The Computational Power of Continuous Time
Asymmetric Neural Networks

Pekka Orponen
Department of Mathematics
University of Jyvaskyla, Finland*

Abstract

We investigate the computational power of continuous-time neural net-
works with Hopfield-type units and asymmetric interconnections. We
prove that polynomial-size networks with saturated-linear response func-
tions are at least as powerful as polynomially space-bounded Turing ma-
chines.

1 Introduction

In a paper published in 1984 [13], John Hopfield introduced a continuous-time
version of the neural network model whose discrete-time variant he had discussed
in his seminal 1982 paper [12]. The 1984 paper also contains an electronic im-
plementation scheme for the continuous-time networks, and an argument show-
ing that for sufficiently large-gain nonlinearities, these behave similarly to the
discrete-time ones, at least when used as associative memories.

The power of Hopfield’s discrete-time networks as general-purpose compu-
tational devices was analyzed in [24, 25]. In this paper we conduct a similar
analysis for networks consisting of Hopfield’s continuous-time units; however we
are at this stage able to analyze only the general asymmetric networks, and the
very interesting subclass of continuous-time networks with symmetric intercon-
nections has to wait for further research.! Also, our analysis is restricted to
networks with saturated-linear response functions, although computer experi-
ments do indicate that our constructions work equally well for e.g. the standard
sigmoid nonlinearities.

*Address: P. O. Box 35, FIN-40351 Jyvéaskyld, Finland. E-mail: orponen@math.jyu.fi.
Part of this work was done during the author’s visit to the Technical University of Graz,
Austria.

1 Note added in proof. A characterization of the computational power of symmetric Hopfield
networks, along the same lines as presented here, was recently achieved in [32].

A u
T —‘ Z ‘ o o Yi=o(u)
yE ._\/\/\/\ \/‘K—' ¥i = —o(u;)

pi — G

.

Figure 1: An electrical model of Hopfield’s continuous-time neuron.

Under the above assumptions, we prove that sequences of networks of polyno-
mially increasing size can compute all the functions in the class PSPACE/poly,
i.e. the same functions as are computed by polynomially space-bounded nonuni-
form Turing machines. Such analyses of the computational power of continuous-
time processes are at the moment relatively rare in the literature, but we expect
their number to grow along with the current increase of interest in analog com-
putation. (So far only a few papers have explicitly addressed computational
complexity issues [5, 29, 33]. Computability aspects have been studied more
often; see, e.g. [2, 6, 7, 20, 21, 22, 27, 28], and the surveys [23, 26].)

2 A Continuous-Time Neural Network Model

An electrical model of Hopfield’s continuous-time neuron is shown in Fig. 1.
Here o denotes the characteristic of the nonlinear amplifier, and p; and C; are
its input resistance and capacitance, respectively. In the following analyses we
shall consider only the saturated-linear characteristic

-1, for z < -1,
o(z)=¢ 2z, for —1<2z<1,
1, forz>1.

The input voltage of the amplifier is denoted by u;, and the output voltage by
y;. In order to establish inhibitory interconnections between such units, also the
inverted output voltages §; = —y; are needed.

The unit ¢ indicated in the figure draws input from units j and £ via two
resistors, whose resistances are denoted by R;; and R;x. The voltages y]j-E and ykjE

are obtained from the appropriate output terminals of units j and &, depending
on whether the inputs are excitatory or inhibitory.

By Kirchhoff’s current law, the circuit equations for a network of p such
units can be written as

du; u; P
Ci—+— = o for i=1,...,p .
By choosing the circuit parameters appropriately and normalizing the time con-
stants to 1, we can use such a network to implement any system of first-order
nonlinear differential equations of the form

dui o .
E:_UHZ’%O’(UH, i=L...,p. (1)

j=1

(We essentially choose R;; = 1/h;; and normalize; for details see [13].) This is
the formulation of the network we are going to use: i.e., we assume that the
state u; of each unit ¢, with input connections of weight h;; from the other units,
develops as described by equation (1).

3 Simulating Turing Machines by Networks

We shall consider classes of Boolean functions computed by networks of continuous-
time units. The appropriate definitions may be framed in e.g. the following
manner. Let N be a network of p units, including a special indicator unit ujyne-
Let ¢ : {0,1}" — RP and p : R? — {0,1}" be two “simple” mappings, used
to translate a binary input string of length n to an initial network state, and
a final network state into a binary output string of length m. Given an in-
put string z € {0,1}", the network is initialized in state ¢(z); this initial state
should in particular satisfy o(ugone) = —1. The network is then allowed to run
until o(ugone) achieves value 1: the computation is well-behaved if during its
course the value of o(ugone) increases monotonically from —1 to 1, and when
(ugone) = 1, the value of p(u) stays constant. The result of the computation
is then the final stable value of p(u).

Assuming the above notion of a well-behaved computation, a network N
thus computes a partial mapping

In: {Oal}n - {U’I}m .

The mapping is partial, because we take its value to be undefined for inputs
that do not lead to a well-behaved computation.

For simplicity, we consider from now on only networks with a single-bit
output (i.e. m = 1); the extensions to networks with multiple-bit outputs are

straightforward. The language recognized by an n-bit input, single-bit output
network NN is defined as

L(N) ={z € {0,1}" | fn(z) =1} .

A sequence of networks (N,)n>o recognizes a language A C {0,1}*, if each
network N,, recognizes the language AN {0,1}". A sequence of networks has
polynomial size if there is a polynomial g(n) such that for each n, the network
N,, has at most ¢(n) units.

Let (z,y) be some standard pairing function mapping pairs of binary strings
to binary strings (see, e.g. [4, p. 7]). A language A C {0,1}* belongs to the
nonuniform complexity class PSPACE/poly ([3], [4, p. 100], [14]), if there are
a polynomial space bounded Turing machine M, and an “advice” function
f + N — {0,1}*, where for some polynomial ¢ and all n € N, |f(n)| < q(n),
and for all z € {0,1}*,

z€A & M accepts (z, f(|z|)) .

It was shown in [24] that all languages in PSPACE /poly can be recognized by
polynomial-size sequences of discrete Hopfield networks, even symmetric ones.
(Recall that in a discrete Hopfield net the units have bipolar, i.e. +1 states, and
each unit ¢ updates its state from time ¢ to time ¢ + 1 according to the rule
yi(t+1) = sgn(3_; hijy;(t)), where sgn(z) = 1if 2 > 0 and ~1if 2 < 0.) As the
construction without the symmetricity restriction is not too difficult, we shall
for completeness outline it here?.

Let A € PSPACE/poly via a machine M and advice function f. Let the
space complexity of M on input (z, f(|z|)) be bounded by a polynomial ¢(|z|).
Without loss of generality (see, e.g. [4]) we may assume that M has only one
tape, halts on any input (z, f(|z|)) in time c2(#D for some constant ¢, and
indicates its acceptance or rejection of the input by printing a 1 or a 0 on the
first square of its tape.

Following the standard simulation of Turing machines by combinational cir-
cuits [4, pp. 106-112], it is straightforward to construct for each n a feedforward
circuit that simulates the behavior of M on inputs of length n. (More precisely,
the circuit simulates computations M ({z, f(n))), where |z| = n.) This circuit
consists of c?(™ “layers” of O(q(n)) parallel wires, where the tth layer repre-
sents the configuration of the machine M at time ¢t (Fig. 2, left). Every two
consecutive layers of wires are interconnected by an intermediate layer of ¢(n)
constant-size subcircuits, each implementing the local transition rule of machine
M at a single position of the simulated configuration. The input z is entered to
the circuit along input wires; the advice string f(n) appears as a constant input

21n fact, this version of the result, i.e. Turing machine simulation by asymmetric networks
with synchronously updated units, was already obtained by Lepley and Miller in the unpub-
lished report [17]. The result was extended to symmetric networks in [24], and to networks
with asynchronous updates in [25].

;

i s

‘ ¥
CIC LI L]

Olo]0]0]

Figure 2: Simulation of a space bounded Turing machine by an asymmetric
recurrent net.

on another set of wires; and the output is read from the particular wire at the
end of the circuit that corresponds to the first square of the machine tape.

One may now observe that the interconnection patterns between layers are
very uniform: all the local transition subcircuits are similar, with a structure
that depends only on the structure of M, and their number depends only on the
length of . Hence we may replace the exponentially many consecutive layers
in the feedforward circuit by a single transformation layer that feeds back on
itself (Fig. 2, right). The size of the recurrent network thus obtained is then
only O(g(n)). When initialized with input z loaded onto the appropriate input
units, and advice string f(n) mapped to the appropriate initially active units,
the network will converge in O(c?(™) update steps, at which point the output
can be read off the unit corresponding to the first square of the machine tape.
It is also easy to arrange for a separate unit u4,,, whose value flips from —1 to
1 when the simulated machine M enters a halting state.

Let us then turn to the continuous-time simulation. We shall simply take
the discrete network of Fig. 2 (or any other discrete network, for that matter),
and replace it unit by unit with a computationally equivalent continuous-time
system. Each discrete-time unit 7 is replaced by two bistable pairs of continuous-
time units as indicated in Fig. 33. The units in the bistable pairs are periodically
reset by alternating “clock pulses” derived from an oscillating pair of units as
shown in Fig. 4. The sequencing of the reset signals is schematically depicted in

3Note that Figs. 3, 4, and 6 are really just pictorial representations of the equations (1).
Correspondingly, we shall in the sequel use the terms “unit” and “variable” completely inter-
changeably. The actual physical implementation of these “units” is rather more complicated,
as indicated in Section 2.

Figure 3: Simulation of a discrete-time unit by two bistable continuous-time
unit pairs.

reset,, reset,

Figure 4: Deriving reset pulses from an oscillating unit pair.

rocta) L] |
et LT L

Figure 5: Reset pulse sequence.

Fig. 5. As regards the values of the various parameters, we shall just note here
that they should be chosen so that » > ¢ > b > 0, and s > 1; we shall discuss
appropriate choices in more detail later. For simplicity, we are always assuming
that the connection weights in the simulated discrete network are integers.

The computational idea underlying this construction is the following. The
pair of units labeled vii in Fig. 3 represents the state of the simulated discrete
unit 7 at each discrete time ¢ in a redundant manner, so that y;” = o(v;") = 1 if
¥:(t) =1, and y; =o(v;) =11if y;(t) = —1. As long as no reset signals arrive
from the clock subnetwork this representation is stable because of the inhibitory
connections of weight —c < —b between the units v?‘ and v; .

Assume then that a reset, signal from the clock subnetwork drives the states
of all of the w units in the network close to the values u* = —r. When the signal
falls off, the u units start to compete for activation, based on the inputs they
receive from the v units (which have not been reset, and remain stable). It can
be seen that the net input to unit u; (resp. u;) is positive if and only if in
the discrete network y;(¢t + 1) = 1 (resp. —1). Thus, as a result of this biased
competition, the u units will converge to values that represent the states of the
discrete units at time ¢t + 1: o(u) = 1 if y;(¢ +1) = 1, and o(u;) = 1 if
yi(t+1)=—-1

When the u pairs have stabilized, a reset, signal from the clock similarly
drives all the v units close to —r. When this signal falls off, the values of the u
units are simply copied into the v units by the competitive mechanism, biased
by connections of weight b from the w units to the v units. After the v pairs
have stabilized, the network is ready for another step of the simulation. (Thus,
we could actually double the speed of the simulation by having the v and v
units represent the discrete units at even and odd times ¢, and computing new
values into the v units instead of just copying the u values.)

We shall analyze the simulation in a general way in Section 4, but let us
first look at an example. Fig. 6 shows the continuous-time implementation of
a single discrete-time unit with a self-connection of weight —1, i.e. a discrete
oscillator. The relevant parameter values are indicated in the figure. Note that
each of the v and v units has an internal bias of weight —8: this has the effect of
rescaling the reset signals arriving at them from range [—1, 1] with weight —8 to

Figure 6: Continuous-time simulation of a discrete oscillator.

range [0, 1] with weight —16. Also the 7 units, used for deriving the reset signals
from the oscillating 01 /0y pair, have internal biases of weight —8, in order to
drive their outputs to —1 when they receive zero input (i.e., when the inputs
arriving from the o; and o2 units cancel each other).

Figure 7: Internal states of the units 0; and o0s.

Figures 7-14, obtained from a MATLAB [19] numerical integration of the
corresponding differential equations, illustrate the behavior of the system. Con-
sider for instance Fig. 7, which shows the time development of the internal states
of the two oscillating units 01 and 0. (The solid line represents o1, the dashed
line 02.) The differential equations governing the corresponding variables are:

06 = —o01+ 80'(01) + 80'(02) y (2)
02 = —o02+ so(o2) —so(o1) ,

where we have for brevity adopted the Newtonian dot notation for the time
derivatives, and dropped explicit references to the time variable. Here o is
the saturated-linear response function, and s = 16. The initial conditions are
01(0) = —31, 02(0) = 1. A state space plot of 0; vs. oy appears in Fig. 8. (To
show the emergence of the limit cycle more clearly, we have here chosen the
initial conditions 01(0) = —1, 02(0) = 1.) Fig. 9 shows the reset pulses derived
from the oscillator, i.e. the values reset, = o(r,) and reset, = o(r,), where 7,

XY Plot

30

20+

Y Axis
o
T

Figure 8: State space plot of 01 vs. 03.

and r, are governed by the equations

Ty = —Tu+ q0'(01) + qU(OQ) - q, (3)
Ty = —Ty—qo(o1) —qo(o2) —q ,

for ¢ = 8. (The solid line corresponds to reset,, the dashed one to reset,.)

Computationally, the most interesting graphs are those in Figs. 10 and 11:
these show the development of the states of the v and v units, starting from
the initial conditions u*(0) = v*(0) = 3, u=(0) = v=(0) = —3. (The solid
lines in both figures represent the “+”-units, the dashed lines the “—”-units.)
The corresponding output signals, i.e. the values o(u®) and o(v*) are shown in
Figs. 12 and 13. For completeness, let us write down also the equations for the
u and v units, as inferred from the diagram in Fig. 6:

wt = —ut +ho(vt) —co(u) —r-reset, —r,
W~ = —u” +ho(v")—co(ut)—r-reset, —r, 4
0t = —vt 4bo(ut)—co(v™)—r-reset, —r, (4)
0T = —v 4bo(uT)—co(vt)—r-reset, —,

where h=—-1,b=1,c=4,and r = 8.

One can observe in Fig. 10 first the resetting of the u™ and 4~ units in
response to the reset, signal at about time ¢t = 4, and then the emergence of
the competition between the two units as the reset signal is switched off, at

10

0.8
0.6 -
0.4 -

0.2+

—o.2
—0o.4
—0.6

—o.8+

i i i i i
10 20 30 40 50 60
Time

Figure 9: Reset pulses reset, and reset, derived from the oscillating pair.

about time ¢ = 8. The competition is eventually won by the u~ unit, because
it receives a weighted input signal of strength 1 from unit v—, whereas unit u*
receives a weighted input signal of strength —1 from unit v™. (This initial part
of the computation is shown in more detail in Fig. 14.) In Fig. 11 one may then
observe how the new states of the u units are copied into the v units, after these
have been cleared by the reset, signal, at about time ¢ = 15. The cycle starts
again, but from inverted initial conditions, at about time ¢ = 19 with the next
reset,, signal.

4 General Analysis

Let us then look more generally into the behavior of the equations governing the
various components of the simulation, starting with the oscillating pair of units
o1 and o03. From equation (2) one can see that this system has a fixed point
at origin — in fact, some amount of tedious algebra, considering separately the
cases 01 7 0, 02 7 0, shows that this is the only fixed point. The Jacobian matrix

of the system at origin is
[—1+s s
J= < —s —1+s) ’

with eigenvalues (s — 1) + si, so the fixed point at origin is repelling if and only
if s > 1. It is easy to see that if the initial conditions satisfy —2s < 07,09 < 2s,
then the state of the system stays in this region; thus, by the the Poincaré-
Bendixson theorem [11] this region contains a limit cycle of the system.

While determining the exact location and period of the cyclic trajectory, as
a function of s, is difficult, a tedious iterative solution of the equations (2), made

11

Figure 10: Internal states of the units 4™ and u~.

feasible by the computer algebra system Maple [10], shows that for large s, the
trajectory passes close to the points +(2s — 1,1), +(1,—-2s + 1), and its period
grows as 4In2s + O(s1). In particular, then, the oscillation of 0; and 0, may
be made arbitrarily slow by increasing the parameter s — although the period
does grow only logarithmically in s.

In the analysis of the discrete network simulation we shall proceed piecewise,
by considering the behavior of the continuous-time system separately within
each linear region of the response function . The large amounts of calcula-
tion required by this brute-force approach have again been performed with the
help of the Maple system. Even so, we shall make two simplifying assumptions.
First, we only consider a single update step of a single pair of u units, where the
units move, as a response to their net inputs, from an initial state of o(u™) = 1,
o(u™) = —1 to the state o(ut) = —1, o(u~) = 1 (as in the example consid-
ered above). This simplification is justified, because (7) all the u units change
state synchronously, so looking at one pair suffices; (i) the opposite move from
o(ut) = -1, o(u”) = 1 to o(ut) = 1, o(u~) = —1 is symmetric, and thus
does not need to be considered; (74) any move where the states of the units stay
unchanged is more robust than the one considered, because then the unit with
output 1 stays continually ahead in the competition: it both has a larger initial
value, and receives excitatory, as opposed to inhibitory, input from other units;
and finally (év) the v units are similar to » units with a single excitatory input
connection, so they need not be considered separately.

12

Figure 11: Internal states of the units v™ and v~.

The second assumption we make is that the reset pulses are sharp, i.e. each
pulse switches from —1 to 1 and back at precisely defined moments, instead of
making a continuous transition. This simplification can be justified by observing
that () slow rise times don’t actually matter, as long as the pulse stays high
for sufficiently long to effect the intended reset; and (i) although the critical
competition between +/— unit pairs is initiated during the falling phase of the
reset pulse, the tail of the pulse affects both members of a pair uniformly, and
so a slow fall only slows down the competition without affecting its outcome.
What is important, however, is that the quiescent period between the reset
signals is sufficiently long for the +/— unit pairs to converge sufficiently close
to their new limiting values. A Maple analysis of the oscillator and reset signal
equations (2) and (3) shows that the rise and fall times of the reset pulses are
asymptotic to 2/g+O(q~2), and the high and quiescent times are asymptotic to
In2s+O(s '+¢g). Thus, the rise and fall times can be made arbitrarily short
and the high and quiescent times arbitrarily long by adjusting the parameters
s and ¢ appropriately.

With these assumptions in place, we shall now proceed to consider the unit
equations (1). As discussed above, initially o(u*) = 1, o(u™) = —1, and unit
u™T receives from the rest of the network some total input of —h < 0, whereas
u~ receives a net input of A > 0. Assuming that both of the reset signals are

13

0.8

0.6 -

0.4 -

0.2+

—o.2

—0o.4

—0.6

—o.8+

Figure 12: Output signals of the units vt and u~.

initially off, the equations governing the pair of units are:

= —ut—h+c,
u = —u +h—c.

One can thus see that if the system is not perturbed, and ¢ >> h, unit u™ tends
to value —h + ¢ > 0, and unit u~ tends to value h — ¢ < 0. To simplify the
formulas, let us fix a specific value for the competition strength parameter c, say
¢ = 4w, where w > 1 is the maximum total net input to any of the u units. Also,
we might just as well assume that h = 1, because this is the minimum possible
bias for u~ over u™: for any h > 1 the system behaves even more robustly than
analyzed below.

Recapitulating, then, in the initial condition the unit u* tends to value
c—h = 4w — 1, and the unit v~ tends to value —c+ h = —4dw + 1. We
shall assume that initially the system has had sufficient time to stabilize so that
dw -2 <ut(0) <4w —1and —4w+ 1 < u™ (0) < —4w + 2; and we shall show
that after a sequence of six update phases, the corresponding opposite situation
will be reached, so that —4w — 1 < u™(Tg) < —4w and 4w < u™(T5) < 4w + 1.

Phase 1: At some time T > 0 the reset, signal turns on. Again, to simplify
the equations, we shall fix a definite value r = 2¢ = 8w for the strength of
the reset connection. Thus, at time Ty the equations governing the unit
pair change to (cf. equation (4)):

wt = —ut—h+c—-2r = —ut-1-12w,
- = —u 4+h—-c—2r = —u"+1-20w .

Solving this system of linear first-order o.d.e.’s (with the help of the Maple
system) with the initial conditions 4w — 2 < u*(Tp) < 4w —1, —dw+1 <

14

0.8

0.6 -
0.2+

|

|

b

|

0.4 - I
|

|

|

|

—0.2 |
|

—0o.4

—0.6 I

—o.8 |

Figure 13: Output signals of the units v+ and v~.

u™(Ty) < —4w + 2 shows that the value of u™ reaches 1 at some time

Ty = To+ty, where In 15%—1 < t; <In35%;. At this time variable u~ has

a value bounded by —8w +3 < u~(T}) < —128“1’26;#. Approximately,
then, u™ decreases from about 4w to 1 in roughly time ¢; = In 4w, and in
this time u™ decreases from about —4w to between —8w + 3 and —8w +
5. Because we wish to show that in the eventual competition between
the units, ©~ will win and obtain a positive value, and u* will obtain a
negative value, we are mainly interested in lower bounds on u~ and upper
bounds on uT: to keep from cluttering the presentation we shall in the
sequel list only these bounds.

Phase 2: At time T} the system equations change again, because the value of
ut enters the region where the response function is o(u") = u™. The new
equations are

at = —ut—1-12w ,
W = —u” +1—4wut — 16w .
Solving this system again with the help of Maple, one obtains for the time

when uT reaches —1 the value Tp = T} + t2, where t; = In %241 ~ L A¢

this time v~ (T2) > —8w + 1.
Phase 3: At time T3 the system equations change to
Wt = —ut—1-12w ,
v = —u +1-12w ,

so that as long as the reset, signal stays on, the unit states approach
exponentially the values ut = —12w — 1, v~ = —12w + 1. We shall

15

Figure 14: Expanded view of the internal states of the units 4+ and u~.

assume that the clock subnetwork oscillates so slowly that the reset signal
stays on for at least an additional time of ¢3 = In 2r = In 16w. One obtains
then at time T3 = Tb + to the bounds u™(T3) < —12w, u~ > —12w + 1.

Phase 4: At time T3 the reset, signal switches off, and the system equations
change to

wt = —ut—144w ,
T o= —u +14+4w .

Thus the values of both 4™ and u~ start to increase, and one can see that
u~ reaches —1 sooner than u™. (It both has a larger initial value, and
rises more steeply than u*.) More precisely, u~(Ty) = —1 at some time
Ty = T3 + t4, where t4 < In(4 — wL-H)’ and at this time u™(T}y) < —g.

Phase 5: It is now already clear that unit u~ will win the competition, but let
us nevertheless follow the system for a few more phases. At time Ty the

system equations become
et = —ut —1—dwu

= —u +1+4w,

and they have this form until either u~ reaches 1 or u™ reaches —1. Ac-
tually, one can verify that the latter never happens, and when v~ reaches

16

1, at time T5 = Ty + t5, where t5 = In(w + ﬁ), the value of u™ is still less
than —2.

Phase 6: At time T5 the system equations change to

Wt = —ut—1—4w ,

e = —u +14+4w ,

so that in the limit 4~ converges to the value 4w+ 1, and u* converges to
—4w — 1. Assuming again that the system has at least time tg = In2r =
In 16w to stabilize before the reset, signal turns on, the values at time
T = Ts + tg satisfy u™ (Tg) > 4w, u™ (Tg) < —4w, as desired. (In fact, in
time In 16w both variables will converge to within % of their asymptotic

values.)

Adding up all the transition times one obtains for the total time Tg — T the
bound

1 2 1
Te < Indw+ 6w +In16w + In(4 — w——i-l) + In(w + ﬂ) + In 16w

~ 4In8w .

To guarantee correct behavior, the clock network should oscillate with a period
of at least twice this bound (recall that in our somewhat inefficient simulation
technique we must update both the u and v units during a single clock cycle).
Thus, we should choose for the parameter s a value such that 4In2s > 81n 8w,
i.e. s > 32w2. However, this is assuming the reset pulses are perfectly sharp:
theoretically one should choose for s a somewhat larger value, to compensate for
the nonzero rise and fall times. On the other hand, in the example simulation in
Section 3, we used successfully the value s = 16 instead of a larger value s > 32,
as would be suggested by these calculations.

5 Conclusion and Open Problems

We have shown that continuous-time neural networks based on Hopfield-type
units with saturated-linear amplifiers are universal computational devices, in the
sense that (sequences of) networks with polynomially many units are capable
of simulating polynomially space-bounded Turing machines. Some of the many
open questions suggested by this work are the following.

Our present simulation construction is somewhat unsatisfying because of its
heavy reliance on the clock pulses provided by the oscillator subnetwork. It
would be most interesting to develop computation and analysis techniques for
nonoscillating networks. One especially interesting case where at least infinite
undamped oscillations are precluded are networks with symmetric interconnec-
tions. In the discrete-time case also symmetric networks are known to be ca-
pable of efficient Turing machine simulation [24], but the continuous-time case

17

is rather more complicated.* (Convergence-time bounds for discrete symmetric
networks were first obtained in [9], and the behavior of such networks is by now
well understood. For discrete-time networks with continuous unit states, asymp-
totic convergence was established in [8, 16, 18], however without any estimates
on the time bounds.)

A technical issue concerns more general response functions. Our computer
simulations indicate that networks with, e.g., tanh nonlinearities have qualita-
tively the same behavior as networks using the saturated-linear response func-
tion. However the piecewise-linear analysis of network behavior used above
obviously doesn’t extend to this case. In the discrete-time, continuous-state
setting sigmoidal response functions were analyzed in [15], and shown to be at
least as powerful as saturated-linear ones.

Finally, we have only obtained a lower bound on the computational power
of continuous-time networks, and one may also inquire about the corresponding
upper bounds. For comparison, note that in the discrete-time case Siegelmann
and Sontag [30] have shown that any Turing machine can be simulated uniformly
for all input lengths by a single network with saturated-linear response functions
and arbitrary-precision real number states. Also, several simulations of arbitrary
Turing machines by continuous-time and finite-dimensional, but non-network-
like systems are known (e.g. [2, 6, 20, 21]).

References

[1] Anderson, J. A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Re-
search. The MIT Press, Cambridge, MA, 1988.

[2] Asarin, E., Maler, O. On some relations between dynamical systems and
transition systems. Proc. 21st Internat. Collog. on Automata, Languages,
and Programming (Jerusalem, Israel, July 1994), 59-72. Springer-Verlag,
Berlin, 1994.

[3] Balcdzar, J. L., Diaz, J., Gabarré, J. On characterizations of the class
PSPACE/poly. Theoret. Comput. Sci. 52 (1987), 251-267.

[4] Balcézar, J. L., Diaz, J., Gabarrd, J. Structural Complezity I. Springer-
Verlag, Berlin, 1988 (2nd Ed. 1995).

4 Note added in proof. A simulation of polynomially space-bounded Turing machines by
(sequences of) symmetric continuous-time networks was recently achieved in [32], and analo-
gous results for discrete-time networks are derived in [31]. An interesting corollary to these
simulations is that even symmetric continuous-state networks may require convergence times
that are exponential in the number of units, i.e. the dimensionality of the system. This ob-
servation points to an inaccuracy in the discussion of [29], which gives the impression that
symmetric Hopfield-type systems would be included in the continuous-time complexity class
Py.

18

[6] Bournez, O., Cosnard, M. On the computational power of dynamical sys-
tems and hybrid systems. Theoret. Comput. Sci. 168 (1996), 417-459.

[6] Branicky, M. Analog computation with continuous ODEs. Proc. Workshop
on Physics and Computation 1994 (Dallas, Texzas, Nov. 1994), 265-274.
IEEE Computer Society Press, Los Alamitos, CA, 1994.

[7] Branicky, M. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoret. Comput. Sci. 188 (1995), 67-100.

[8] Fogelman, F., Mejia, C., Goles, E., Martinez, S. Energy functions in neural
networks with continuous local functions. Complez Systems 8 (1989), 269—
293.

[9] Fogelman, F., Goles, E., Weisbuch, G. Transient length in sequential iter-
ations of threshold functions. Discr. Appl. Math. 6 (1983), 95-98.

[10] Char, B. W, Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B.,
Watt, S. M. First Leaves: A Tutorial Introduction to Maple V. Springer-
Verlag, New York, NY, 1992.

[11] Hirsch. M. W., Smale, S. Differential Equations, Dynamical Systems, and
Linear Algebra. Academic Press, San Diego, CA, 1974.

[12] Hopfield, J. J. Neural networks and physical systems with emergent collec-
tive computational abilities. Proc. Nat. Acad. Sci. USA 79 (1982), 2554—
2558. Reprinted in [1], pp. 460-464.

[13] Hopfield, J. J. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA 81
(1984), 3088-3092. Reprinted in [1], pp. 579-583.

[14] Karp, R. M., Lipton, R. J. Turing machines that take advice.
L’Enseignement Mathématique 28 (1982), 191-209.

[15] Kilian, J., Siegelmann, H. T. The dynamic universality of sigmoidal neural
networks. Information and Computation 128 (1996), 48-56.

[16] Koiran, P. Dynamics of discrete time, continuous state Hopfield networks.
Neural Computation 6 (1994), 459-468.

[17] Lepley, M., Miller, G. Computational power for networks of threshold de-
vices in an asynchronous environment. Unpublished manuscript, Dept. of
Mathematics, Massachusetts Inst. of Technology, 1983.

[18] Marcus, C. M., Westervelt, R. M. Dynamics of iterated-map neural net-
works. Phys. Rev. A 40 (1989), 501-504.

[19] MATLAB Reference Guide. MathWorks Inc., Natick, MA, 1992.

19

[20]

[21]

[22]

[23]

[27]

[28]

[29]

[30]

[31]

Moore, C. Unpredictability and undecidability in physical systems. Phys.
Rev. Lett. 64 (1990), 2354-2357.

Moore, C. Generalized shifts: unpredictability and undecidability in dy-
namical systems. Nonlinearity 4 (1991), 199-230.

Moore, C. Recursion theory on the reals and continuous-time computation.
Theoret. Comput. Sci. 162 (1996), 23-44.

Moore, C. Finite-dimensional analog computers: flows, maps, and recurrent
neural networks. Proc. First International Conference on Unconventional
Models of Computation (Auckland, New Zealand, January 1998). Springer-
Verlag, Singapore, 1998.

Orponen, P. The computational power of discrete Hopfield nets with hidden
units. Neural Computation 8 (1996), 403-415.

Orponen, P. Computing with truly asynchronous threshold logic networks.
Theoret. Comput. Sci. 174 (1997), 97-121.

Orponen, P. A survey of continuous-time computation theory. Advances in
Algorithms, Languages, and Complezity (eds. D.-Z. Du, K.-I1 Ko), 209-224.
Kluwer Academic Publishers, Dordrecht, 1997.

Pour-El, M. B., Richards, I. Computability in Analysis and Physics.
Springer-Verlag, Berlin, 1989.

Rubel, L. A. Digital simulation of analog computation and Church’s Thesis.
J. Symb. Logic 54 (1989), 1011-1017.

Siegelmann, H. T., Fishman, S. Analog computation with dynamical sys-
tems. Physica D 120 (1998), 214-235.

Siegelmann, H. T., Sontag, E. D. On the computational power of neural
nets. J. Comput. System Sciences 50 (1995), 132-150.

Sima, J., Orponen, P., Antti-Poika, T. Some afterthoughts on Hopfield
networks. Proc. SOFSEM’99: 26th Seminar on Current Trends in The-
ory and Practice of Informatics (Milovy, Czech Republic, November 1999).
Springer-Verlag, Berlin, 1999 (to appear).

Sl’ma, J., Orponen, P. A Continuous-Time Hopfield Net Simulation of Dis-
crete Neural Networks. Technical Report 773 (January 1999), Institute of
Computer Science, Academy of Sciences of the Czech Republic. 10 pp.

Vergis, A., Steiglitz, K., Dickinson, B. The complexity of analog computa-
tion. Math. and Computers in Simulation 28 (1986), 91-113.

20

