining
the simple cost equations OPT (S") = n- OPT(S), ALG(S") =
n-ALG(S).

Theorem Al. Let ALG be a deterministic algorithm for the
bin packing problem with delay and/or holding costs. If ALG
satisfies the sanity and reset assumptions above, then its strict
and asymptotic competitive ratios are equal.

Proof. The definitions immediately imply that the strict com-
petitive ratio is always at least equal to the asymptotic compet-
itive ratio. Thus, it suffices to prove that lower bounds for the
strict competitive ratio are also lower bounds for the asymptotic
competitive ratio.

Let B be any (proper) lower bound for the strict competitive
ratio of ALG, i.e., let S be a problem instance with

B OPT(S)+&=ALG(S)

for some € > 0. We construct the self-concatenation S”, yielding
OPT (S") =n-OPT(S), ALG(S") = n-ALG(S), and further

B OPT(S") +n-e=ALG(S").

This implies that ALG(S") can not be bound by B OPT (S") + ¢
for any constant ¢. Thus any real number B below the strict
competitive ratio must be a lower bound for the asymptotic
competitive ratio, and the proof is finished. O

