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Abstract

We survey some aspects of the computational complexity theory of discrete-time and
discrete-state Hopfield networks. The emphasis is on topics that are not adequately

covered by the existing survey literature, most significantly:

1. the known upper and lower bounds for the convergence times of Hopfield nets

(here we consider mainly worst-case results);

2. the power of Hopfield nets as general computing devices (as opposed to their

applications to associative memory and optimization);

3. the complexity of the synthesis (“learning”) and analysis problems related to

Hopfield nets as associative memories.

*Draft chapter for the forthcoming book The Computational and Learning Complexity of Neural Net-

works: Advanced Topics (ed. Ian Parberry).



1 Introduction

A (discrete) Hopfield network [41][70, Section 8.3] consists of n binary valued nodes. We
index the nodes by {1,...,n}, and choose {—1, 41} as their possible states!. The size of
a network is its number of nodes. Associated to each pair of nodes ¢, 7 is a connection
weight w;;. In addition, each node ¢ has an internal threshold value h;. We denote
the matrix of connection weights by W = (w;;), and the vector of threshold values by
h = (h1,hs,...,hy,). In Hopfield networks proper, the connection matrix W is symmetric,
so that w;; = wj; for each ¢, 7. In this survey, however, we shall occasionally discuss also
the more general class of asymmetric networks. A Hopfield network is simple if w;; = 0
for all ¢, and semisimple if w;; > 0 for all . A fundamental fact [65, 39, 74][70, Section
4.2] is that for a network of size n it suffices to consider integer connection weights and
thresholds of absolute value at most (n + 1)("t1/2 ie. of length O(nlogn) bits. We say
that a network has small weights if the absolute values of the weights are polynomially
bounded in n. (Strictly speaking, this notion can only be defined when a sequence of
networks is considered.) The threshold values can then also be assumed to be polynomially
bounded. The (total) weight of a network is defined as the sum of the absolute values of
its connection weights.

At any time ¢, each node 7 in a network has a state z;, which is either —1 or +1. The

!Instead of this bipolar choice of values the binary pair {0,1} could have been chosen equally well.

Bipolar states z and binary states y are interchangeable via the correspondence y = %(1 +z),z=2y—1.

Figure 1: A Hopfield network of size 6.



state at time ¢ 4+ 1 is determined as a function of the states of the nodes at time ¢ by the
formula xgt-l_l) = sgn(> o0, wij:v;t) — h;), where sgn is the signum function (sgn(z) = 1 for
x> 0 and sgn(z) = —1 for 2 < 0). Node ¢ is stable if z; = sgn(zg‘zl wiz; — hy).

In fully parallel operation, the update step is performed simultaneously for all the
nodes. Thus the global update rule for the network may be denoted as z := sgn(Wa — h),
where @ = (21,%2,...,2,) is the vector of states for the nodes. It is known [72, 28]
that, starting from any initial vector of states, a sequence of such updates will eventually
converge either to a stable vector (i.e., a vector u such that sgn(Wwu — h) = u), or to a
cycle of length two (i.e., vectors u # v such that sgn(Wu — h) = v and sgn(Wov —h) = u).

In sequential operation, the update step is performed for one node at a time in some
(possibly random) order. As shown in [41], in a semisimple network all sequential com-
putations eventually converge to stable vectors (cf. also [70, Section 8.3]). A sequential
computation is called productive if the state of some node is changed in each update step.

In contrast to the simple convergence behavior of symmetric networks, the behavior of
asymmetric networks can be quite complicated and difficult to analyze. We shall return
to this issue in Section 3, where we show that it is a PSPACE-complete problem to decide
whether an asymmetric network converges to a stable state vector from a given initial
state vector.

Two very good books dealing with many aspects of Hopfield networks are those by
Kamp and Hasler [46], and by Hertz, Krogh and Palmer [38]. Related network models for
associative memory applications are discussed by Kohonen in [53]. For general introduc-
tions to computational complexity issues in neural networks, see the book [70], and the
survey articles [68, 69, 87].

The most typical applications of Hopfield networks are as associative memories, and
for solving combinatorial optimization problems. An (auto)associative content-addressable
memory is a storage device that stores vectors u’, for i = 1, 2, ..., m, in such a way that
upon presentation of an input vector z, which in some predefined metric is close to w?,
the memory will give u® as result (cf. Figure 2). The distance measure we shall use here is
the Hamming distance, i.e., the number of differing elements in the vectors. Associative
memories, being error-correcting devices, have many applications in, e.g., decoding.

The computation by a Hopfield network can be viewed as a search for the minimum of
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Figure 2: When the vectors «* are stored, input , which (according to the given metric)

is near some vector u’, gives as result the vector u/.

a specific energy function defined on the states of the networks; the local minima of this
function correspond to the stable vectors in the network. By encoding a combinatorial
minimization problem so that its cost function corresponds to the energy function of a
network, local optima of the function can be found by network computation. There exists
also a continuous version of the Hopfield network [42] which may be better suited for
optimization problems. A seminal paper on this topic is [43], where a mapping of the
Traveling Salesman Problem to continuous Hopfield nets is described. (However, this
method for solving the TSP has subsequently been criticized as too sensitive to the choice
of certain parameters affecting the computation [89].)

For associative memory applications, several alternative network synthesis methods or
memory storage rules, i.e., methods for choosing the connection weights and the threshold
values, have been considered. The best-known is the tensor product or outer product
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rule [41] where, given vectors u',...,u™ to be stored, the weight matrix is chosen as

W = 3" (u'(u')T — T), and the threshold vector as h = 0. We shall discuss this and
other storage rules later on, in Section 4.

As an associative memory the Hopfield network has some shortcomings. Firstly, we can
get output vectors that are not stored vectors. These are called spurious stable vectors.
Secondly, as will be discussed in Section 4.2, the capacity of such a network for reliable
storage is quite low, i.e., if too many vectors are loaded onto the network, then some of
them cannot be retrieved. In the worst case, a standard Hopfield network with at least one

zero on the diagonal of the connection matrix can store with perfect recall only one vector,

regardless of the storage rule used [12, 64]. However, the Hopfield network is inherently



fault tolerant as the network may still give reasonable results even if some nodes are out
of operation.

The Hopfield network has been implemented in hardware. The problem in hardware
implementations is the vast number of connections. Optical implementations may be a so-
lution to this difficulty. See the collections [44, 75] for papers on hardware implementations

of neural networks.



2 Convergence Properties

In this section we derive the currently known upper and lower bounds on the worst-
case convergence times of Hopfield networks under sequential and fully parallel updating.
Experimental and theoretical work on the expected behavior of the networks is mentioned

only briefly.

2.1 Upper Bounds on the Convergence Time

The Hopfield network computation can be viewed as a search for a minimum of a so called
energy function or Lyapunov function®. Such a function is a real-valued function of the
vector of states, with the property that the value of the function decreases in each update
step. Stable vectors of the network correspond to local minima of the energy function.
The energy function technique is most useful for proving convergence.

The result below is based on work by Fogelman, Goles et al. [20, 26, 28, 30]. The
energy function usually applied is E(z) = —%xTPV:U — kT, but we use instead a slightly

modified function introduced in [16]. Our energy function is strictly decreasing in each

update step, while the standard one is decreasing, but not strictly decreasing.

Theorem 2.1 Let e; be 1 if Z]‘ w;; — h; is even, and 0 otherwise. Any productive se-
quential computation of a semisimple Hopfield network with integer weights converges to

a stable vector in time at most (33, > i lwigl + 32 [hi =€) /(1 + ming wyg).

NoTE: If the network is not semisimple, i.e., if some of the diagonal weights w;; are
negative, the network may not converge to a stable vector at all.

Proor: Choose the energy function E(z) = —32™Wa + (h — €)Ta. Here the vector
e=(e1,é€z,...,6,), defined as above, ensures that the expression oy = Ej wi;x; —hi +eg
is never zero. Assume that in an update step the element k is changed from zj to 7.
Then the difference in energy can easily be computed as AE = (25—} )[(320; wijz; —hr +
€r) — %wkk(mk —z})]. Now if 2 = —1, then 2}, = 1 and o1, > 1; thus AE < =2 — 2wyy;
and if 2 = 1, then 2} = 1 and o < —1; thus AE < —2 — 2wy;. As the space {—1,1}"

is discrete, the energy function is bounded, so the computation must eventually stop: a

2Sometimes also called “stability” [70] or “harmony” [80].



stable vector is reached. Clearly, —% > Ej;éi |wi;| — %Ez lwii| — > |hi — &l < E(z) <
D > i Wil — 23 lwiil+ X, |hi—e;i| for all . This gives the bound on the convergence

time. O

By a more thorough analysis of the maximal energy difference [17], we get the upper
bound (M +3Y", |h;—e;|)/(14+ming wki), where M is the sum of the |n? /4] largest elements
in the multiset { |w;;||[i < j}. With the tensor product storage rule, we get |w;;| < m,
and hence the bound on the convergence time is mn?/4 4+ n, where m is the number of
stored vectors and n is their length. For real-valued weights and thresholds, the bound
is (3>, > iz lwij| + 32 |hi]) /€, where € is the least possible amount of energy decrease
achievable in one step [20].

Note that the bound of Theorem 2.1 is polynomial in the total weight of the network,
and thus networks with small weights always converge in time that is polynomial in the
number of nodes. However, if numbers are given in binary representation, then the bound
is exponential in the size of the representation, and as we shall see in Section 2.2, networks
with large weights may indeed require an exponential number of steps to converge. Nev-
ertheless, simulation results show that in practice the number of changing update steps
required for convergence is typically at most slightly greater than the number of elements
differing between the input and the output vectors [16, 17]. This phenomenon has also
been explored analytically by Komlés and Paturi [56], who showed that if a network has
been constructed by storing at most m = n/41nn random vectors using the tensor prod-
uct storage rule, then with high probability each of the stored vectors will be surrounded
by an attraction domain of radius pn where p > 0.024, such that any vector within this
domain will converge to the stable vector in O(loglogn) changing update steps.

Corresponding results can be obtained also for fully parallel operation.

Theorem 2.2 Lel e; be 1 if E]- w;; — h; is even, and 0 otherwise. Any fully parallel
computation of a Hopfield network with integer weights reaches either a stable vector or a

cycle of length two in time al most %<Ei,j lwii| + 33 |h — ] — n)

NoTe: Contrary to sequential operation, the results for fully parallel operation do not

require the network to be semisimple.



ProOF: Using the energy function E(z(t),z(t— 1)) = —a(t)™Wa(t — 1)+ (h — )T (2(1) +
z(t—1)), we get the following possibilities: either z(¢t+1) = z(¢— 1) (i.e., we have reached
a stable vector or a cycle of length two), or z(t + 1) # z(¢ — 1), which means that the
energy difference E(z(t+1),2(1)) — E(z(),z(t— 1)) < —2.

We see that 1 < a;({)[>2; wija;(t—1) = hi + €] < 32 |wi| + |hi — €]. Summing over
we get n < 32, s wijai()ai(l—1) = 32(hi — ei)ai(t) < 325 j [wij| + 32 [hi — €4, thus giving
=Yg lwijl = 2% ki — ei] < E(x(t),2(t— 1)) < —n + X |hi — €. From this we get
>i;lwijl +332;[hi — €;] — n as an upper bound on the possible energy difference. The

bound follows. O

Already Poljak and Sura showed that only cycles of length two may appear in fully
parallel updates [72].

The result in Theorem 2.2 was obtained by Goles [27] when restricted to A = 0. He also
gave networks with binary connection matrices W (and k = 0) that achieve this bound on
the convergence time. If the connection matrix is positive definite on the set {—1,0,1}",
the network always converges to a stable vector [27, 28]. For real-valued weights and
thresholds, the bound is (4 >iilwijl + 22 [hi]) /€, where € is the minimal energy decrease
in one step [28]. Generally, the bound in Theorem 2.2 is again a worst-case upper bound,
and simulation results show very fast convergence [16, 17].

A somewhat weaker version of Theorem 2.2 can also be derived as a corollary to The-
orem 2.1 by a most useful trick of “doubling” the network [10, 11, 82]. Assume that

a network of n nodes with weights w;; and thresholds h; is given as in Theorem 2.2.

!

Construct a new, bipartite symmetric network of 2n nodes with weights w;;, where

! —

wl o= w ;. = wy for i,y = 1,...,n, and w}; = 0 otherwise. The thresholds in

!/

ngs = hifori=1,...,n. The idea of the construc-

the new network are defined as h! = h
tion is to have the nodes ¢ = 1,...,n of the new network represent the original network
at odd points of time, and the nodes i = n + 1,...,2n at even points of time. Note that
the only nonzero edges in the new network go from one side to the other. Fully parallel
updates of the original network can now be simulated by updating the nodes in the dou-

bled network sequentially in numerical order, since the updating of the nodes 1,...,n does

not interfere with their inputs from nodes n + 1,...,2n, and vice versa. Each round of



Table 1: The convergence behavior of different types of Hopfield networks in different

operation modes.

sequential fully parallel

operation operation

general cycle is

Hopfield possible stable vector or

semisimple stable cycle of length 2

Hopfield vector

sequential updates in the doubled network corresponds to two fully parallel update steps
in the original network.
According to Theorem 2.1, the sequential updates of the doubled network converge to

a stable state in a number of changing update steps at most

2n 2n n n
%ZZ|’w§j|+Z|h§—e§| = Y D wil+2> |hi—el.
i=1 =1

i=1 j#i i=1 j#i
This corresponds to the original network under fully parallel updates converging, within
the same time bound, to either a stable state or to a cycle of length two, depending on
whether the two sides of the doubled network in its stable state are equal or not equal.

The convergence behavior of the Hopfield network is summarized in Table 1.

2.2 Lower Bounds on the Convergence Time

The worst-case upper bounds on the convergence time of a Hopfield network presented in
Section 2.1 are quite pessimistic, and as practical experience and the probabilistic results
of Komlds and Paturi [56] show, in a network used as a lightly loaded associative memory,
the convergence is typically much faster. In the worst case, however, the upper bounds can
be reached; specifically, for networks with large weights and thresholds, convergence may
require time that is exponential in the number of nodes in the network. This fact follows
in a general form from the results of Schiafer and Yannakakis [76], who showed that the

problem of finding a stable vector of a Hopfield network is PLS-complete, and hence the



Figure 3: A three-bit fully parallel binary counter network.

standard local improvement algorithm requires exponential time in the worst case. (For
more details on this approach, see Section 5.2.) Here we present two explicit constructions:
first a network due to Goles and Martinez [29, 30] that requires an exponential number of
fully parallel steps to converge, and then a more involved construction by Haken [32] of a
network whose convergence time is exponential also in sequential operation®.

Let us first consider fully parallel updates [29]. For a given n, we construct a network
of size linear in n that functions as an n-bit binary counter, and thus takes time at least
2" to converge. The construction is most easily presented in terms of binary (0/1-valued)
nodes, but the networks can of course be translated to the bipolar (f1-valued) model in
the standard manner. Figure 3 presents the first two stages of the construction. The n
nodes in the upper row count from all 0’s to all 1’s (in the figure, the least significant bit
is to the right). For each “counter” node added to the upper row, after the two initial
ones, two “control” nodes are added to the lower row. The purpose of the latter is to first

turn off all the “old” nodes, when the new counter node is activated, and from then on

#The history of these lower bounds is quite convoluted: exponential convergence times for fully parallel
operation were apparently first shown by Goles and Olivos in [31], although in that case for networks
with negative diagonal weights. Haken and Luby [33] seem to have been the first to explicitly observe
exponential convergence times for simple networks under a particular sequential update order, although
that result in fact already follows from the result of Goles and Olivos by network doubling. With the
constructions presented here, and the PLS-completeness result of [76], the issue now seems to be quite

conclusively settled.



balance the input coming to the old nodes from the new nodes, so that the old nodes may
resume counting from zero*. More precisely, the counter node for bit k& (k = 0,1,2,...)
is connected to all lower-order counter nodes by interconnections of weight 1, and has
threshold k. The first control node of order k is connected to all the lower-order nodes
by negative interconnections that have absolute values sufficiently large to overwhelm the
positive support these nodes, together with the new counter node, lend to each other.
The connection weights from the second control node of order k, on the other hand, are
positive, and equal to the absolute values of the weights from the first control node minus
one (to compensate for the weight from the counter node of order k). The weights from
the counter node of order k to the first associated control node, and from the first control
node to the second one must be sufficiently large to drive the updating. (This in particular
implies that the weight from the counter node to the first control node must be larger than
the sum of all the lower-order weights in the network, and hence exponentially large in £.)
It can be verified that an n-bit counter can thus be constructed out of 3n — 4 nodes, and
requires 2" + 27~ — 3 update steps to converge, when started in the all 0’s state. For the
exact details, see [29] or [30, pp. 88-95].

Let us then turn to the more complicated case of sequential updates. The basic idea
of the construction we present, due to Haken [32], is again to implement a binary counter,
but the control of the network is now complicated by the necessity of preparing for all
possible update orders. This time we work directly in the bipolar model.

The basic unit of the design is the XOR subnetwork presented in Figure 4. It can be
seen that the output node of this device eventually obtains the value 1 if the input nodes
z and y are clamped in opposite states, and value —1 otherwise.

The counter is constructed by connecting such XOR units in a sequence as illustrated
in Figure 5. Each bit b;, 2 = 0,...,n, of the counter is represented by a pair of nodes z;, y;,
with the interpretation that b; has value 1 if z; = y;. The network counts from an initial

counter state of all 1’s via the all 0’s state back to the all 1’s state before converging. The

*TFollowing the construction in [29], we have made use of one negative self-loop in the counter network.
If desired, this can be removed by making two copies of the least significant node, both with threshold 0,
interconnected by an edge of weight —1, and with the same connections to the rest of the network as the

current single node. All the other weights and thresholds in the network must then be doubled.
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Figure 4: A network gadget for computing the XOR of nodes 2 and .

Figure 5: A three-bit sequential counter network.
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initial state is represented by z; = y; = —1 for all 7, and the final state by z, = v, = 1,
and z; = y; = —1 for all ¢ < n. In the figure, the high-order nodes are to the left.

The counting proceeds in the following manner (cf. with the illustration): first the
network is primed with a signal that starts at the leftmost node in the upper row and
moves to the right, changing the state of each z; node from -1 to 1. This corresponds
to resetting each bit b; from 1 to 0. At the end of the line, also node yy gets set to 1,
representing bit by being set back to 1.

Subsequent to this initialization, the behavior of the network obeys the following rules:
the state of each node y; gets incremented from —1 to 1 (i.e. bit b; gets value 1), when
i1 = Yi—1 = 1l and z; = y; = —1 for all j <7 — 1. This change at y; causes, via the
XOR line, #;_; being reset back to —1, and each z;, j < i — 1, being set to 1 (i.e. all the
lower order bits b;, j < i — 1, are reset from 1 to 0). Eventually, again, also yo gets value
1, and the counting resumes at the low order bits. Then when counting reaches back to
bit b;_q, this time with z;_y = -1, y,_1 =1, and z; = y; = —1 for each 7 < 7 — 1, node
yi—1 gets decremented from 1 back to —1 (thus setting b;—; to 1), and again each of the
lower order z;’s gets set to 1 (corresponding to each b; getting reset to 0).

To achieve this relatively complicated sequencing, each pair of counter nodes z;, y;,
1 > 1, has two associated control nodes ¢;, d;, all initially —1. The purpose of node ¢; is to
test for the first condition above, for turning node y; from —1 to 1, and the purpose of node
d; is to maintain g; at 1 until the second condition, for turning it back to —1, is achieved.
The functioning of this control structure is perhaps most easily understood by simply
simulating the behavior of the sample network in Figure 5. The weights a > 3> § > ¢
need to be chosen so that control information can only flow from right to left, i.e., that no
combination of states to the left of some control node can have an effect on the updates at
that node. Denoting @ = oy, § = ag, § = (1, € = [ etc., Haken [32] suggests the values
a; = 1/(40n)=1, 3; = n/(40n)" for an n-bit counter. The number of nodes in an n-bit

counter is 8n — 5.
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3 Computational Power

In addition to the specific uses of Hopfield networks as associative memories or as devices
for combinatorial optimization, they can also be considered as a general model of compu-
tation. The central problem then is to characterize the classes of functions computed by
different types of networks. Different results are obtained depending on whether a single
network processes inputs of all sizes, or whether the networks are permitted to grow with
increasing input sizes. These uniform and nonuniform network models are discussed sub-
sequently in Sections 3.1 and 3.2. We consider both asymmetric and symmetric networks

in this chapter, but restrict ourselves to networks operating in the fully parallel mode.

3.1 Uniform Networks

As is well known, Kleene [51] characterized the computational power of the McCulloch—
Pitts [61] model of neural networks — asymmetric finite networks of binary threshold logic
units — as equivalent to finite state machines (see also [63]). A significant factor in this
result is that only uniform networks were considered. As pointed out by Hartley and Szu
in [36], if in addition the networks are restricted to being symmetric, then they do not have
even the power of finite automata. (This follows from the strong convergence properties
of symmetric networks, as contrasted with finite automata.)

Recently, Siegelmann and Sontag [79] have continued this line of work to networks of

nodes with real-valued states, where each node computes the saturated-linear function

0 ifz<0,
o(z) = x ifo<e<1,
1 ifa>1

of its weighted sum of inputs. They show that an asymmetric network of 1058 such
nodes is capable of simulating a universal Turing machine. The construction makes use
of the well known technique (see, e.g., [40, p. 171]) of representing the tape of a Turing
machine by two opposing stacks. Fach of the stacks is then represented by the state of
one real-valued node; the remaining nodes are used to implement the finite-state control

of the universal machine, together with the “push” and “pop” operations of the stacks.
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(A similar construction for Turing machine simulation was suggested by Hartley and Szu
in [36], but in that case without any of the implementation details.)

A clever idea assisting in the implementation of the stack operations in [79] is to
represent binary numbers in a base-4 notation, so that a binary sequence by ...b, € {0,1}"
is represented as a1 ...a, € {1,3}", a; = 1 + 2b;. The sequence is then further coded as

the rational number
n
a;

E.
=1

q:

If ¢ represents the contents of a stack (the empty stack is represented by 0), then pushing
a value b € {0, 1} as the first element of the stack can be implemented simply by changing
q to %q + % + %. Conversely, removing a value b from the top of the stack is achieved
by changing ¢ to 4¢ — 26 — 1. The top element of a nonempty stack can be computed as
b= o0(4¢—2). All of these operations can be implemented easily in the network model of
real-valued nodes and saturated-linear transfer functions.

Simulations of arbitrary Turing machines by networks with a potentially infinite num-

ber of nodes have been suggested by Hartley and Szu [36], and by Franklin and Garzon [21].

3.2 Nonuniform Networks

We now proceed to consider computation by nonuniform sequences of networks. In analogy
with standard Boolean circuit complexity theory [70, 86], we assume that some set of nodes
in a network are designated as input nodes, on which the input is initially loaded; then
the states of the nodes in the network are updated repeatedly, in fully parallel mode, until
the network (possibly) converges to some stable global state, at which point the output is
read from a set of designated output nodes.

For simplicity, we shall consider here only networks with a single output node; the
extensions to networks with multiple outputs are straightforward. The language recognized

by a single-output network N, with n input nodes, is defined as
L(N)={z €{0,1}" | on input z, N eventually converges with output 1}.

Given a language A C {0,1}*, we denote A = AN {0,1}". We consider the following

14



complexity classes of languages:

PNETS ={A C{0,1}*]| for some polynomial ¢, there is for each n

a network of size at most ¢(n) that recognizes A" },

PNETS(symm) = {A C{0,1}*| for some polynomial ¢, there is for each n

a Hopfield network of size at most ¢(n) that recognizes A },

PNETS(symm, small) = {A C {0,1}*| for some polynomial ¢, there is for each n
a Hopfield network of weight at most ¢(n) that recognizes A }.
Let (2, y) be some standard pairing function mapping pairs of binary strings to binary
strings (see, e.g. [8, p. 7]). A language A C {0,1}* belongs to the nonuniform complexity
class P /poly, if there are a polynomial time bounded Turing machine M, and an “advice”
function f : N — {0,1}*, where for some polynomial ¢ and all n € N, |f(n)| < ¢(n),
and for all z € {0,1}*,

r€A & M accepts (z, f(|z])).

It is known that the class P/poly equals the class of functions computed by polynomial
size bounded sequences of Boolean circuits ([8, p. 100], [49]). The class PSP.ACE /poly
is defined analogously, using polynomial space bounded instead of time bounded Turing

machines. For circuit complexity characterizations of this class, see [7].

3.3 Computational Power of Asymmetric Nonuniform Networks

We begin by considering general asymmetric networks.

Since a cyclic network of n nodes converging in time ¢ may be “unwound” into an
acyclic network of size n - t, the class of Boolean functions computed by polynomial size,
polynomial time asymmetric networks coincides with the circuit complexity class P/poly.
What is more interesting is that when the computation times of the networks are not
bounded, then polynomial size asymmetric networks compute exactly the functions in the
space-bounded class PSPACE/poly. The result is not too hard to prove and may be
folklore; one of the first printed mentions of it seems to be in an unpublished technical

report by Lepley and Miller [59].
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Figure 6: Simulation of a space bounded Turing machine by an asymmetric cyclic network.

Theorem 3.1 PNETS = PSPACE /poly.

Proor: To prove the inclusion PNETS C PSPACE/poly, observe that given (a de-
scription of ) a neural network, it is possible to simulate its behavior in situ. Hence, there
exists a universal neural network interpreter machine M that given a pair (2, N') simulates
the behavior of network N on input z in linear space. Let then language A be recognized
by a polynomial size bounded sequence of networks (N,,). Then A € PSPACE/poly via
the machine M and advice function f(n)= N,.

To prove the converse inclusion, let A € PSPACE/poly via a machine M and advice
function f. Let the space complexity of M on input (z, f(|z|)) be bounded by a polynomial
q(]z]). Without loss of generality (see, e.g. [8]) we may assume that M has only one
tape, halts on any input (z, f(|z])) in time ¢?("D), for some constant ¢, and indicates its
acceptance or rejection of the input by printing a 1 or a 0 on the first square of its tape.

Following the standard simulation of Turing machines by combinational circuits [8, pp.
106—112], it is straightforward to construct for each n an acyclic network that simulates the
behavior of M on inputs of length n. (More precisely, the network simulates computations
M({z, f(n))), where |z| = n.) This network consists of c?(*) “layers” of O(g(n)) parallel

wires, where the tth layer represents the configuration of the machine M at time ¢ (Figure 6,
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left). Every two consecutive layers of wires are interconnected by an intermediate layer
of g(n) constant-size subcircuits, each implementing the local transition rule of machine
M at a single position of the simulated configuration. The input z is entered to the
network along input wires; the advice string f(n) appears as a constant input on another
set of wires; and the output is read from the particular wire at the end of the circuit that
corresponds to the first square of the machine tape.

One may now observe that the interconnection patterns between layers are very uni-
form: all the local transition subcircuits are similar, with a structure that depends only
on the structure of M, and their number depends only on the length of z. Hence we
may replace the exponentially many consecutive layers in the acyclic circuit by a single
transformation layer that feeds back on itself (Figure 6, right). The size of the cyclic net-
work thus obtained is then only O(¢(n)). When initialized with input z loaded onto the
appropriate input nodes, and advice string f(n) mapped to the appropriate initially active
nodes, the network will converge in O(cq(”)) update steps, at which point the output can

be read off the node corresponding to the first square of the machine tape. O

As a corollary to the proof construction, we observe the following result.

Corollary 3.2 The problem of deciding whether a given fully parallel asymmetric network

converges to a stable state from a given initial state is PSPACE-complete.

NoTE: This problem was considered earlier by Porat [73], who observed that it “does
not seem to be in P”. She proved that the problem of deciding whether an asymmetric

network converges from all initial states is NP-hard.

ProoF: Since a given network can be simulated in situ, the problem is clearly in
PSPACE. To prove completeness, let A be an arbitrary language in PSPACE, and
let M be a polynomial space bounded Turing machine recognizing A, the complement of
A. Without loss of generality, we may assume that M halts on all inputs, and prints a
1 on the first square of its tape if and only if it accepts its input. Now given a string
x, construct as above an asymmetric network simulating the behavior of M on input x,
with the extra property that the network enters a cycle if ever a 1 appears on the wire

corresponding to the first square of the machine tape. (This can be achieved by a sim-
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ple subnetwork connected to that wire.) Clearly this transformation can be computed in
polynomial time, and z € A if and only if the constructed network does not converge, i.e.,
x € Aif and only if the network converges. Hence the transformation is a polynomial time
reduction from the problem of recognizing A to the convergence problem of asymmetric

networks. O

3.4 Computational Power of Symmetric Nonuniform Networks

The straightforward approach to extending the previous simulation to work on symmetric
networks would be to simulate each of the asymmetric edges in the constructed network
by a subnetwork of symmetric ones. This is not possible in general, as is shown by the
different convergence behaviors of asymmetric and symmetric networks. However, in the
special case of convergent computations of asymmetric networks the simulation can be

achieved [67].
Theorem 3.3 PNETS (symm) = PSPACE /poly.

Proor: Because PNETS(symm) C PNETS, and by the previous theorem PNETS C
PSPACE/poly, it suffices to show the inclusion PSPACE/poly C PN ET S(symm).
Given any A € PSPACE/poly, there is by Theorem 3.1 a sequence of polynomial
size asymmetric networks recognizing A. Rather than show how this specific sequence of
networks can be simulated by symmetric networks, we shall show how to simulate the
convergent computations of an arbitrary asymmetric network of n nodes and e edges of
nonzero weight on a symmetric network of O(n + €) nodes and O(n?) nonzero edges.
The construction combines two network “gadgets”: a simplified version of a mechanism
due to Hartley and Szu [36] for simulating an asymmetric edge by a sequence of symmetric
edges and their interconnecting nodes, whose behavior is coordinated by a system clock
(Figures 7, 8); and the parallel binary counter network of Goles and Martinez [29] discussed
in Section 2.1. An important observation here is that any convergent computation of an
asymmetric network of » nodes has to terminate in 2" synchronous update steps, because
otherwise the network repeats a configuration and goes into a loop; hence, the exponential

time counter network can be used to provide a sufficient number of clock pulses for the
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Figure 7: A sequence of symmetric edges simulating an asymmetric edge of weight w.

Figure 8: The clock pulse sequence used in the edge simulation of Figure 7.
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simulation to be performed.

Let us first consider the gadget for a symmetric simulation of an asymmetric edge of
weight w from a node ¢ to a node j (Figure 7) [36]. Here the idea is that the two nodes
inserted between the nodes ¢ and j in the synchronous network function as locks in a canal,
permitting information to move only from left to right. The locks are sequenced by clock
pulses emanating from the nodes labeled A and B, in cycles of length three as presented
in Figure 8.

At time 0 clock A is on, setting the first intermediate node to zero, and clock B is off,
permitting the state of the second intermediate node to influence the state computation
at node j. At time 1 clock B turns on, clearing the second intermediate node at time 2
(note that the connection from node j is not strong enough to turn this node back on).
This will make the state of node 7 indeterminate at time 3. At time 2, clock A turns off,
permitting a new state to be copied from node ¢ to the first intermediate node at time
3 (i.e., just before the state of node 7 becomes indeterminate). At time 3, clock A turns
on again, clearing the first intermediate node at time 4; but simultaneously at time 4 the
new state is copied from the first to the second intermediate node, from where it can then
influence the computation of the new state of node j at time 5.

The A and B pulse sequences required for the simulation may be derived from the
Goles—Martinez counter network (Figure 3) by means of a delay line network such as the
one presented in Figure 9. The oscillator node shown in the upper left corner of the delay
line corresponds to the second counter node in the Goles—Martinez network, which is “on”
for four update steps at a time. The second counter node is chosen because the A and
B sequences are of period three, and the oscillator has to be slower than that. (Thus, a
27+ 1 counter suffices to sequence computations of length up to 27 — 1.) The delay line
operates as follows: when the oscillator node turns on, it “primes” the first node in the
line; but nothing else happens until the oscillator turns off. At that point the “on” state
begins to travel down the line, one node per update step, and the pulses A and B are
derived from the appropriate points in the line.

The value K used in the construction has to be chosen so large that the states of the
nodes in the underlying network have no effect back on the delay line. It is sufficient to

choose K larger than the total weight of the underlying network. Similarly, the weights
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Figure 9: A delay line for generating clock pulses from the binary counter network in

Figure 3.

and thresholds in the counter network have to modified so that the connections to the
delay line do not interfere with the counting. Assuming that K > 3, it is here sufficient to
multiply all the weights and thresholds by 6 K, and then subtract one from each threshold.

|

Concerning the edge weights in the above constructions, one can see that in the network
implementing the machine simulation (Figures 6, 7), the weights actually are bounded by
some constant that depends only on the simulated machine M; in the delay line, the
weights are proportional to the total weight of the underlying network; and the weights in
the counter network (Figure 3) are proportional to the length of the required simulation
and, less significantly, to the weight of the delay line. Thus, we obtain as a corollary
to the construction that if the simulated Turing machine (or, more generally, asymmetric
network) is known to converge in polynomial time, then it is sufficient to have polynomially
bounded weights in the simulating symmetric network. Formulating this in terms of

nonuniform complexity classes, we obtain:

Corollary 3.4 PNETS (symm, small) = P /poly.
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Consequently, anything that can be computed by asymmetric networks in polynomially
bounded time can also be computed by polynomial weight symmetric networks which are
guaranteed to have the good convergence properties discussed in Section 2.

The result also implies that large (i.e., superpolynomial) weights are essential for the
computational power of polynomial size symmetric networks if and only if P/poly #
PSPACE/poly. (The condition P/poly = PSPACE/poly is known to have the unlikely
consequence of collapsing the “polynomial time hierarchy” to its second level [49].) In
asymmetric networks large weights are not needed, in the sense that any node with large

incoming weights can be replaced by a polynomial size subnetwork of depth 2 [25].
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4 Synthesis of Nets for Associative Memory

The most extensively studied application of Hopfield nets is their use as associative mem-
ories. Many different storage rules have been proposed and analyzed in the literature. We
shall touch on this fascinating area only very briefly here; for much more information, see
e.g. the section on associative memories by Paturi in the current volume, or the book by
Kamp and Hasler [46].

A set wb, ..., u™

of bipolar vectors is stored in a Hopfield net with weight matrix W
and threshold vector A if the vectors correspond to stable states of the global update rule
of the network, i.e., if sgn(Wu? — h) = uP for all p = 1,...,m. The set of all vectors
that are guaranteed to eventually converge to a given stable vector u forms the attraction
domain of u®. The allraction radius of a stable vector u is the largest Hamming distance
from within which all vectors are guaranteed eventually to converge to u. The k-step
attraction radius is the largest distance from within which all vectors converge to u in at
most k& update steps.

A storage rule is an algorithm for constructing, from a given set of vectors u?, a Hopfield
net that stores those vectors (or at least a net that with high probability stores most of
the u! approximately correctly). It is naturally also desirable that the stored u’ have
nontrivial attraction radii.

The capacity of a storage rule is, roughly speaking, the maximum number of random
vectors it can store with high probability, as a function of n, the number of nodes in
the network. This notion can be made precise in several alternative ways, depending on

whether all the given vectors must be stored, whether they need to be stored exactly, what

is required of the attraction radii, etc.

®Note that while the set of stable vectors of a network does not depend on the update rule, a given
unstable vector can in sequential operation converge to different stable vectors, depending on the update
order. For simplicity, we shall only consider fully parallel updates here, but in the definitions for sequential
updates convergence should be required irrespective of the update order chosen. Also note that while in
sequential operation the attraction domains are contiguous, in fully parallel operation they can consist of

disjoint regions far from each other.
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4.1 Synthesis Methods

The most widely studied storage rule (but probably not the best one to use) is the tensor
product, or outer product rule, whereby the weight matrix W and threshold vector h are
chosen as W = Y7 (u'(u') — I) and h = 0. The rule expresses a Hebbian [37] way of
thinking: If two elements of a stored vector are identical, there should be a positive connec-
tion between the corresponding neurons, and if the elements are opposite, the connection
should be negative. The diagonal of W contains only zeros, i.e., the network is simple. The
tensor product rule was studied in the 1970’s by Anderson [4], Kohonen [52], Nakano [66],
and others, and then popularized by Hopfield in his influential 1982 paper [41].

In relation to the tensor product rule, Baum et. al. [9] and Amari [2] have studied the
advantages of sparse encoding, which means that only a small fraction of the bits are +1
(or —1). The vectors can be preprocessed so that they become almost orthogonal or are
made longer and sparse — but this preprocessing naturally costs space and time.

Alternatives to the tensor product rule are the so called spectral or pseudoinverse
algorithms discussed, for instance, in [15, 71, 84]. The basic idea, which can again be
traced back to the work of Kohonen et al. in the 1970’s [54], is to construct the weight
matrix W so that the stored vectors, if they are linearly independent, become eigenvectors
of W. This can be achieved by choosing, e.g., W = U(UTU)_lUT, where U is a column
matrix of the vectors u',u?,...,u™. The method obviously guarantees perfectly noiseless
retrieval of any set of linearly independent vectors.

In general, the problem of deciding whether a given set of vectors can be stored as stable

states of a Hopfield network can be solved in polynomial time by linear programming.

Given the vectors ul, u?,...,u™ € {0,1}", set up the following system of linear inequalities
in the variables w;;, 7,7 =1,...,nand h;,2=1,...,n:

(i) wi = wyy, fori,j=1,....,n, i#7J;

(il)) wy =0, fori=1,...,n;

>0, ifu =1
(i) >0y whwi —hi T ! , fori=1,...,n, p=1,...,m.
<0, ifuf=-1

This system of O(mn?) inequalities can then be solved by, e.g., some variant of the ellipsoid

method (see [77]). This approach gives no control over the attraction radii of the vectors;
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however, Chandru et. al. [13] propose a modification of the technique whereby the direct
attraction radii of the vectors can be maximized in the solution. (For definitions and

discussion of the problem of determining attraction radii in Hopfield nets, see Section 5

below.)

4.2 Capacity Issues

As an upper bound on the capacity of any storage rule one can define the optimal capacity
of a network to be the maximum number of vectors that can be stored, when the weight
matrix and threshold vector can be chosen freely. It is known that if no requirements
are set on the attraction radii of the stored vectors, then with high probability up to 2n
random vectors may be stored in a network with asymmetric connections [14, 22, 83, 85].
However, when the stored vectors are not random, but are chosen in the worst possible

manner, the optimal capacity is much lower.

Theorem 4.1 [12, 64] The worsl-case capacity for Hopfield networks with at least one

zero element in the diagonal of the connection matriz is 1.

ProorF: Clearly, at least one vector can be stored. On the other hand, assume that element
j in the diagonal of the connection matrix is zero. Take any vector u! and as the other
vector u?, which differs only in component j. But then the 7 component of Wu! —h and

Wu? — h are the same, and u! and u? cannot both be stable vectors at the same time. O

For an approach to estimating the probabilistic capacity of the tensor product storage
rule, consider the following “signal-to-noise ratio” calculation. If the weight matrix W is

1 m
..., u™, then for every

formed according to the tensor product rule from the vectors w
vector u!, and every index r, (Wu'), = (n — 1)u + D ki Qs wiulul. If the components
of the vectors u' are uniform i.i.d. random variables (i.e., different elements are —1 or
+1 with equal probability independently of each other), then the first “signal” term in
the sum equals (n — 1)ul, while the second “noise” term obeys a binomial distribution
with zero mean and variance (n — 1)(m — 1). This means that as long as m is small, we

can expect the stored vectors to be stable [41, 62]. In situations with many long stored
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vectors, this distribution can be approximated by a Gaussian distribution with the same
mean and variance.

For random vectors stored with the tensor product storage rule, the probability that all
vectors are perfectly recalled goes to 1, if the number of stored vectors is at most n/(4 Inn);
the probability that almost all vectors are perfectly recalled goes to 1, if the number of
stored vectors is at most n/(2lnn) [58, 62, 84]. If the number of stored vectors exceeds
0.138n, an avalanche phenomenon can occur [3]: The errors increase in each update step,
and although the first update step results in a vector not far from the desired one, the
final result is far from correct. Thus, we can store at most 0.138n vectors if we are willing
to accept the errors that occur up to that point.

If the stored vectors are almost orthogonal, then clearly the “noise” term is very near
to zero. This type of restriction has been studied, for instance, by Dembo [15]. He proves
that if the Hamming distances between each pair of stored vectors are between an and
(1—a)n for fixed a, 0 < @ < 1/2, then the worst-case capacity for Hopfield networks with
at least one zero element in the diagonal of the connection matrix is at most [1/(1 —2a)],
and the capacity approaches [1/(1 — 2a)]|, as n — oc.

It has been proved by Komlés [55] that the probability of n random binary vectors
being linearly independent approaches 1 as n — oo. It follows immediately that the
probabilistic capacity of the spectral algorithms is n, when only the stability of the stored

vectors is considered, with no requirements on the attraction radii.

4.3 Complexity of the Synthesis Problem

Surprisingly, despite all the work on the design and analysis of storage rules for Hopfield
nets, the exact computational complexity of the synthesis problem is still unknown, i.e.,

it is not known whether the following problem is polynomial time solvable:

HOPFIELD NET SYNTHESIS:
Given an integer p and m vectors u!, u?, ..., u™ € {—1,1}", such that the
distance between each vector pair (u’,u’) (where i # j) is greater than 2p;

is there an integer matrix W and an integer threshold vector h, so that all

vectors u' are stable and have an attraction radius of (at least) p?
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As pointed out above, for p = 0 the problem can be solved in polynomial time by linear
programming, but even the case p = 1 is open. For fixed p and fully parallel operation the
problem is in AP, provided that only networks with small weights are considered. For
unbounded p, it is not even clear that the problem is in NP. (With the small weights

restriction, it can be seen to be in the class X5 of the polynomial time hierarchy [7].)
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5 Computational Problems in the Analysis of Hopfield
Nets

Assume that we have stored the vectors u!, u?, ..., v™ € {—1,1}"in a Hopfield associative
memory. This means that we have determined a connection matrix W and a threshold
vector h somehow, so that all the vectors u!, u?, ..., «™ are stable. In this section we
examine how difficult it is to assess the quality of the resulting network by the means of
a conventional computer (classical complexity classes).

The symmetry condition of the connection matrix is important: Analyzing even the
very basic properties of networks with asymmetric connection matrices is hard. For in-
stance, as was pointed out in Corollary 3.2, it is PSPACE-complete to decide whether
a given computation by an asymmetric network converges to a stable vector, and Alon
and Lipscomb [1, 60] have shown that even the problem of determining whether such a
network has any stable vectors is N'P-complete.

We analyze the complexity of determining the number of stable vectors in a given
network, and the complexity of computing the sizes of their attraction domains and radii.
Most of the problems we examine are hard even for simple networks, hence also for more
general networks. Whenever possible, we try to state the results using simple networks.

We shall need the following complexity-theoretic notions. An integer valued function
f belongs to the class #7P if there is a nondeterministic polynomial time Turing machine
M that on each input = has exactly f(«) accepting computation paths. A function f is
#P-complete, if it is in #P, and any other function in #P can be computed by some
deterministic polynomial time Turing machine that is allowed to access values of f at unit
cost. To each NP decision problem there corresponds in a natural way a #P counting
problem (the problem of counting accepting computation paths, i.e., alternative solutions
to a given problem instance), and vice versa. We shall say, somewhat inaccurately, that an
NP decision problem A is in #7P (respectively #P-complete) if the associated counting
problem is in #7P (respectively #P-complete). For a more extended discussion of these

notions, see [23, pp. 168-169].
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5.1 Number of Stable Vectors

Given a network with connection matrix W and threshold vector h, it is easy to check that
the stored vectors u', for i = 1, 2, ..., m, are all stable: Just compute sgn(Wui — h) for
each one. Hence, computing the total number of stable vectors in a network is equivalent
to computing the number of spurious stable vectors it has.

It is an N'P-complete problem to decide whether there are any stable vectors in a
Hopfield network with negative diagonal elements allowed [18]. Nevertheless, even in
simple networks it is hard to determine the number of stable vectors, as the following

result shows.

Theorem 5.1 [60] The problem “Given a simple Hopfield network with small nonpositive
connection weights and small threshold values; are there two stable vectors in the network?”

is N'P-complele.

ProorF: It is clear that the problem is in NP. To prove completeness, we construct a
polynomial time reduction from the AP-complete problem of finding large independent
sets in graphs (problem IND SET [23, 48]):“Given an undirected graph G with n nodes
and an integer k, where 1 < k < n; does G contain an independent set of size k, i.e., a set
of k£ nodes no two of which are connected by an edge?”

We construct in the following a polynomial time reduction from IND SET: Consider
an instance (G, k) of the problem IND SET. Choose numbers «, 3, v, and §é, so that
0<a<28,0<7v<2,and 2(n—Fk)d < a < 2(n—k)d+ 1. Possible values are
a=2(n—k),=n—-k+1,and vy = 6§ = 1. Construct a Hopfield network H so that (cf.
Figure 10):

1. for each node v in G, there is a node in H with threshold —a + fdg(v) — é(n — 1),

where dg(v) is the number of neighbors (i.e., the degree) of node v in G,

2. for each edge in GG, there is a connection with weight —3 between the corresponding

nodes in H,

3. for each pair u, v of nodes in GG, there is a new node with threshold —y and connec-
tions with weights —é between the new node and u and between the new node and

v.
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Figure 10: An example of a graph G and the Hopfield network H constructed from it.
The two nodes in H with thresholds not written out in the figure have threshold values
—a+ 0+ 26.

The nodes and connections in (1) and (2) are called old nodes and connections; the
nodes and connections in (3) are called new nodes and connections. Each old node v has
dg(v) old neighbors and n—1 new neighbors. Each new node has two old neighbors and no

new neighbors. From the choice of weights and thresholds we get the following properties:

Property 1 For each pair of nodes u, v in G holds that if u, v are 1 and stable in H, then

w and v are independent of each other in G.

From this and from the fact that all thresholds are negative it follows that for the old
nodes and connections stable vectors in H correspond exactly to maximal independent

sets in (.

Property 2 For an old node v it holds that v is 1 and stable if and only if at least &£ — 1

of its new neighbors are —1 and each old neighbor is —1.

Property 3 For a new node v holds that v is —1 and not stable if and only if both (old)

neighbors are 1.
Additionally, from Properties 2 and 3 we can easily prove the following property:

Property 4 There is a (trivial) stable vector with each old node —1 and each new node

1.
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Now we prove that H has two stable vectors if and only of G has an independent set
of size k.

Suppose that H has two stable vectors. Then there is a stable vector where some old
node is 1 or where some new node is —1 (otherwise only Property 4’s stable vector is
stable). By Property 3, this means that some old node is 1. Further, by Property 2, at
least k& — 1 of the old node’s new neighbors are —1, which implies, by Property 3, that at
least k£ old nodes are 1. But Property 1 then says that these nodes are independent; in
other words, G has an independent set of size k.

On the other hand, suppose that G has an independent set of size k. Then Property
4’s vector is one and the following vector is the other stable vector: Take the independent
set of size k and add nodes one at a time so that the result is a maximal independent set.
Choose the nodes in this maximal independent set to have state 1. Choose state —1 for
the other old nodes. Choose state —1 for the new nodes between a pair of independent

old nodes, and choose state 1 for the other new nodes. |

The problem of whether there exist two stable vectors is P-complete, if all connection
weights are nonnegative, but A/P-complete if all connection weights are nonpositive [60].
The problem with & = 0, but without the restriction to small weights and with three
instead of two stable vectors has been proved AP-complete in [17, 18]. This result and

Theorem 5.1 can easily be strengthened to #P-completeness results.

Corollary 5.2 [17, 18, 60] The problems “Given a simple Hopfield network with threshold
vector h = 0; how many stable vectors are there in the network?” and “Given a simple
Hopfield network with small nonpositive connection weights and small threshold values;

how many stable vectors are there in the network?” are #P-complete.

It is known that if in a simple Hopfield network with threshold vector & = 0 the ele-
ments of the connection matrix are independent identically distributed zero-mean Gaus-

sian random variables, the asymptotic estimate for the number of stable vectors is about

1.05 x 20-2874n [62, 81].
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5.2 Finding Stable Vectors

We now turn to the problem of finding a stable vector to which a given initial vector may
converge under sequential operation.

It is easy to see that a sequential computation by the network itself solves the problem
in polynomial time, if the weights are small. Alon [1] has showed that there is an algorithm
for finding some stable vector in time O(n?), if the connection weights are all nonnegative
(they need not be small). On the other hand, if all the connection weights are small and
nonpositive, it is P-hard to find some stable vector [24].

Local search problems have a neighborhood structure that associates with every so-
lution a set of neighboring solutions. Starting from some initial solution, the algorithm
keeps moving to a better neighboring solution, until it arrives at a locally optimal solution,
i.e., one that does not have a better neighbor. As already noted in previous sections, the
search for a stable vector can be viewed as a search for a local minimum of the energy
function E(z) = —22TWaz + (h—e)Tz. In sequential operation, two vectors are neighbors
if they differ in exactly one element.

Johnson, Papadimitriou, and Yannakakis introduced in [45] a complexity class called
PLS (for Polynomial-time Local Search). For problems in PLS, we can determine in
polynomial time whether a solution is locally optimal and find a better neighbor if it is
not.

We now give the formal definitions. FEach instance z of a local search problem P
has a set of feasible solutions F(z). Each feasible solution s € F(x) has an integer cost
p(s,z) that is to be optimized (minimized or maximized) and a set of neighboring solutions
N{(s,z). A solution s is locally optimal if it does not have a strictly better neighbor.

The local search problem is: “Given input instance z, find a locally optimal solution

9

for 2.7 Now P € PLS if there exists three polynomial-time algorithms A, B, and C,

defined as follows:
1. Algorithm A on input z produces an initial solution from F(x).
2. Algorithm B on inputs z and s € F(z) computes u(s,z).

3. Algorithm C on inputs z and s € F(z) either determines that s is locally optimal
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or finds a better solution in N(s,z).

A problem P € PLS is PLS-reducible to another problem ¢ € PLS if there are

polynomial-time computable functions ® and ¥ such that

1. ® maps instances z of P to instances ®(z) of @),
2. ¥ maps pairs of the form (solution of ®(z), z) to solutions of z, and

3. for every instance z of P, if s is a locally optimal solution for the instance ®(z),

then W(s,z) is a locally optimal solution for the instance z of P.

PLS reductions compose, and if locally optimal solutions to ) can be found in poly-
nomial time, then locally optimal solutions to P can be found in polynomial time. The
class of PLS-complete problems is defined in the obvious way. A PLS-complete problem
can in principle simulate any local search problem of PLS.

The following theorems gather together some basic facts about PLS [45]. Here Pg
and N'Pg are classes of search problems analogous to the decision classes P and N'P. It

is not difficult to show that Ps = N'Pg if and only if P = N'P.
Theorem 5.3 Ps C PLS C N Ps.
Theorem 5.4 If a PLS problem is N'P-hard, then NP = co-NP.

Theorem 5.4 implies that it is unlikely that PLS = NPs.

The standard algorithm finds a locally optimal solution by repeatedly applying algo-
rithm C'. The standard algorithm problem is the search problem “Given an instance and
an initial solution s; find the local optimum that would be produced by the standard

algorithm starting from s.”

Note that the answers to the problem depend in general on
the rule for choosing the next solution from the neighbors.

The problem of finding a stable vector for a network with only nonnegative connection
weights is solvable in polynomial time. In this case, even a global optimum can be con-
structed in polynomial time. Furthermore, for small weights, the problem can be solved
in Random NC [50].

The results of Schiffer and Yannakakis [76] can now be summarized in the following

theorem that we state without proof. The proofs are quite involved.
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Theorem 5.5
1. To find a stable vector in a network with all connection weights 0 or —1 is P-

complete.

2. The problem of finding a stable vector is PLS-complete. The reductions used (i.e.,
the functions ® and V) are in LOGSPACE.

3. The standard algorithm takes exponential time in the worst case for any rule for

choosing the next vector from the neighbors.

4. The standard algorithm problem is N'P-hard.

5.8 Attraction Domains of Stable Vectors

In this section we consider the problem of computing the size of the attraction domain of
a given vector, i.e., the number of vectors that converge to the given vector. We restrict
our study to fully parallel operation.

We show that asking for another vector in the attraction domain of a stable vector is
NP-complete. We first state a lemma claiming that a certain very restricted form of 0-1

integer programming is A/P-complete.

Lemma 5.6 [17, 18] The problem “Given a symmetric zero diagonal n X n-matriz A with
entries from {—1,0,1}; does there exist a veclor x € {0,1}",  # 0, such that Az > 0?7

is N'P-complete.

The next theorem shows that it is difficult to decide, when using fully parallel operation,
whether the direct attraction domain, and thereby the general attraction domain, of 1 is

bigger than {1}.

Theorem 5.7 The problem “Given a simple Hopfield network with stable vector 1, with
threshold vector h = 0, and with w;; € {—1,0,1}; is there any other vector going to 1 in

one fully parallel step?” is N'P-complete.

Proo¥: The problem can be rephrased as “Given a symmetric zero diagonal matrix W

with entries from {—1,0,1} and such that sgn(W1) = 1; is there any bipolar vector z # 1,
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such that sgn(W=z) = 17”7 The problem is clearly in N’P. We prove that it is NP-hard
by a reduction from the problem in Lemma 5.6. Consider an instance of that problem:
“Given a symmetric zero diagonal k x k-matrix A with entries from {—1,0, 1}; does there
exist a vector y € {0,1}*, y # 0 such that Ay > 0?”

Let K; be the symmetric zero diagonal k X k-matrix whose entry k;; is 1if [i — j| = 1,
and 0 otherwise. Here the subtractions are taken modulo k. The main property of K; is
that it has exactly 2 elements with value 1 on every row and every column. Let 1 denote

the matrix whose all entries are 1. Choose

-A 0 0 A
0 -Ky I I
W =
0 I 0 0
A I 0 1-171

It is easy to verify that sgn(W1) = 1. We now show that there exists a vector
y € {0,1}*, y # 0, such that Ay > 0 in the problem in the lemma if and only if there
exists an = € {—1,1}*, & # 1, such that Wz > 0 in the present problem. Let us denote
= (W, 22 206) 24)) where 20) € {-1,1}*, for i = 1, 2, 3, 4.

(if) If Wz > 0 for some  # I, then z(2) = T by the third part of matrix W (i.e.,
rows 2k + 1, 2k + 2, ..., 3k). Thus () = 24 = T by the second part of W. Hence
A(T = 2() > 0 by the first part of W, and z # 1. In other words, Ay > 0, and y # 0,
where y = (T—z(1)/2.

(only if ) If Ay > 0 and y # 0, then take z = (m(l),x(Q),m(S),m(4)) = (1-2y,1,1,1).
Now Wz > 0, and 2 # 1. This concludes the proof. |

Also, counting the number of vectors going to the stable vector 1 in a single fully

parallel step is hard.

Corollary 5.8 [17, 18] The problem “Given a simple Hopfield network with stable vector
1, with threshold vector h = 0, and w;; € {—1,0,1}; how many other vectors go to 1 in

one fully parallel step?” is #P-complete.
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5.4 Attraction Radii of Stable Vectors

Finally we confront the attraction radius. The presentation follows that of [19].

We start by examining the easier case: the fully parallel network. As will be seen, the
boundary between tractability and intractability is here located between computing the
direct (one-step) and the two-step attraction radii. We first observe that the former can

be computed in polynomial time.

Theorem 5.9 The problem “Given a fully parallel Hopfield network, a stable vector wu,

and a distance k; is the direct attraction radius of u equal to k%7 is polynomially solvable.

PRroOOF: The following polynomial time procedure determines the direct attraction radius
of u:

1. radius := n;

2. for each node 7 do:

a) compute the values w;;u; for 7 =1, ..., n and order them as a; > -+ > ay;
he val su; for j =1 d order th > >
(b) sum := 7. a; —t; % this is the total input to node i;
(c) if u; = 1 then do:
ioki=1;
ii. repeat sum := sum—2ay; k:= k+ 1 until sum < Qor ay <0or k=n+1;
iii. if sum < 0 then radius := min{radius, k — 2}
(d) if w; = —1 then do:
i k:i=m;
ii. repeat sum := sum—2ay; k := k — 1 until sum > 0 or a > 0 or k = 0;
iii. if sum > 0 then radius := min{radius, n — k — 1}

3. return(radius).

Intuitively, we check for each node how many of its inputs must be altered to change
its state in the update. The minimum of these numbers is the distance to the nearest
vector that results in something else than w. If this distance is k, the radius of direct

attraction is & — 1. O

Next we consider the problem of computing the general attraction radius. Note that
this problem is in AP if the weights in the network are polynomially bounded in n.
A nondeterministic algorithm for the problem works as follows: Given a vector uw and

a distance k, guess a vector that is within distance k£ from uw and does not converge
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to u, witnessing that the attraction radius of w is less than k. When the weights are
polynomially bounded, any vector converges to either a stable vector or a cycle of length

two in polynomial time (Theorem 2.2).

Theorem 5.10 The problem “Given a fully parallel Hopfield network, a stable vector u,

and a distance k; is the attraction radius of u less than k?” is N"P-hard.

Proor: We prove that the problem is AP-hard by a reduction from the AP-complete
satisfiability problem SAT: “Given a conjunctive normal form (CNF) formula F' with k
variables and m clauses, is there a satisfying truth assignment for F?”6 In fact, we need a
special version of SAT: we require that no clause contains both a variable and its negation,
and we require that the number of clauses is greater than the number of variables. It is
easy to see that these requirements do not affect the N'P-completeness, since clauses with
both a variable and its negation can be excluded, and if the number of clauses is too small,
we can simply repeat one of the clauses the required number of times.

Let & = (%1, ..., @x) be some truth assignment not satisfying F'. Such an assignment is
easy to find: Take, for instance, the first clause and choose values for the variables against
their appearance in the clause; i.e., if variable z; is in the clause, choose false for it, if z;
appears negated in the clause, choose true for it; otherwise the value of the variable does
not affect the value of the clause, so choose for instance value false for it.

Transform formula F' to an equivalent formula F’ by adding k times one of the false
clauses. This ensures that at least £ 4+ 1 of the clauses evaluate to false under Z. In the
following, m refers to the number of clauses in F”.

Now we construct a Hopfield network in such a way that there is a stable vector u
corresponding to the truth assignment &, and unless there is a satisfying truth assignment,
all input vectors differing from % in at most k elements converge to @. On the other hand,
if there is a satisfying truth assignment &, the vector corresponding to & differs from the
stable vector @ in at most k elements and does not converge to %; hence the attraction

radius of @ is less than k.

6 A CNF formula is a conjunction of clauses ¢1, ca, ..., ¢m, where a clause is a disjunction of boolean
variables z1, z2, ..., rx and their negations, e.g., 1 V —zs V z4; and a satisfying truth assignment is a

choice of values (true or false) for the variables so that the formula gets value true.
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In the construction, truth value true is represented by node state +1, and truth value
false is represented by node state —1. In the following, we make no distinction between
the truth values and the corresponding node states.

The network has nodes corresponding to the variables and the clauses, and 2k + 2
additional nodes, in total 3k + m + 2 nodes. We denote a state vector of the network
as (z,c,r,s), where subvector = (21, ..., x;) corresponds to the variables, subvector
¢ = (a1, ..., ¢y) corresponds to the clauses, and subvectors r and s, each of length
0 =k + 1, correspond to the additional nodes.

Let ¢, be the vector of truth values for the clauses resulting from assignment z. Espe-
cially, denote é = cz. The stable vector in our construction will be @ = (&, ¢, —1, —1).

Each r-node represents the conjunction of the clauses represented by the c¢-nodes; the
r-nodes are replicated to guarantee that not all of them can be +1 for vectors within
Hamming distance k& from the stable vector @, which has r = —1. The s-nodes work in
such a way that as soon as all of them get state 4+1, their states cannot change any more.

Let @ = 32 + 1 = k% + 2k + 2. The Hopfield network is constructed in the following
way (see Figure 11):

e the threshold value of each node z; is —(am + 1)z;,

e the threshold value of each node ¢; is —a(k; — 1), where k; is the number of literals

(i.e., variables and negations of variables) in the clause ¢;,
e the threshold value of each node r; is B(m — 1),
e the threshold value of each node s; is 0,

o there is an edge between each z; and each ¢; with weight o if literal z; is in clause

¢;, and with weight —a if literal —2; is in clause ¢;,
o there is an edge between each ¢; and each r; with weight 3,
e there is an edge between each r; and the corresponding s; with weight k,

e the s-nodes constitute a fully connected subnetwork: there is an edge between each

s; and each s; (where j # ) with weight 1, and
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T1
S1
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S92 1
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thresholds: 56
—(am+1)z; —a(k;—1) B(m —1) 0

Figure 11: The structure of the Hopfield network in Theorem 5.10.

o all other edges have weight 0, i.e., they are excluded.

It is easy to check that @ = (#,¢,—1,—1) is a stable vector in this network.

This construction is polynomial in the size of the input formula, and we can now
proceed to proving that this is the desired reduction. We prove first that if there is no
satisfying truth assignment, all vectors at distance at most k from @ converge to @, and after
that we prove that if there is a satisfying truth assignment &, then vector (#,¢, —1,—1)
does not converge to %, and hence the attraction radius of @ is strictly less than the

Hamming distance between & and #, which is at most k.

1. Assume there is no satisfying truth assignment. In this case, take an arbitrary input
vector (z,¢,r,s) with Hamming distance at most &k from 4.
At the first update step, the states of the z-nodes become Z, since the input to node
z; is between —am and am, and hence z; gets state sgn(fam + (am + 1)%;) = ;.
We use here an abbreviation of type sgn(a + b) for sgu(z), where ¢ — b < & < a +b.
As the threshold values in this way force the z-nodes to get states &, the states of
the z-nodes do not change any more during the computation.
The states of the c¢-nodes get values ¢,. As there is no satisfying truth assignment,
at least one of the cg-values is —1.
Recall that at least one ¢; has initial state —1 even if £ c-nodes have their states

differing from ¢. Hence the input to each r-node from the ¢-nodes is at most g(m—2),
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and as there is only one connection from an s-node to each r-node, the s-nodes
contribute at most k& to the input. Thus the r-nodes get state —1, and the only

situation in which the r-nodes can get states 1 is when all the ¢-nodes have state 1.

At the second update step the states of the e-nodes become é. This can be seen as
follows. As ¢ represents the truth values resulting from Z, the input from the z-nodes
is —ak; if ¢; = —1, and at least —a(k; —2) if &; = 1. The input from the r-nodes is
between —3? and 8%, so if ¢; = —1, then ¢; gets state sgn(—ak; +3%+a(k;—1)) = -1,
and if ¢; = 1, then ¢; gets state sgn(—a(k; —2) + 8%+ a(k; — 1)) = 1. As the a-
nodes do not change any more, also the c-nodes do not change any more during the

computation.

As there is some ¢-node with state —1, the states of the r-nodes do not change: They

are all still —1.

As the Hamming distance between (z,¢,r,s) and @ is at most k, at least one r-node
and at least one s-node have initial states —1. Thus at the first update step, the
absolute value of the input from other s-nodes to each s-node is at most & — 2,
whereas the input from the corresponding r-node is the state of the r-node times k.
This results in the s-nodes having the same states after the first update step as the
r-nodes had before the first update step. Consequently, there is at least one s-node
with state —1 after the first update step. The first update step results in all r-nodes

having state —1. Consequently, all s-nodes get states —1 in the second update step.

To sum up: Starting with (x,c¢,r,s), the first update step results in (&,¢z, —1,7),

and the second update step results in .

. Assume that there is a satisfying assignment &. We show that the input vector
(z,¢,—1,—1) does not converge to @, which implies that the attraction radius must

be less than k.

In the first update step, the z-nodes become Z, each ¢; gets state sgn(—a(k; —2) £
B%+ a(k;— 1)) =1, and 7 and s stay —1. In the second update step, the ¢;-nodes
become ¢, but each r; gets state sgn(fm+k—pB(m—1)) = 1, while s still stays —1. In

the third update step, the r-nodes become —1 but each s; gets state sgn(k — k) = 1.
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Now s stays as it is, since from now on the total input to each s; is —k+k = 0. The

computation has converged to (Z,¢,—1,1) # 4.

The proof is now complete. O

From the construction in the proof, we see that just determining the two-step attraction
radius is A'P-hard. Computing the direct attraction radius is easy while computing the
two-step attraction radius is hard, because for the direct radius it is enough to check the
change of one element at a time while for the two-step radius we have to check the changes
of the changes.

Also approximating the attraction radius is hard. We say that an approximation
algorithm to a minimization problem approximates the problem within a factor K, if for
all sufficiently large problem instances I, the result of the algorithm is at most Kmin(I),
where min([) is the optimal result for instance I.

If a CNF formula is satisfiable, it can in general be satisfied by many different truth
assignments. We use the name MIN ONES for the problem of finding the minimum
number of true variables in a satisfying truth assignment.

We see from the construction of the network in Theorem 5.10 that the attraction
radius is one less than the minimum Hamming distance between vector # and a satisfying
vector Z. Now, construct from a given instance of SAT a formula in the way described in
Theorem 5.10. For each ; = 1, change all literals z; to —2; and all literals —z; to z;. Now
setting all variables to false yields a nonsatisfying truth assignment for the formula, and
(—1,¢_3,—1,-1) is the stable vector we consider. Thus, the problem of computing the
attraction radius is equivalent to the problem MIN ONES of finding the minimum number
of true variables in a satisfying truth assignment to a CNF formula.

The MIN IND DOM SET problem asks for the size of a minimum independent domi-
nating set in an undirected graph. Let (V, E) be a graph, where V' is the set of nodes and
E CV xV is the set of edges. Then a subset S of V is an independent dominating set if
there is no edge between any two nodes in S and every node in the graph is either in 9
or is a neighbor of a node in 5. Halldérsson has shown that MIN IND DOM SET cannot

be approximated in polynomial time within a factor n!'~¢ for any fixed € > 0, unless P =
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NP [35]. Here n is the number of nodes in the graph.

Lemma 5.11 [}7] There is no polynomial time algorithm approzimating MIN ONES
within a factor n'=¢ for any fized ¢, where 0 < ¢ < 1, unless P= N'P. Here n is the

number of variables in the CNF formula.

Proor: We prove that a polynomial time algorithm approximating MIN ONES within
a factor K would give a polynomial time algorithm approximating MIN IND DOM SET
within a factor K. Consequently, MIN ONES is at least as hard to approximate as MIN
IND DOM SET, and the claim follows from Halldérsson’s result.

Let (V, E) be a graph with n nodes. Create one variable s; for each node s; € V.
Note that for simplicity we use the same notation for both the node and the variable.
Now we transform the property that a node is in an independent dominating set to the
property that the corresponding variable is true. Denote the set of neighbors of node s;
by E; = {s; | {si,s;} € E'}. Construct the CNF formula

G = /\ (si % \/ 5j> A /\ (—si V =s;).
s; €V s;€E; {si,s; }EE
But every satisfying truth assignment to this formula corresponds to an independent dom-
inating set in the graph and the size of this set is equal to the number of true variables.

This completes the proof. O

As the problem of computing the attraction radius is equivalent to the problem MIN

ONES of finding the minimum number of true variables, the following result is immediate.

Corollary 5.12 There is no polynomial time algorithm approximating the attraction radii
in a fully parallel Hopfield network (with n nodes) within a factor n'=¢ for any fived ¢,
where 0 < € < 1, unless P = NP.

The results above for fully parallel operation can be extended to sequential operation.
In the sequential operation case, the results are valid for the general attraction radius
only; the k-step attraction radius is not interesting.

We sketch below how the proof of Theorem 5.10 must be modified in order to apply
for sequential Hopfield memories. The nonapproximability result then follows in the same

manner as in Corollary 5.12.
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Theorem 5.13 The problem “Given a sequential Hopfield network, a stable vector u, and

a distance k; is the attraction radius of u less than k?” is N'P-hard.

Proor: (Sketch) The problem in applying the proof of Theorem 5.10 to the sequential

case lies in the free update order. To avoid this problem, we add for each clause ¢; a
subnetwork checking that c; has the correct value for the current variables z; i.e., the

7 The results of the subnetworks are

subnetwork computes ¢; = (w;, V2, V-V .szj)
used by the r-nodes: Node r; gets value 1 if and only if ¢; = 1 and, additionally, the
equivalence is satisfied.

In order to avoid cheating the equivalence test by choosing suitable initial values, the
subnetworks are replicated so that there are k£ = 3 —1 such subnetworks for each ¢;. Node
7; gets value 1 if and only if all the subnetworks connected to it yield 1. Additionally, to

avoid cheating by manipulating a small set of the & variables, the result of the equivalence

test must be false for the stable state %. Hence, we extend the equivalence test to

(cjz(a:il\/miz\/---\/mikj))/\(mgém).

The subnetworks are put between the layer of c-nodes and the layer of r-nodes: Each
subnetwork has connections from each z-node and from the corresponding ¢-node and the
result of the subnetwork is used by the corresponding r-node. Thus node r; is connected
to node ¢; and to all the 3 — 1 subnetworks connected to ¢;; each connection has weight
B. (See Figure 12.) Each subnetwork has 3k + 5 nodes and depth 4; the weights must
again be chosen so that nodes to the right cannot influence the result (nodes to the left
determine solely the outcome of the update). This means also that the weight o must be
increased to o = kmax(ﬂ2 +206—3)+ 8+1, where kmax is the maximum number of literals
in a clause in the formula.

Now we can proceed roughly as in Theorem 5.10. O

"Note that some variables may appear negated in the disjunction. For simplicity of notation, we assume

that ¢; is of the expressed form.
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Figure 12: The network part with direct connections to node ¢y in the modified network
in Theorem 5.13 (cf. Figure 11). Note that there in fact are four connections with different

weights between each z-node and each subnetwork (denoted by a square).

5.5 Minimum Energy Computations

The use of a Hopfield network for optimization problems is based on the energy function
analogy. The idea is to encode a problem instance into the weights of the network, in such
a way that the energy function corresponds to the function that is to be optimized. Then
the global minimum of the energy function corresponds to an optimal solution. We are
usually satisfied with approximate solutions, i.e., local minima with energy values not far
from the global minimum. The choice of initial vectors is a problem, as we are searching
for the global minimum. In general, the initial vector must be near enough, in order to be
able to produce the optimal solution. One approach is to choose randomly many different
initial vectors and then perform the computation for them all. The best result is then
given as the answer. However, Wiedermann [87, 88] has proved the following theorem,

which we state without proof.
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Theorem 5.14 The problem “Given a sequential Hopfield network with small weights and
an integer k; is there an initial vector of the network for which the final state vector has

energy < k?” is N'P-complete.

As it is a polynomial computation to reach the resulting vector from the initial vector
when the weights are small, this theorem means that it is hard to choose initial vectors
guaranteed to give good solutions to the optimization problem. Finding global optima
in Hopfield networks is A/P-hard even when the nets are restricted to small nonposi-
tive connection weights and small thresholds, since we can encode certain AN"P-complete

combinatorial optimization problems into Hopfield network structures [24, 60].

45



6 Conclusion

We have surveyed some aspects of the complexity of computations by discrete-time and
discrete-state recurrent networks, specifically with symmetric connection weights. The
most outstanding open problems in this area are possibly still those connected to the
synthesis of Hopfield associative memories (section 4), i.e. developing easy-to-compute
storage rules yielding high capacity and controlled attraction radii, and more generally
determining the exact computational complexity of the synthesis problem (p. 26).

While the computational power of polynomial size Hopfield nets with hidden units was
characterized in section 3 as equal to PSPACE/poly, the power of nets with no hidden
units (i.e., the basic Hopfield model) is still an open question. An interesting intermediate
model in this respect might be the two-layer Hopfield net, or Bidirectional Associative
Memory model of Kosko [57].

The results in Section 3, which were formulated for fully parallel operation, should be
extended to cover also sequential operation. While sequentially updated nets are rather
awkward to control (witness the difference between the Goles-Martinez and Haken con-
structions in Section 2.2), we do not expect any fundamental difficulties in this direction.
Rather more interesting would be to develop analogous results for networks made up of un-
reliable elements; for some initial steps in this direction in the Siegelmann—Sontag network
model, see the paper [78]. Eventually the theory should be extended also to computations
by continuous-time networks; but here one is constrained by the current lack of generally

accepted ways of measuring the complexity of continuous computations.
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