Integrating Symbolic Reasoning with
Neurally Represented Background
Knowledge

Petri Myllymaki Pekka Orponen
Tomi Silander
Department of Computer Science, University of Helsinki

Teollisuuskatu 23, SF-00510 Helsinki, Finland*

Abstract

In an experimental implementation of a hybrid neural-symbolic
programming environment, we have interfaced a standard Prolog sys-
tem with a neurally implemented facility for representing probabilis-
tic background knowledge. In inferential processing, the Prolog en-
gine first searches for explicitly given facts in its symbolic knowledge
base, and then queries the neural component for the most likely values
of propositions not resolved by the explicitly given information. The
neural component performs approzimate Bayesian reasoning to answer
these queries on the basis of a given probabilistic taxonomy of concepts
and their attributes.

Descriptors: representation /reasoning, beliefs /objects, programming, tech-
nological

*E-mail: Firstname.Lastname@Helsinki.FI

1 Introduction

With the current advance of research on neural computation models, there
has been increasing interest in the infusion of neural network techniques into
more conventional symbolic information processing. The potential advan-
tages of such hybrid neural-symbolic systems would be great. Combining the
robust, adaptive neural knowledge representations with high-level program-
ming techniques should help in developing information processing systems
that are less brittle and more adaptive to changing environments than what
can be achieved by present means.

Some recent approaches to developing such hybrid systems have been
reported in the collections [2, 7]. A crucial issue differentiating between
the various approaches is how the symbolic level of such a system should
relate to the neural level. While some researchers (e.g. [13, 17]) work on
the foundational problems of performing symbolic operations on distributed
representations, others (e.g. [1]) take a more implementational approach, us-
ing localized representations and designing neural techniques for performing
symbolic reasoning upon them. Yet others (e.g. [8]) forgo the need for neu-
ral knowledge representations altogether, and use neural networks to simply
implement existing symbolic algoritms.

None of the proposed approaches is quite mature for application yet:
a problem with the foundational approach is that building a full-strength
inference system thouroughly based on distributed representations is very
difficult; on the other hand the more localized approaches stand in danger
of losing the robustness that comes from distributed representations. (For
instance, while Shastri in his early work [14, 15] presented a system for neural
knowledge representation capable of evidential reasoning on incomplete data,
his newer system [1], which performs more complicated logical reasoning, only
deals with crisp data.)

All their differences notwithstanding, a striking similarity in most of the
current hybrid system approaches is their concentration on developing neu-
ral realizations of high-level symbolic processing functions. Contrary to this
trend, we propose that in the present situation, until the techniques for ma-
nipulating distributed representations mature, the most promising approach
to take is to build systems that consist of two different, but complementary
components interfaced together: a purely neural component that provides a
basic robustness to the knowledge representation, and a purely symbolic

component that handles the complicated high-level inferential tasks. To
rephrase this idea in hybrid systems terminology, we suggest that the no-
torious “variable binding problem” [1, 3, 17] be provisionally solved by using
purely symbolic variable bindings in high-level reasoning, with the option of
querying a neural representation for background knowledge about the vari-
able referents'. Of the hybrid system schemes reported in [2, 7], the one
closest in spirit to this view seems to be that of Hendler’s [5, 6], but the
marker-passing/back-propagation components in his scheme are unnecessar-
ily restricted.

We are currently experimenting with a functioning bi-partite hybrid sys-
tem built out of two implementations of the subcomponents that were read-
ily available to us: the SICStus Prolog interpreter developed at the Swedish
Institute of Computer Science [4], and a neural knowledge representation
scheme NEULA developed by us [9, 10] on the basis of Smolensky’s [16]
Harmony Theory model.

In the following sections we present first a brief outline of the NEULA
system and the interface between SICStus Prolog and NEULA, then a small
example of using the NEULA representation to provide background knowl-
edge to a Prolog program, and finally some concluding comments.

2 The NEULA System

The knowledge representation system NEULA consists of a compiler and a
simulator. The compiler translates a description of a probabilistic taxonomy
of concepts and their associated attributes, presented in a generic high-level
knowledge representation language, into a representation as a harmony net-
work [16], whose operation may then be simulated with the simulator. As
an example, consider the taxonomy given in Figure 1 of the inhabitants of a
700.

In the NEULA description language used in the figure, a description of
a concept consists of a reference to its immediate ancestor (if any), together
with a list of attributes and their value distribution for objects belonging to
this conceptual class. There are two types of attributes: exclusive (indicated

'We have been somewhat motivated in this division of work by the analogy of the
neural and linguistic domains of human information processing, but we wish to make no
claims about the cognitive aspects of our model.

concept animal is basic (1000) with
offspring : [living (100), eggs (900) ;
can : { swim (900), fly (300), walk (400) };
eats . { fish (350), meat (120), plants (650) };
concept mammal is animal (100) with
offspring : [living (100) J;

can : { swim (50), walk (90), fly(0) };

eats : { fish (50), meat (20), plants (50) };
concept dolphin is mammal (10) with

can : { swim (10), walk (0) };

eats : { fish (10), meat (0), plants (0) };
concept lion is mammal (5) with

can : { walk (5) };

eats : { fish (0), meat (5), plants (0) };
concept zebra is mammal (10) with

can . { walk (10) };

eats : { fish (0), meat (0), plants (10) };

concept bird is animal (300) with
offspring : [eggs (300) ;

can : { swim (200), fly (280), walk (300) };

eats : { fish (100), meat (50), plants (200) };
concept penguin is bird (20) with

can : { swim (20), fly (0) };

eats . { fish (20), meat (0) };
concept flamingo is bird (30) with

can : { swim (30) };

eats . { fish (30), meat (0) };

concept fish is animal (600) with
offspring : [eggs (600) ;

can : { swim (600), fly (0), walk (0) };

eats . { fish (200), meat (50), plants (400) };
concept shark is fish (10) with

eats : { fish (10), meat (10), plants (0) };
concept goldfish is fish (100) with

eats : { fish (0), meat (0), plants (100) };

Figure 1: Description of a zoo.

by the square brackets “[|” enclosing the list of possible values) and multi-
valued (indicated by the curly braces “{ }”). For any object, an exclusive
attribute must be assigned exactly one value from its list of possible values;
a multivalued attribute may possess any number of values (including zero)
from its list. The parenthesized numbers indicate the “frequency” of a given
value for an attribute, or at the header of a concept declaration, the “fre-
quency” of objects falling into that concept class. These numbers may either
be actual objective frequencies, or subjective estimates of the “typicality”
of certain contingencies. If the distribution of attribute values for a concept
is the same as for its ancestor, then knowledge of this is inherited, and the
distribution need not be given explicitly.

The NEULA system first translates a taxonomy such as that in Figure 1
into a Bayesian belief network [11] representation, which is then implemented
as a harmony network (for details of the translation scheme, see [9, 10]). The
harmony network [16] consists of two layers of stochastic binary valued units,
the feature units and the pattern units (“knowledge” units in [16]). The edges
in such a network are undirected and connect only units in different layers.
In the case of a harmony network compiled from a NEULA representation,
there is one feature unit corresponding to each possible attribute:value or
concept:subconcept pair, such as can:swim, eats:plants, fish:goldfish, etc. The
pattern units implement the probabilistic relations between the features in a
relatively complicated manner into which we shall not go here (see [9]). From
the zoo description in Figure 1, the NEULA compiler produces a harmony
network containing 24 feature nodes and 285 pattern nodes.

Queries may be performed against knowledge represented in the harmony
network by “clamping” the values of some of the feature units into fixed
values and running a simulated annealing computation on the network. If
the annealing is performed sufficiently slowly?, it can be shown [16] that with
high probability, the values of the unclamped feature units will converge to
their probabilistically most likely configuration, given the clamped values.

2Which, unfortunately, occasionally means ezcruciatingly slowly. However, the com-
putations are parallelizable, and approximations such as “mean field annealing” [12] are
available.

3 Integrating Prolog and NEULA

The integration of the Prolog interpreter and the NEULA system is imple-
mented using the ability of SICStus Prolog to call external subroutines writ-
ten in C. First, the NEULA compiler, which is written in C, is invoked from
the Prolog interpreter and the necessary C-modules are linked to the Prolog
load image. The NEULA compiler then produces, from the given knowledge
description, a file containing a patch of NEULA specific Prolog code for the
integration. In particular, this file contains Prolog facts named nunit. One
nunit fact is generated for each feature unit in a NEULA harmony network,
for the purpose of linking Prolog names to their correspondents in the net-
work. For example, the nunit/43 predicate for a fish:goldfish unit from the
zoo network would be

nunit(animalNKB,fish,goldfish,fish_goldfish).

After compilation, the fourth arguments of the nunit facts (actually the
corresponding integer codes) are transmitted to a C function, which creates
a global table mapping Prolog terms to the corresponding feature units in
the NEULA network.

The low-level interface between Prolog and NEULA is effectively reduced
to three predicates implemented in C. First there is a predicate n_set/3,
with which one can clamp a NEULA feature node to be true or false, or set
an already clamped node free. Another predicate n_run/1 is used to start a
simulation in a NEULA network. With the last predicate n_ask/3 one can
query the state of any NEULA feature unit. A more sophisticated interface
can be built by introducing new Prolog predicates, which use the low level
interface described above together with the nunit facts.

For example:

set_true(NKB,X,Y) :-
nunit (NKB,X,Y,Node),
n_set (NKB,Node,1) . % 1 for true

set_false(NKB,X,Y) :-
nunit (NKB,X,Y,Node),

3Following standard Prolog meta-notation, the number following the name of a predi-
cate indicates its arity.

n_set (NKB,Node,0) . Y% 0 for false

ask_true(NKB,X,Y) :-
nunit (NKB,X,Y,Node),
n_ask(NKB,Node, Answer) ,
Answer =:= 1.

ask_false(NKB,X,Y) :-
nunit (NKB,X,Y,Node),
n_ask(NKB,Node, Answer) ,
Answer =:= 0.

Using these predicates, one can make for instance the following Prolog query
to find out about the diet of a bird incapable of flying:

?- set_true(animallNKB,animal,bird),
set_false(animalNKB,can,fly),
n_run(animalNKB),
ask_true(animalNKB,eats,X).

X = fish ;

no

The query above shows a simple example of how Prolog atoms and log-
ical variables can be used in a query to a neural knowledge base. Prolog’s
backtracking mechanism causes three different questions being asked from the
neural network: n_ask (animalNKB,eats_meat,Answer), n_ask(animallNKB,
eats_fish,Answer) and
n_ask(animallNKB,eats_plants,Answer).

Using the set_true and set_false predicates with logical variables gives
rise to certain inconveniences due to the mismatch between the Prolog back-
tracking mechanism and the NEULA notion of a global state (i.e., clamping
nodes in a sequence and then running a simulation). For instance, one has
to explicitly control the need to run a new simulation. In Prolog, this can
be achieved by introducing a global boolean variable NeedsRunning, which
is set to true each time something is clamped, and to false after every sim-
ulation. This way one can make a query trigger a new simulation only if

something has been set in a network after the previous query. Conceivably,
the NEULA system might fit in more naturally with some forward-chaining
production system than Prolog.

4 An Example

In this section, we show by means of a simple example how a NEULA net-
work can be used to provide background knowledge to an incomplete Pro-
log knowledge base. The Prolog knowledge base contains information about
some of the individual inhabitants of the zoo from Section 2. Each individual
is introduced by its name in a Prolog predicate habitant/1. The explicitly
known facts about these individuals are given in terms of Prolog predicates
fact/3 and fact not/3. The predicate fact tells that something is known
to be true of an individual animal, while the predicate fact_not tells that
something is known to be false.

The Prolog knowledge base could look like this:

habitant (tweety) .
fact(tweety,bird).
fact(tweety,eats,plants).
fact_not(tweety,can,fly).

habitant(cleo).
fact(cleo,goldfish).

habitant(

Now, by using the low-level interface described earlier, we have built a
query/3 predicate, with which one can query things about the inhabitants of
our zoo, e.g., query(tweety,offspring,eggs), query(tweety,eats,X),
or query(X,eats,Y). The predicate query first looks up the explicitly given
fact facts in the Prolog knowledge base. If no answer is found in the Prolog
base or if there could be other answers to be found, the predicate then collects
all the facts concerning an inhabitant, feeds them to the NEULA network,
runs a simulation and collects the results from the net. For example, the

query query(tweety,eats,X) first yields the result X = plants, which is
given explicitly in the Prolog knowledge base. Then the background network
is set up by the operation sequence set_true(animalKB,animal,bird),
set_true(animalKkB,eats,plants) and set_false(animalkB,can,fly),
and a simulation is run by calling n_run(animalkB). Upon convergence the
NEULA network has concluded, based on the given feature values, that the
animal in question is a penguin, and the Prolog computation retrieves infor-
mation about its diet by calling ask_true(animalkKB,eats,X). This gives
two solutions X = plants and X = fish, the first of which is a duplicate
and can be omitted.

Using the query predicate, one can now easily build more sophisticated
Prolog rules, such as the following ones to find out whether an animal eats
another:

eats(X,Y) :- query(X,eats,fish), query(Y,animal,fish).
eats(X,Y) :- query(X,eats,meat), query(Y,animal,mammmal) .
eats(X,Y) :- query(X,eats,meat), query(Y,animal,bird).

Here, asking for example eats(tweety,X) yields a solution X = cleo,
and possibly also other answers depending on the contents of the Prolog
base. Note again that the fact “tweety eats fish” needed in this computation
is inferred from the background knowledge, based on the penguin-likeness of
the explicitly given information about “tweety”.

5 Conclusion and Further Work

We have implemented a bi-partite hybrid neural-symbolic system by inter-
facing together the neural knowledge representation system NEULA and the
SICStus Prolog system. The combination yields a working interim solution
of the “variable binding” problem in hybrid systems by using purely symbolic
variables in high-level reasoning, but with access to a neural representation
encoding background knowledge about the properties and relations of the
variable referents.

The main problems encountered concern the computational mechanism of
the NEULA system, which requires excessive computation times to give reli-
able results. We are currently working on improving the simulated annealing
schedules, and eperimenting with the mean field annealing approximation. A

parallel implementation of the system is also planned, as well as experiments
with an inherently more efficient variant of the NEULA system [10]. Lesser

problems concern the mismatch of the design philosophies of NEULA and

Prolog; in a different combination of systems these problems could conceiv-
ably be completely avoided.

References

[1]

2]

[9]

V. Ajjanagadde and L. Shastri, Rules and variables in neural nets. Neu-
ral Computation 3 (1991), 121-134.

J. A. Barnden and J. B. Pollack (eds.), Advances in Connectionist and
Neural Computation Theory, Vol. 1: High Level Connectionist Models.
Ablex Publ. Co., Norwood, NJ, 1991.

J. A. Barnden and J. B. Pollack, Introduction: Problems for high-level

connectionism. Pp. 1-16 in [2].

M. Carlsson, J. Widén, SICStus Prolog User’s Manual. Res. Rep.
R88007, Swedish Institute of Computer Science, Stockholm /Kista, 1988.

J. A. Hendler, Developing hybrid symbolic/connectionist models. Pp.
165-179 in [2].

J. A. Hendler, Marker-passing over microfeatures: Towards a hybrid
symbolic/connectionist model. Cognitive Science 13 (1989), 79-106.

G. E. Hinton (ed.), Special Issue on Connectionist Symbol Processing.

Artificial Intelligence 46:1-2 (1990).

F. Kurfe}, Unification on a connectionist simulator. Pp. 471-476 in:
Proc. of the 1991 International Conference on Artificial Neural Networks
(ICANN-91) (Espoo, Finland, June 1991), Vol. 1 (T. Kohonen et al.,
eds.). Elsevier—North-Holland, Amsterdam, 1991.

P. Myllyméki and P. Orponen, Programming the Harmonium. Pp. 671-
677 in: Proc. of the International Joint Conf. on Neural Networks (Sin-
gapore, Nov. 1991), Vol. 1. IEEE, New York, NY, 1991.

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Orponen, P. Floréen, P. Myllymaki, H. Tirri, A neural implementa-
tion of conceptual hierarchies with Bayesian reasoning. Pp. 297-303 in:
Proc. of the International Joint Conf. on Neural Networks (San Diego,
CA, June 1990), Vol. I. IEEE, New York, NY, 1990.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

C. Peterson and J. R. Anderson, A mean field theory learning algorithm
for neural networks. Complex Systems 1 (1987), 995-1019.

T. Plate, Holographic reduced representations: Convolution algebra for
compositional distributed representations. Pp. 30-35 in: Proc. of the In-
ternational Joint Conf. on Artificial Intelligence (Sydney, August 1991),
Vol. 1 (J. Mylopoulos and R. Reiter, eds.). Morgan Kaufmann, San Ma-
teo, CA, 1991.

L. Shastri, A connectionist approach to knowledge representation and
limited inference. Cognitive Science 12 (1988), 331-392.

L. Shastri, Semantic Networks: An Fuvidential Formalization and Its
Connectionist Realization. Pitman, London, 1988.

P. Smolensky, Information processing in dynamical systems: Founda-
tions of Harmony Theory. Pp. 194-281 in: Parallel Distributed Process-
ing, Vol. 1 (D. E. Rumelhart and J. L. McClelland, eds.). The MIT
Press, Cambridge, MA, 1986.

P. Smolensky, Tensor product variable binding and the representation
of symbolic structures in conncetionist systems. Pp. 159-216 in [7].

11

