
Search methods for tile sets in patterned DNA
self-assemblyI

Mika Göös1, Tuomo Lempiäinen1, Eugen Czeizler2,∗, Pekka Orponen2

Department of Information and Computer Science and
Helsinki Institute for Information Technology HIIT

Aalto University, Finland

Abstract

The Pattern self-Assembly Tile set Synthesis (PATS) problem, which arises in
the theory of structured DNA self-assembly, is to determine a set of coloured
tiles that, starting from a bordering seed structure, self-assembles to a given
rectangular colour pattern. The task of finding minimum-size tile sets is known
to be NP-hard. We explore several complete and incomplete search techniques
for finding minimal, or at least small, tile sets and also assess the reliability of
the solutions obtained according to Winfree’s kinetic Tile Assembly Model.

Keywords: DNA self-assembly, tilings, Tile Assembly Model, pattern
assembly, tile set synthesis, reliable self-assembly

1. Introduction

Algorithmic assembly of nucleic acids (DNA and RNA) has advanced ex-
tensively in the past 30 years, from a seminal idea to the current designs and
experimental implementations of complex nanostructures and nanodevices with
dynamic programmable evolution and machinelike properties. Recent develop-
ments in the field include in vitro complex 3D patter formation and function-
alisation [4, 10], robotic constructions such as mobile arms, walkers, motors
[18, 33], computational primitives [22, 23], but also in vivo biosensors [14] and
potential drug delivery mechanisms and therapeutics [12].

Self-assembly of nucleic acids can be seen both as a form of structural nan-
otechnology and as a model of computation. As a computational model, one first
encodes the input of a computational problem into an algorithmically designed

IPreliminary versions of parts of this work have appeared in the Proceedings of the 16th
and 17th International Conference on DNA Computing and Molecular Programming (Hong
Kong, China, June 2010, and Pasadena, CA, Sept. 2011, respectively) [8, 11].

∗Corresponding author.
1Current affiliation: Helsinki Institute for Information Technology HIIT, and Department

of Computer Science, University of Helsinki. Email addresses: firstname.lastname@helsinki.fi.
2Email addresses: firstname.lastname@aalto.fi.

Preprint submitted to Elsevier August 23, 2012

(DNA) pattern or shape. Then, by making use of both the initial oligomer
design and the intrinsic properties of the self-assembly system, one manipulates
the structure to produce a new architecture that encodes the desired output.

As a nanotechnology, the goal of algorithmic (DNA/RNA) self-assembly is
to design oligomer sequences that in solution would autonomously (or with as
little interaction as possible) assemble into complex polymer structures. These
may have both static and dynamic properties, may bind other molecules such as
gold nanoparticles or various proteins, may act as fully addressable scaffolds, or
may be used for further manipulation. Such molecular constructions can consist
from only a couple of DNA strands to more than 200 and, in some cases, can
change their conformation and achieve distinct functionalities.

In recent years there has been a growing interest in integrating these two
directions, in order to obtain complex supramolecular constructions with inter-
dependencies between computational functions and conformational switching.
Such approaches are envisioned due to a key property of nucleic acid scaffolds,
viz. their modularity: multiple functional units can be attached to a common
scaffold, thus giving rise to multifunctional devices. Thus, the self-assembly
of nanostructures templated on synthetic DNA has been proposed by several
authors as a potentially ground-breaking technology for the manufacture of
next-generation circuits, devices, and materials [9, 20, 31, 32]. Also laboratory
techniques for synthesizing the requisite 2D DNA template lattices, many based
on Rothemund’s [25] DNA origami tiles, have recently been demonstrated by
many groups [15, 24].

In order to support the manufacture of aperiodic structures, such as elec-
tronic circuit designs, these DNA templates need to be addressable. When the
template is constructed as a tiling from a family of DNA origami (or other kinds
of) tiles, one can view the base tiles as being “coloured” according to their differ-
ent functionalities, and the completed template implementing a desired colour
pattern3. Now, a given target pattern can be assembled from many different
families of base tiles, and to improve the laboratory synthesis it is advantageous
to try to minimise the number of tile types needed and/or maximise the proba-
bility that they self-assemble to the desired pattern, given some characteristics
of the tiling errors.

The task of minimising the number of DNA tile types required to implement
a given 2D pattern was identified by Ma and Lombardi [19], who formulated
it as a combinatorial optimisation problem, the Pattern self-Assembly Tile set
Synthesis (PATS) problem, and also proposed two greedy heuristic algorithms
for solving the task. The problem was recently proved to be NP-hard [3, 28], and
hence finding an absolutely minimum size tile set for a given pattern most likely
requires an exponential amount of time in the worst case. Thus the problem
needs to be addressed either with complete methods yielding optimal tile sets for
small patterns, or incomplete methods that work also for larger patterns but do

3For an example of such a tile-based high-level design scheme for nano-electric circuits
please read the attached Supplementary Information, detailing the results from [2].

2

not guarantee that the tile sets produced are of minimal size. In this work, we
present search algorithms covering both approaches and assess their behaviour
experimentally using both randomly generated and benchmark pattern test sets.
We attend both to the running times of the respective algorithms, and to the
size and assembly reliability of the tile sets produced.

In the following, we first in Section 2 present an overview of the underlying
Tile Assembly Model [30, 26] and the PATS problem [19], and then in Section 3
discuss the search space of pattern-consistent tile sets (viewed abstractly as
partitions of the ambient rectangular grid). In Section 4 we proceed to describe
our exhaustive partition-search branch-and-bound algorithm (PS-BB) to find
tile sets of absolutely minimum cardinality. The algorithm makes use of a
search tree in the lattice of grid partitions, and an efficient bounding function
to prune this search tree.

While the PS-BB algorithm can be used to find certifiably minimal tile sets
for small patterns, the size of the search space grows so rapidly that the algo-
rithm hits a complexity barrier at approximately pattern sizes of 7× 7 tiles, for
random test patterns. Thus, in a second approach, presented in Section 5, we
tailor the basic partition-search framework of the PS-BB algorithm towards the
goal of finding small, but not necessarily minimal tile sets. Instead of a system-
atic branch-and-bound pruning and traversal of the complete search space, the
modified algorithm PS-H applies heuristics which attempt to optimise the order
of the directions in which the space is explored.

It is well known in the heuristic optimisation community [7, 16] that when
the runtime distribution of a randomised search algorithm has a large variance,
it is with high probability more efficient to run several independent short runs
(“restarts”) of the algorithm than a single long run. Correspondingly, we inves-
tigate the efficiency of the PS-H algorithm for a number of parallel executions
ranging from 1 to 32, and note that indeed this number has a significant effect
on the success rate of the algorithm in finding small tile sets.

As a third alternative, presented in Section 6, we formulate the PATS prob-
lem as an Answer Set Programming (ASP) task [13], and apply generic ASP
solvers to find solutions to it. Here our experimental results indicate that for
patterns with a known small minimal solution, the ASP approach indeed works
well in discovering that solution.

Given the inherently stochastic nature of the DNA self-assembly process, it
is important also to assess the reliability of a given tile set, i.e. the probability
of its error-free self-assembly to the desired target pattern. In Section 7 we
introduce a method for estimating this quantity, based on Winfree’s analysis
of the kinetic Tile Assembly Model [30]. We present experimental data on the
reliability of tile sets found by the PS-BB and PS-H algorithms and find that
also here the heuristic optimisations introduced in the PS-H approach result in
a notable improvement over the basic PS-BB method.

3

2. Preliminaries

In this section, we first briefly review the abstract Tile Assembly Model
(aTAM) from [30, 26] and summarize the PATS problem from [19].

2.1. The Abstract Tile Assembly Model [26, 30]
The aTAM is a generalization of Wang tile systems, customary designed for

the study of self-assembly systems. The basic components of the aTAM are
non-rotatable unit square tiles, uniquely defined by the sets of four glues placed
on top of their edges. The glues are part of a finite alphabet and each pair of
glues is associated a strength value, determining the stability of a linked between
two tiles having these glues on the abutting edges. In most cases, it is assumed
that the strength of two distinct glues is zero, while a pair of matching glues
has strength either 1 or 2.

Let D = {N,E, S,W} be the set of four functions Z2 → Z2 corresponding to
the four cardinal directions. Let Σ be a finite set of glue types and s : Σ×Σ→ N
a glue strength function such that, unless otherwise specified, s(σ, σ′) > 0 only
if σ = σ′. A tile type t ∈ Σ4 is a quadruple (σN (t), σE(t), σS(t), σW (t)) of glue
types for each side of the unit square. A tile system T ⊆ Σ4 is a finite collection
of different tile types.

Given a tile system T , an (tile) assembly A is a partial mapping A : Z2 →
T assigning tiles to various elements from the two dimensional space. A tile
assembly system (TAS) T = (T,S, s, τ) consists of a tile system T , a seed
assembly S, a glue strength function s and a temperature τ ∈ Z+ (we use
τ = 2). Given an existing assembly A, such as the seed structure S, a tile can
adjoin the assembly if the total strength of the binding, given by the sum of
all strength functions among the glues placed on the boundary between the tile
and the assembly, surpasses the temperature threshold τ .

Formally, we say that assembly A produces directly assembly A′, denoted
A →T A′, if there exists a site (x, y) ∈ Z2 and a tile t ∈ T such that A′ =
A ∪ {((x, y), t)}, where the union is disjoint, and∑

D

s(σD(t), σD−1(A(D(x, y))) ≥ τ ,

where D ranges over those directions in D for which A(D(x, y)) is defined.
In Figure 1 we present a TAS with seven tile types and temperature τ = 2

which, starting from the seed tile, assembles a continuously growing structure
corresponding to the Binary Counter pattern. Out of the seven tile types in
Figure 1 a), one can distinguish the tile s used as seed, two tile types which
assemble the boundary of the structure, and four rule-tile types, which fill the
area in between the “V” shaped boundary.

Let →∗T be the reflexive transitive closure of →T . A TAS T produces an
assembly A if A is an extension of the seed assembly S, that is S →∗T A. Denote
by Prod T the set of all assemblies produced by T . A TAS T is deterministic
if for any assembly A ∈ Prod T and for every (x, y) ∈ Z2 there exists at most

4

Figure 1: (a) The Binary Counter tile set; the different glues are graphically differentiated,
while their associated strengths are marked accordingly. The colour of the tiles is an indicator
of which tiles represent a black/white spot in the pattern.(b) The assembly of the Binary
Counter pattern for a TAS using the tile set T, the seed structure s, and the temperature
threshold τ .

one t ∈ T such that A can be extended with t at site (x, y). Then the pair
(Prod T ,→∗T) forms a partially ordered set, which is a lattice if and only if
T is deterministic. The maximal elements in Prod T , i.e. the assemblies A
for which there do not exist any A′ satisfying A →T A′, are called terminal
assemblies. Denote by Term T the set of terminal assemblies of T . In case
of finite assemblies, an equivalent definition of determinism is that all assembly
sequences S →T A1 →T A2 →T · · · terminate and Term T = {P} for some
assembly P. In this case we say that T uniquely produces P.

2.2. The PATS Problem
Let the dimensions m and n be fixed. A mapping from [m]× [n] ⊆ Z2 onto

[k] defines a k-colouring or a k-coloured pattern. To build a given pattern, we
start with boundary tiles in place for the west and south borders of the m by n
rectangle and keep extending this assembly by tiles with strength-1 glues.

Definition 1 (Pattern self-Assembly Tile set Synthesis (PATS) [19]).

Given: A k-colouring c : [m]× [n]→ [k].
Find: A tile assembly system T = (T,S, s, 2) such that

P1. The tiles in T have glue strength 1.

P2. The domain of S is [0,m]×{0}∪{0}×[0, n] and all the terminal assemblies
have domain [0,m]× [0, n].

P3. There exists a tile colouring d : T → [k] such that each terminal assembly
A ∈ Term T satisfies d(A(x, y)) = c(x, y) for all (x, y) ∈ [m]× [n].

5

2 1
0

0

2 1
0

0
1 1
3

0
1 1
3

0

2 1
0

0
1 2
0

3
2 2
3

3
2 2
3

3

2 1
0

0
1 1
3

0
1 2
0

3
2 2
3

3

2 1
0

0
1 2
0

3
2 1
0

0
1 2
0

3
1 2
0

3

1 2
0

3

2 1
0

0

2 1
0

0

1

2

2

2

2

2

2

1 1
3

0
1 1
3

0
1 1
3

0
1 1
3

0
1 1
3

0
1 1
3

0
1 1
3

3 3 3 3 3 3 3

0

1 1
3

0

1 2
0

3

2 2
3

3

2 1
0

0

(a) (b) (c)

Figure 2: (a) A finite subset of the discrete Sierpinski triangle. This 2-colouring of the set
[7]× [7] defines an instance of the PATS problem. (b) Assembling the Sierpinski pattern with
a TAS that has an appropriate seed assembly and a (coloured) tile set shown in (c).

Finding minimal solutions (in terms of |T |) to the PATS problem has been
claimed to be NP-hard in [19] and proved to be so in [3].4 Without loss of
generality, we consider only TASs T in which every tile type participates in
some terminal assembly of T .

As an illustration, In Fig. 2 we construct a 7× 7 Sierpinski pattern starting
from a 4-tile TAS. We use natural numbers as glue labels in our figures.

In the literature, the seed assembly of a TAS is often taken to be a single
seed tile [26] whereas we consider an L-shaped seed assembly. The boundaries
can always be self-assembled using m+n+1 different tiles with strength-2 glues,
but we wish to make a clear distinction between the complexity of constructing
the boundaries and the complexity of the 2D pattern itself. Moreover, in some
experimental implementations of DNA tile assembly systems, e.g. [5], the seed
structures are implemented using the DNA origami technique [25], which allows
for the creation of such complete boundary conditions.

Due to constraint P1 the self-assembly process proceeds in a uniform man-
ner directed from south-west to north-east. This paves the way for a simple
characterisation of deterministic TASs in the context of the PATS problem.

Proposition 1. Solutions T = (T,S, s, 2) of the PATS problem are determin-
istic precisely when for each pair of glue types (σ1, σ2) ∈ Σ2 there is at most one
tile type t ∈ T so that σS(t) = σ1 and σW (t) = σ2.

A simple observation reduces the work needed in finding minimal solutions
of the PATS problem.

Lemma 2. The minimal solutions of the PATS problem are deterministic TASs.

4An improvement of the result to use only a constant number of tile colours is presented
in [28].

6

Proof. For the sake of contradiction, suppose that N = (T,S, s, 2) is a minimal
solution to a PATS problem instance and that N is not deterministic. By
the above proposition let tiles t1, t2 ∈ T be such that σS(t1) = σS(t2) and
σW (t1) = σW (t2). Consider the simplified TAS N ′ = (T r {t2},S, s, 2). We
show that this, too, is a solution to the PATS problem, which violates the
minimality of |T |.

Suppose A ∈ Term N ′. If A /∈ Term N , then some t ∈ T can be used to
extend A in N . If t ∈ T r {t2}, then t could be used to extend A in N ′,
so we must have t = t2. But since new tiles are always attached by binding
to south and west sides of the tile, A could then be extended by t1 in N ′.
Thus, we conclude that A ∈ Term N and furthermore Term N ′ ⊆ Term N .
This demonstrates that N ′ has property P2. The properties P1 and P3 can
be readily seen to hold for N ′ as well. In terms of |T | we have found a more
optimal solution—and a contradiction.

We consider only deterministic TASs in the sequel.

3. The search space of consistent tile sets

Let X be the set of partitions of the set [m] × [n]. Partition P is coarser
than partition P ′ (or P ′ is a refinement of P), denoted P v P ′, if

∀p′ ∈ P ′ : ∃p ∈ P : p′ ⊆ p .

Now, (X,v) is a partially ordered set, and in fact, a lattice. Note that P v P ′
implies |P | ≤ |P ′|.

The colouring c induces a partition P (c) = {c−1(i) | i ∈ [k]} of the set
[m] × [n]. In addition, since every (deterministic) solution T = (T,S, s, 2) of
the PATS problem uniquely produces some assembly A, we associate with T
a partition P (T) = {A−1(t) | t ∈ A([m] × [n])}. Here, |P (T)| = |T | in case
all tiles in T are used in the terminal assembly. Now the condition P3 in the
definition of PATS is equivalent to requiring that a TAS T satisfies

P (c) v P (T) .

A partition P ∈ X is constructible if P = P (T) for some deterministic TAS
T with properties P1 and P2. Hence the PATS problem can be rephrased using
partitions as the fundamental search space.

Proposition 3. A minimal solution to the PATS problem corresponds to a
partition P ∈ X such that P is constructible, P (c) v P , and |P | is minimal.

For example, the 2-coloured pattern in Fig. 3(a) defines a 2-part partition
A. The 7-part partition M in Fig. 3(b) is a refinement of A (A v M) and in
fact, M is constructible (see Fig. 4(b)) and corresponds to a minimal solution
of the PATS problem defined by the pattern A.

7

1 6 7 2 2

2 1 5 3 1

1 6 2 7 2

2 7 1 5 3

1 5 4 6 1

6 2 2 1 6

7 7 1 6 7

(a) (b)
Figure 3: (a) Partition A. (b) A partition M that is a refinement of A with |M | = 7 parts.

3.1. Determining constructibility
In this section we give an algorithm for deciding the constructibility of a

given partition in polynomial time. To do this, we use the concept of most
general (or least constraining) tile assignments. For simplicity, we assume the
set of glue labels Σ to be infinite.

Definition 2. Given a partition P of the set [m] × [n], a most general tile
assignment (MGTA) is a function f : P → Σ4 such that

A1. When every position in [m]× [n] is assigned a tile type according to f , any
two adjacent positions agree on the glue type of the side between them.

A2. For all assignments g : P → Σ4 satisfying A1 we have5

f(p1)D1 = f(p2)D2 =⇒ g(p1)D1 = g(p2)D2 (1)

for all (p1, D1), (p2, D2) ∈ P ×D.

To demonstrate this concept we present a most general tile assignment f :
I → Σ4 for the initial partition I = {{a} | a ∈ [m]× [n]} in Figure 4(a) and a
MGTA for the partition of Figure 3(b) in Figure 4(b).

5To shorten the notation we write f(p)D instead of σD(f(p)).

8

3 1
2

0
1 5
6

4
5 8
9

7
8 11
12

10
11 14
15

13

18 16
17

2
16 19
20

6
19 21
22

9
21 23
24

12
23 25
26

15

29 27
28

17
27 30
31

20
30 32
33

22
32 34
35

24
34 36
37

26

40 38
39

28
38 41
42

31
41 43
44

33
43 45
46

35
45 47
48

37

51 49
50

39
49 52
53

42
52 54
55

44
54 56
57

46
56 58
59

48

62 60
61

50
60 63
64

53
63 65
66

55
65 67
68

57
67 69
70

59

73

3

18

29

40

51

62

73 71
72

61
71 74
75

64
74 76
77

66
76 78
79

68
78 80
81

72 75 77 79 81

70

3 1
2

0
1 3
0

2
3 3
4

0
3 3
0

2
3 3
0

2

3 3
0

2
3 1
2

0
1 5
2

4
5 3
0

0
3 1
2

0

3 1
2

0
1 3
0

2
3 3
0

2
3 3
4

0
3 3
0

2

3 3
0

2
3 3
4

0
3 1
2

0
1 5
2

4
5 3
0

0

3 1
2

0
1 5
2

4
5 1
2

2
1 3
0

2
3 1
2

0

1 3
0

2
3 3
0

2
3 3
0

2
3 1
2

0
1 3
0

2

3 3
4

0
3 3
4

0
3 1
2

0
1 3
0

2
3 3
4

4 4 2 0 4

0

3

3

3

3

3

1

3

1 3
0

2
3 3
4

0

3 3
0

2

1 5
2

4

5 3
0

0
3 1
2

0

5 1
2

2

(a) (b) (c)

Figure 4: (a) A MGTA for the constructible initial partition I (with a seed assembly in place).
(b) Finished assembly for the pattern from Figure 3a. The tile set to construct this assembly
is given in (c).

Given a partition P ∈ X and a function f : P → Σ4, we say that g : P → Σ4

is obtained from f by merging glues a and b if for all (p,D) ∈ P ×D we have

g(p)D =

{
a, if f(p)D = b

f(p)D, otherwise
. (2)

A most general tile assignment for a partition P ∈ X can be found as follows.
We start with a function f0 : P → Σ4 that assigns to each tile edge a unique
glue type, or in other words, a function f0 so that the mapping (p,D) 7→ f0(p)D

is injective. Next, we go through all pairs of adjacent positions in [m] × [n]
(in some order) and require their matching sides to have the same glue type by
merging the corresponding glues. This process generates a sequence of functions
f0, f1, f2, . . . , fN = f and terminates after N ≤ 2mn steps.

Lemma 4. The above algorithm generates a most general tile assignment.

Proof. By the end, we are left with a function f that satisfies property A1 by
construction. To see why property A2 is satisfied, we again use the language of
partitions.

Any assignment gives rise to a set of equivalence classes (or a partition)
on P × D: Elements that are assigned the same glue type reside in the same
equivalence class. The initial assignment f0 gives each part-direction pair a
unique glue type, and thus, corresponds to the initial partition J = {{a} | a ∈
P × D}. In the algorithm, any glue merging operation corresponds to the
combining of two equivalence classes.

The algorithm goes through a list of pairs {{ai, bi}}N−1
i=0 of elements from

P ×D that are required to have the same glue type. In this way, the list records

9

necessary conditions for property A1 to hold. This is to say that every assign-
ment satisfying A1 has to correspond to a partition that is coarser than each
of the partitions in L = {J [ai, bi]}N−1

i=0 , where J [a, b] is the partition obtained
from the initial partition by combining parts a and b. Since the set (P ×D,v)
is a lattice, there exists a unique greatest lower bound inf L of the partitions in
L. This is exactly the partition that the algorithm calculates in the form of the
assignment f . As a greatest lower bound, inf L is finer than any partition cor-
responding to an assignment satisfying A1, but this is precisely the requirement
for condition A2.

The above analysis also gives the following.

Corollary 5. For a given partition, MGTAs are unique up to relabeling of the
glue types.

Thus, for each partition P , we take the MGTA for P to be some canonical
representative from the class of MGTAs for P .

For efficiency purposes, it is worth mentioning that MGTAs can be generated
iteratively: A partition P ∈ X can be obtained by repeatedly combining parts
starting from the initial partition I:

I = P1 w P2 w · · · w PN = P . (3)

As a base case, a MGTA for I can be computed by the above algorithm. A
MGTA for each Pi+1 can be computed from a MGTA for the previous partition
Pi by just a small modification: Let a MGTA fi : Pi → Σ4 be given for Pi

and suppose Pi+1 is obtained from Pi by combining parts p1, p2 ∈ Pi. Now, a
MGTA fi+1 for Pi+1 can be obtained from fi by merging tiles fi(p1) and fi(p2),
that is, merging the glue types on the four corresponding sides.

We now give the conditions for a partition to be constructible in terms of
MGTAs.

Lemma 6. A partition P ∈ X is constructible iff the MGTA f : P → Σ4 for P
is injective and the tile set f(P) is deterministic in the sense of Proposition 1.

Proof. “⇒”: Let P ∈ X be constructible and let the MGTA f : P → Σ4

for P be given. Let T be a deterministic TAS such that P (T) = P . The
uniquely produced assembly of T induces a tile assignment g : P → Σ4 that
satisfies property A1. Now using property A2 for the MGTA f we see that
any violation of the injectivity of f or any violation of the determinism of the
tile set f(P) would imply such violations for g. But since g corresponds to a
constructible partition, no violations can occur for g and thus none for f .

“⇐”: Let f : P → Σ4 be an injective MGTA with deterministic tile set f(P).
Because f(P) is deterministic, we can choose glue types for a seed assembly S
so that the westernmost and southernmost tiles fall into place according to f in
the self-assembly process. The TAS T = (f(P),S, s, 2), with appropriate glue
strengths s, then uniquely produces a terminal assembly that agrees with f on
[m]× [n]. This gives P (T) v P , but since f is injective, |P | = |f(P)| = |P (T)|
and so P (T) = P .

10

I

P(c)

mn

mn-1

mn-2

3

2

1

Figure 5: The search tree in the lattice (X,v). We start with the initial partition I of size
|I| = mn. The partition P (c) defines the PATS problem instance: We search for constructible
partitions (drawn as crosses) in the sublattice (shaded with darker grey) consisting of those
partitions that are refinements of P (c). The search tree branches only at the constructible
partitions and the tree branches are vertex-disjoint.

4. Complete search for minimal tile sets

We now extend the techniques of [19] to obtain an exhaustive branch-and-
bound search method to find minimal solutions to the PATS problem. We call
this approach the partition-search branch-and-bound (PS-BB) algorithm. The
idea of Ma and Lombardi [19] (following experimental work of [21]) is to start
with an initial tile set that consists of m · n different tiles, one for each of the
grid positions in [m]× [n]. Their algorithm then proceeds to merge tile types in
order to minimise |T |. We formalize this search process as an exhaustive search
in the set of all partitions of the set [m]× [n]. In the following, we let a PATS
instance be given by a fixed k-coloured pattern c : [m]× [n]→ [k].

The PS-BB algorithm performs an exhaustive search in the lattice (X,v)
searching for constructible partitions (cf. Figure 5). We start with the initial
partition I that is always constructible. In the search, we maintain and incre-
mentally update MGTAs for every partition we visit. First, we describe simple
branching rules for the search and later give rules to prune this search tree.

The root of the search tree is taken to be the initial partition I. For each
partition P ∈ X we next define the set C(P) ⊆ X of children of P . Our
algorithm always proceeds by combining parts of the partition currently being

11

visited, so for each P ′ ∈ C(P) we will have P ′ v P . Say we visit a partition
P ∈ X. We have two possibilities:

C1. P is constructible:

1. If P is not a refinement of the target pattern P (c), that is if P (c) 6v P ,
we can drop this branch of the search, since no possible descendant
P ′ v P can be a refinement of P (c) either.

2. In case P (c) v P , we can use the MGTA for P to give a concrete
solution to the PATS problem instance defined by the colouring c. To
continue the search and to find further improved solutions we consider
each pair of parts {p1, p2} ⊆ P in turn and recursively visit the parti-
tion P [p1, p2] where the two parts are combined. In fact, by the above
analysis, it is sufficient to consider only pairs of the same colour. So,
in this case,

C(P) = {P [p1, p2] | p1, p2 ∈ P, p1 6= p2, ∃k ∈ P (c) : p1, p2 ⊆ k} .
(4)

C2. P is not constructible: In this case the MGTA f for P gives f(p1)S =
f(p2)S and f(p1)W = f(p2)W for some parts p1 6= p2. We continue the
search from partition P [p1, p2].

To guarantee that our algorithm finds the optimal solution in the case C2
above, we need the following.

Lemma 7. Let P ∈ X be a non-constructible partition, f the MGTA for P and
p1, p2 ∈ P , p1 6= p2, parts such that f(p1)S = f(p2)S and f(p1)W = f(p2)W .
For all constructible C v P we have C v P [p1, p2].

Proof. Let P , f , p1 and p2 be as in the statement of the lemma. Let C v P
be a constructible partition and g : C → Σ4 the MGTA for C. Since C is
coarser than P we can obtain from g a tile assignment g′ : P → Σ4 such that
g′(p) = g(q), where q ∈ C is the unique part for which p ⊆ q. The assignment
g′ has property A1 and so using A2 for the MGTA f we get that

f(p1)S = f(p2)S & f(p1)W = f(p2)W =⇒
g′(p1)S = g′(p2)S & g′(p1)W = g′(p2)W . (5)

Now, since C is constructible, the identities g(q1)S = g(q2)S and g(q1)W =
g(q2)W can not hold for any two different parts q1, q2 ∈ C. Looking at the
definition of g′, we conclude that p1 ⊆ q and p2 ⊆ q for some q ∈ C. This
demonstrates C v P [p1, p2].

4.1. Pruning the search tree
Computational resources should be saved by not visiting any partition twice.

To keep the branches in our search tree vertex-disjoint, we maintain a list of

12

graphs that store restrictions on the choices the search can make. For each
partition P w P (c) we associate a family of undirected graphs {GP

k }k∈P (c), one
for each colour class of the pattern P (c). Every part in P is represented by a
vertex in the graph corresponding to the colour of the part. More formally, the
vertex set V (GP

k) of the graph GP
k is taken to be those parts p ∈ P for which

p ⊆ k. (So now,
⋃

k∈P (c) V (GP
k) = P .) The edge sets E(GP

k) are defined by
induction on the structure of the search tree. An edge {p1, p2} ∈ E(GP

k) means
that the parts p1 and p2 are not allowed ever to be combined in the search branch
in question. When we start our search with the initial partition I, the edge sets
are initially empty, E(GI

k) = ∅. At each partition P , the graphs {GP
k }k∈P (c)

have been determined by induction and the graphs for those children P ′ ∈ C(P)
that we visit are defined as follows.

D1. If P is constructible: We choose some ordering {pi, qi}, i = 1, . . . , N of
similarly coloured pairs of parts. Define li ∈ P (c), 1 ≤ i ≤ N to be the
colour of the pair {pi, qi}, so that pi, qi ⊆ li. Now, we visit a partition
P [pi, qi] only if {pi, qi} /∈ E(GP

li
). If we decide to visit a child partition

P ′ = P [pj , qj], we define the edge sets {E(GP ′

k)}k∈P (c) as follows:

1. We start with the graphs {GP
k }k∈P (c) and add the edges {pi, qi} for

all 1 ≤ i < j to their corresponding graphs. Call the resulting graphs
{G?

k}k∈P (c).

2. Finally, as we combine the parts pj and qj to obtain the partition
P [pj , qj], we merge the vertices pj and qj in the graph G?

lj
(After

merging, the neighbourhood of the new vertex pj ∪ qj is the union of
the neighbourhoods for pj and qj in G?

lj
). The graphs {GP ′

k }k∈P (c)

follow as a result.

D2. If P is not constructible: Here, the MGTA for P suggests a single child
partition P ′ = P [p1, p2] for some p1, p2 ⊆ l ∈ P (c). If {p1, p2} ∈ E(GP

l),
we terminate this branch of the search. Otherwise, we define the graphs
{GP ′

k }k∈P (c) to be the graphs {GP
k }k∈P (c), except that in GP ′

l the vertices
p1 and p2 have to be merged.

One can see that the outcome of this pruning process is a search tree that has
vertex-disjoint branches and one in which every possible constructible partition
is still guaranteed to be found. Figure 5 presents a sketch of the search tree.
Note that we are not usually interested in finding every constructible partition
P ∈ X, but only in finding a minimal one (in terms of |P |). Next, we give an
efficient method to lower-bound the partition sizes of a given search branch.

4.2. The bounding function
Given a root P ∈ X of some subtree of the search tree, we ask: What is

the smallest partition that can be found from this subtree? The vertices in the
subtree rooted at P comprise those partitions P ′ v P that can be obtained from
P by merging pairs of parts that are not forbidden by the graphs {GP

k }k∈P (c).

13

This merging process halts precisely when all the graphs {GP ′

k }k∈P (c) have been
reduced into cliques. As is well known, the size of the smallest clique that a
graph G can be turned into by merging non-adjacent vertices is given by the
chromatic number6 χ(G) of the graph G. This immediately gives the following.

Proposition 8. For every P ′ v P in the subtree rooted at P and constrained
by {GP

k }k∈P (c), we have ∑
k∈P (c)

χ(GP
k) ≤ |P ′| . (6)

Determining the chromatic number of an arbitrary graph is an NP-hard
problem. Fortunately, we can restrict our graphs to be of a special form: graphs
that consist only of a clique and some isolated vertices. For these graphs, the
chromatic numbers are given by the sizes of the cliques.

To see how to maintain graphs in this form, consider as a base case the initial
partition I. Here, E(GI

k) = ∅ for all k ∈ P (c), so GI
k is of our special form—it

has a clique of size 1. For a general partition P , we go through the branching
rules D1-D2.

D1: P is constructible: Since we are allowed to choose an arbitrary ordering
{pi, qi}, i = 1, . . . , N for the children P [pi, qi], we design an ordering that
preserves the special form of the graphs. For a graph G of our special
form, let K(G) ⊆ V (G) consist of those vertices that are part of the clique
in G. In the algorithm, we first set Hk = GP

k for all k ∈ P (c) and repeat
the following process until every graph Hk is a complete clique.

1. Pick some colour k ∈ P (c) and an isolated vertex v ∈ V (Hk)rK(Hk).

2. Process the pairs {v, u} for all u ∈ K(Hk) in some order. By the end,
update Hk to include all the edges {v, u} that were just processed (the
size of the clique in Hk increases by one).

A moment’s inspection reveals that when the graphs GP
k are of our special

form, so are all of the derived graphs passed on to the children of P .

D2: P is not constructible: If the algorithm decides to continue the search
from a partition P ′ = P [p1, p2], for some p1, p2 ⊆ l ∈ P (c), we have
{p1, p2} /∈ E(GP

l). This means that either p1, p2 ∈ V (GP
l) r K(GP

l), in
which case we are merging two isolated vertices, or one of p1 or p2 is part of
the clique K(GP

l), in which case we merge an isolated vertex to the clique.
In both cases, we maintain the special form in the graphs {GP ′

k }k∈P (c).

6The chromatic number of a graph G is the smallest number of colours χ(G) needed to
colour the vertices of G so that no two adjacent vertices share the same colour.

14

Figure 6: (a) Running time of the PS-BB algorithm (as measured by the number of merge
operations) to solve random 2-coloured near-square-shaped instances of the PATS problem.
(b) Evolution of the tile set size of the “current best solution” for several large random 2-
coloured instances of the PATS problem.

4.3. Traversing the search tree
When running a branch-and-bound algorithm we maintain a “current best

solution” discovered so far as a global variable. This solution gives an upper
bound for the minimal value of the tile set size and can be used to prune
such search branches that are guaranteed (by the bounding function) to only
yield solutions worse than the current best. There are two general strategies
to traverse a branch-and-bound search tree: Depth-First Search and Best-First
Search [1]. Our description of the search tree for the lattice X is general enough
to allow either of these strategies to be used in the actual implementation of
the algorithm. In the following Results section we give performance data on a
DFS implementation of the PS-BB algorithm.

4.4. Results
The running time of the PS-BB algorithm is proportional—up to a polyno-

mial factor—to the number of partitions the algorithm visits. Hence, we measure
the running time in terms of the number of merge operations performed in the
search. Figure 6(a) presents the running time of the algorithm to find a minimal
solution for random 2-coloured instances of the PATS problem. The algorithm
was executed for instance sizes 2× 2, 2× 3, 3× 3, · · · , 5× 6 and 6× 6; the 20th
and 80th percentiles are shown alongside the median of 21 separate runs for
each instance size. For the limiting case 6× 6, the algorithm spent on the order
of two hours of (median) computing time on a 2,61 GHz AMD processor.

Even though branch-and-bound search is an exact method, it can be used
to find approximate solutions by running it for a suitable length of time. Figure
6(b) illustrates how the best solution found up to a point develops as increasingly

15

Figure 7: Evolution of the “current best solution” of the PS-BB algorithm for (a) the Sierpinski
pattern and for (b) the binary counter pattern. Randomisation in the DFS has a clear effect
on the performance of the algorithm in the case of the binary counter pattern.

many steps of the algorithm are run. The figure provides data on random 2-
coloured instances of sizes from 12×12 up to 32×32. Because we begin our search
from the initial partition, the best solution at the first step is precisely equal
to the instance size. For each size, several different patterns were used. The
algorithm was cut off after 106 steps. By this time, an approximate reduction
of 58% in the size of the tile set was achieved (cf. a reduction of 43.5% in [19]).

Next, we consider two well known examples of structured patterns: the
discrete Sierpinski triangle (part of which was shown in Figure 2) and the binary
counter (see Figures 8(a) and 8(b) for 32 × 32 instances of both patterns). A
tile set of size 4 is optimal for both of these patterns. First, for the Sierpinski
pattern, we get a tile reduction of well over 90% (cf. 45% in [19]) in Figure 7(a).
We used the same cutoff threshold and instance sizes as in Figure 6(b).

Our description of the PS-BB algorithm leaves some room for randomisation
in deciding which search branch the DFS search is to explore next. This ran-
domisation does not seem to affect the search dramatically when considering the
Sierpinski pattern—the separate single runs in Figure 7(a) are representative of
an average randomised run. By contrast, for the binary counter pattern, ran-
domised runs for a single instance size do make a difference. Figure 7(b) depicts
several separate runs for instance size 32×32. Here, each run brings about a re-
duction in solution size that oscillates between a reduction achieved on a random
2-coloured instance (6(b)) and a reduction achieved on the Sierpinski instance
(7(a)). This suggests that, as is characteristic of DFS traversal, restarting the
algorithm with different random seeds may help with large instances that have
small optimal solutions. We explore this opportunity for efficiency improvement
further in connection to the algorithm PS-H presented in the next Section.

16

5. Heuristically guided search for small tile sets

5.1. The PS-H algorithm scheme
The PS-BB algorithm utilises effective pruning methods to reduce the search

space. Even though it offers significant reduction in the size of tile sets compared
to earlier approaches, it is in most cases still too slow for patterns of practical
size. Often it is not important to find a provably minimal solution, but to
find a reasonably small solution in reasonable amount of time. To address
this objective, we present in the following a modification of the basic PS-BB
algorithm with a number of search-guiding heuristics. We call this approach the
partition-search with heuristics (PS-H) algorithm scheme.

Whereas the pruning heuristics of the PS-BB algorithm try to reduce the
size of the search space in a “balanced” way, the PS-H algorithm attempts
to “greedily” optimise the order in which the coarsenings of a partition are
explored, in the hope of being directly lead to close-to-optimal solutions. Such
opportunism may be expected to pay off in case the success probability of the
greedy exploration is sufficiently high, and the process is restarted sufficiently
often, or equivalently, several runs are explored in parallel.

The basic heuristic idea is to try to minimise the effect that a merge operation
has on other partition classes than those which are combined. This can be
achieved by preferring to merge classes already having as many common glues
as possible. In this way one hopes to extend the number of steps the search
takes before it runs into a conflict. For example, when merging classes p1 and
p2 such that f(p1)N = f(p2)N and f(p1)E = f(p2)E , the glues on the W and S
edges of all other classes are unaffected. This way, the search avoids proceeding
to a partition which is not constructible after the merge operation is completed.
Secondarily, we prefer merging classes which already cover a large number of
sites in [m] × [n]. That is, one tries to grow a small number of large classes
instead of growing all the classes at an equal rate.

We define the concept of the number of common glues formally as follows.

Definition 3. Given a partition P and a MGTA f for P , the number of com-
mon glues between classes p, q ∈ P is defined by the function G : P × P →
{0, 1, 2, 3, 4},

G(p, q) =
∑
D∈D

g(f(p)D, f(q)D),

where g(σ1, σ2) = 1 if σ1 = σ2 and 0 otherwise, for all σ1, σ2 ∈ Σ.

Except for the bounding function, the PS-BB algorithm allows an arbitrary
ordering {pi, qi}, i = 1, . . . , N , for the children (coarsenings) P [pi, qi] of a con-
structible partition P . In the PS-H algorithm, we choose the ordering using the
following heuristic. First form the set

H := {{p, q} | p, q ∈ P, p 6= q, ∃r ∈ P (c) : p, q ⊆ r}

of class pairs of same colour, and then repeat the following process until H is
empty.

17

H1. Set K := H.

H2. Maximise the number of common glues:

K := {{p, q} ∈ K | G(p, q) ≥ G(u, v) for all {u, v} ∈ K}.

H3. Maximise the size of the larger class:

K := {{p, q} ∈ K | max{|p|, |q|} ≥ max{|u|, |v|} for all {u, v} ∈ K}.

H4. Maximise the size of the smaller class:

K := {{p, q} ∈ K | min{|p|, |q|} ≥ min{|u|, |v|} for all {u, v} ∈ K}.

H5. Pick some pair {p, q} ∈ K at random and visit the partition P [p, q].

H6. Remove {p, q} from H:

H := H r {{p, q}}.

The PS-H algorithm also omits the pruning process utilised by the PS-BB
algorithm. That way, it aims to get to the small solutions quickly by reducing
the computational resources used in a single merge operation.

Since step H5 of the heuristic above leaves room for randomisation, the
PS-H algorithm performs differently with different random seeds. While some
of the randomised runs may lead to small solutions quickly, others may get
sidetracked into worthless expanses of the solution space. We make the best
of this situation by running several executions of the algorithm in paraller, or
equivalently, restarting the search several times with a different random seed.
The notation PS-Hn denotes the heuristic partition search algorithm with n
parallel search threads. The solution found by the PS-Hn algorithm is the
smallest solution found by any of the n paraller threads.

5.2. Results
In this section, we present results on the performance of the PS-Hn algorithm

for n = 1, 2, 4, 8, 16, and 32 and compare it to the previous PS-BB algorithm.
We consider several different finite 2-coloured input patterns, two of which were
analysed also previously using the PS-BB algorithm: the discrete Sierpinski
triangles of sizes 32 × 32 (Figure 8(a)) and 64 × 64, and the binary counter
of size 32 × 32 (Figure 8(b)). Furthermore, we introduce a 2-coloured “tree”
pattern of size 23 × 23 (Figure 8(c)) as well as a 15-coloured pattern of size
20×10 based on a CMOS full adder design (Figure 8(d)). For an explanation of
the notation used in Figure 8(d), see the attached Supplementary Information
detailing on the tile-based high-level design scheme for nano-electric circuits
introduced in [2]. While the Sierpinski triangle and binary counter patterns are
known to have minimal solutions of four tiles, the minimal solutions for the tree
pattern and the full adder pattern are unknown.

18

(a) (b) (c)

(d)

Figure 8: (a) The 32× 32 Sierpinski triangle pattern. (b) The 32× 32 binary counter pattern.
(c) The 23×23 “tree” pattern. (d) A CMOS full adder design that induces a 15-colour 20×10
pattern.

Figure 9 presents the evolution of the “current best solution” as a function
of time for the (a) 32 × 32 and (c) 64 × 64 Sierpinski patterns. To allow fair
comparison, Figures 9(b) and 9(d) present the same data with respect to the
total processing time taken by all the parallely running executions. The experi-
ments were repeated 21 times and the median of the results is depicted. In 37%
of all the runs conducted, the PS-H algorithm is able to find the optimal 4-tile
solution for the 32× 32 Sierpinski pattern in less than 30 seconds. The similar
percentage for the 64× 64 Sierpinski pattern is 34% in one hour. Remarkably,
the algorithm performs only from 1030 to 1035 and from 4102 to 4107 merge
steps before arriving at the optimal solution for the 32×32 and 64×64 patterns,
respectively. In other words, the search rarely needs to backtrack. In contrast,
the smallest solutions found by the PS-BB algorithm have 42 tiles, reached after
1.4 · 106 merge steps, and 95 tiles, reached after 5.9 · 106 merge steps.

In Figure 10 we present the corresponding results for the 32 × 32 binary
counter and 23 × 23 tree patterns. The size of the smallest solutions found by

19

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Wall clock time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total processing time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Wall clock time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total processing time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Figure 9: Evolution of the smallest tile set found for the 32×32 and 64×64 Sierpinski triangle
patterns as a function of time. The time axis measures (a), (c) wall clock time and (b), (d)
wall clock time multiplied by the number of parallel executions.

the PS-H32 algorithm were 20 (cf. 307 by PS-BB) and 25 (cf. 192 by PS-BB) tiles,
respectively. In the case of the tree pattern, the parallelisation brings significant
advantage over a single run. Finally, Figures 11(a)-11(b) show the results for
the 20× 10 15-colour CMOS full adder pattern. In this case, the improvement
over the previous PS-BB algorithm is less clear. The PS-H32 algorithm is able
to find a solution of 58 tiles, whereas the PS-BB algorithm gives a solution of
69 tiles.

20

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Wall clock time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total processing time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Wall clock time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total processing time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Figure 10: Evolution of the smallest tile set found for the 32× 32 binary counter and 23× 23
tree patterns as a function of time. The time axis measures (a), (c) wall clock time and (b),
(d) wall clock time multiplied by the number of parallel executions.

6. Answer set programming for minimal tile sets

6.1. ASP model for PATS
Answer Set Programming (ASP) [13] is a declarative logic programming

paradigm for solving difficult combinatorial search problems. In ASP, a problem
is described as a logic program, and an answer set solver is then used to compute
stable models (answer sets) for the logic program.

The ASP paradigm can be applied also to the PATS problem. In the fol-
lowing we give a brief description on how to transform the PATS problem to
an ASP program using the lparse [29] language. First, we define a constant
for each position of the grid [m]× [n], each colour, each available tile type and
each available glue type. After that, a number of choice rules are introduced

21

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1 1.2

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Wall clock time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total processing time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

Figure 11: (a)-(b) Evolution of the smallest tile set found for the 20 × 10 full adder pattern
as a function of time. The time axis measures (a) wall clock time and (b) wall clock time
multiplied by the number of parallel executions.

to associate a tile type with each position of the grid, a glue type with each of
the four sides of the tile types and a colour with each of the tile types. Choice
rules are also used to make the glues of every pair of adjacent tiles to match
and to make the tile system deterministic, i.e. to ensure that every tile type has
a unique pair of glues on its W and A edges.

We finally compile the target pattern to a set of rules that associate every
position of the grid with a colour. This description of the pattern is combined
with the above-described program and given to an answer set solver, which then
outputs a tile type for each position of the grid, given that such a solution exists.
The program is run several times using an increasing number of available tile
and glue types, until a solution is found.

6.2. Results
We used the answer set solver Smodels [29] to run our experiments. We

consider two patterns having a minimal solution of four tiles, the Sierpinski
triangle and the binary counter. The program was executed for pattern sizes
1× 1, 2× 2, 3× 3, . . . , 100× 100. The running time of the program is presented
in Figure 12(a) for the Sierpinski triangle and in Figure 12(b) for the binary
counter. Smodels was able to find the minimal solution for the 100 × 100
Sierpinski triangle in little over 5 hours and for the 100 × 100 binary counter
in less than two hours. The running time grows rather consistently with the
pattern size, but interestingly, there are a few notable exceptions. The running
times for the 49 × 49 and 55 × 55 Sierpinski patterns, not shown in the figure,
are close to 40 hours and close to 10 hours, respectively. That is clearly out
of line with other proximate pattern sizes. For the binary counter patterns of
size 29 × 29, 35 × 35 and 60 × 60 Smodels was not able to find a solution in

22

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

R
u

n
n

in
g

 t
im

e
 i
n

 m
in

u
te

s

Pattern size

Sierpinski triangle pattern

(a)

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

R
u

n
n

in
g

 t
im

e
 i
n

 m
in

u
te

s

Pattern size

Binary counter pattern

(b)

Figure 12: (a),(b) Running time of Smodels for the minimal solutions of the Sierpinski triangle
and binary counter patterns as a function of pattern size.

less than 48 hours. Thus, the running times for those instances are also missing
from the figure.

Based on the above results, the ASP approach performs well when consid-
ering patterns with a small minimal solution. However, the running time seems
to increase dramatically with patterns having a larger minimal solution.

7. Reliability of tile sets

7.1. The Kinetic Tile Assembly Model
In the following, we use the kinetic Tile Assembly Model (kTAM) in order

to asses the reliabilities of various tile sets generated by the PS-BB and PS-
H algorithms. The kTAM has been introduced by Winfree [30] as a kinetic
counterpart of the aTAM. Several variants of the kTAM exist, see e.g. [6, 27].
However, the main elements are similar.

The kTAM simulates two types of reactions, each involving an assembly, i.e.
a crystal structure consisting of several merged tiles, and a tile: association of
tiles to the assembly (forward reaction) and dissociation (reverse reaction), see
e.g. Figure 13.7 In the first type of reaction, any tile can attach to the assembly
at any position (up to the assumption that tile alignment is preserved), even
if only a weak bond is formed; the rate of this reaction rf is proportional to
the concentration of free tiles in the solution. In the second type of reaction,
any tile can detach from the assembly with rate rr,b, b ∈ {0, . . . , 4}, which is

7Note that interactions between two tiles, such as forming a new assembly, as well as
interactions between two assemblies, are not taken into consideration in the initial model [30].
However, they are studied in some of the later developed variants of the kTAM, see e.g. [27].

23

Figure 13: Possible association and/or dissociation reactions in the Kinetic Tile Assembly
Model. The rate of all association reactions is identical; the rates of the dissociation reactions
depend on the total strength of the bonds connecting a tile to the assembly.

exponentially correlated with the total strength of the bonds between the tile
and the assembly. Thus, tiles which are connected to the assembly by fewer or
weaker bonds, i.e. incorrect “sticky end” matches, are more prone to dissociation
than those which are strongly connected by several bonds (well paired sticky
end sequences).

In the following, we follow the notation of [30]. For any tile type t, the rate
constant rf of the association (forward reaction) of t to an existing assembly is
given by

rf = kf [t], (insec−1)

where [t] is the concentration in solution of free tiles of type t and kf is a
temperature dependent parameter. In the case of DNA double-crossover (DX)
tiles, this parameter is given by the formula

kf = Afe
−Ef /RT ,

where Af = 5 · 108 /M/sec, Ef = 4000 cal/mol, R = 2 cal/mol/K, and T is the
temperature (in K).

In the case of dissociation (reverse reaction), for a tile which is connected to
the assembly by a total bond strength b, the rate constant rr,b is given by the
formula

rr,b = kfe
∆Go

b/RT ,

where ∆Go
b/RT is the standard free energy needed in order to break the b

bonds. In the case of DX tiles, as the glues of the tiles are implemented using
5-base long single-stranded DNA molecules, ∆Go

b can be estimated using the
nearest-neighbour model [17] to

∆Go
b = e5b(11− 4000 K

T)+3 cal/mol.

Moreover, b can range with integer values from 0 to 4, corresponding to the cases
when the tile is totally erroneously placed in the assembly (no bond connects
it to the crystal) and when the tile is fully integrated into the assembly (all its
four sticky ends are correctly matched), respectively.

24

In order to easily represent and scale the system, the free parameters involved
in the formulas of the rate constants rf and rr,b are re-distributed into just
two dimensionless parameters, Gmc and Gse, where the first is dependent on
the initial tile concentration, while the second is dependent on the assembly
temperature:

rf = k̂fe
−Gmc , rr,b = k̂fe

−bGse ,

where, in the case of DX tiles, k̂f = e3kf is adjusted in order to take into
consideration possible entropic factors, such as orientation or location of tiles.
The previous parameter re-distribution is made possible as a result of the as-
sumption made in the initial kTAM [30] that all tile types are provided into the
solution in similar concentrations, and that the consumption in time of the free
monomers is negligible compared to the initial concentration.

7.2. Computing the Reliability of a Tile Set
By choosing appropriate physical conditions, the probability of errors in

the assembly process can be made arbitrarily low, at the cost of reducing the
assembly rate [30]. However, we would like to be able to compare the error
probability of different tile sets producing the same finite pattern, under the
same physical conditions. Given the amount of time the assembly process is
allowed to take, we define the reliability of a tile set to be the probability
that the assembly process of the tile system in question completes without any
incorrect tiles being present in the terminal configuration. In the following, we
present a method for computing the reliability of a tile set, based on Winfree’s
analysis of the kTAM [30], and the notion of kinetic trapping introduced within.

We call the W and S edges of a tile its input edges. First, we derive the
probability of the correct tile being frozen at a particular site under the condition
that the site already has correct tiles on its input edges. Let M1

i,j and M2
i,j be the

number of tile types having one mismatching and two mismatching input glues,
respectively, between them and the correct tile type for site (i, j) ∈ [m] × [n].
Now, for a deterministic tile set T , the total number of tiles is |T | = 1 +M1

i,j +
M2

i,j for any (i, j) ∈ [m]× [n]. Given that a site has the correct tiles on its input
edges, a tile is correct for that site if and only if it has two matches on its input
edges.

In what follows, we assume that correct tiles are attached at sites (i− 1, j)
and (i, j − 1). The model for kinetic trapping [30] gives four distinct cases in
the situation preceding the site (i, j) being frozen by further growth. To each of
these cases we can associate an “off-rate” for the system to exit its current state:
(E) An empty site, with “off-rate” |T |rf . (C) The correct tile, with off-rate rr,2.
(A) A tile with one match, with off-rate rr,1. (I) A tile with no matches, with
off-rate rr,0. Additionally, we have two sink states FC and FI, which represent
frozen correct and frozen incorrect tiles, respectively. The rate of a site being
frozen is equal to the rate of growth r∗ = rf − rr,2. Figure 14 describes the
dynamics of the system. Let pS(t) denote the probability of the site being in
state S after t seconds for all S ∈ {E,C,A, I,FC,FI}. To compute the frozen

25

Figure 14: The dynamics of the kinetic trapping model.

distribution, we write the rate equations for the model of kinetic trapping from
Figure 14 as follows8:

Mp(t) :=


−|T |rf rr,2 rr,1 rr,0 0 0
rf −rr,2 − r∗ 0 0 0 0

M1
i,jrf 0 −rr,1 − r∗ 0 0 0

M2
i,jrf 0 0 −rr,0 − r∗ 0 0
0 r∗ 0 0 0 0
0 0 r∗ r∗ 0 0




pE(t)
pC(t)
pA(t)
pI(t)
pFC(t)
pFI(t)

 = ṗ(t),

where p(0) = [1 0 0 0 0 0]T .
To compute the steady-state probability of the site being frozen with the

correct tile, i.e., pFC(∞), we make use of the steady state of the related flow
problem [30]9:

Mp(∞) = [1 0 0 0 pFC(∞) pFI(∞)]T = ṗ(∞),

which gives us a system of linear equations. This system has a single solution,
namely

pFC(∞) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

i,j

r∗+rr,1
+

M2
i,j

r∗+rr,0

= Pr(Ci,j |Ci−1,j ∩ Ci,j−1),

where Ci,j denotes the event of the correct tile being frozen at site (i, j).
The assembly process can be thought of as a sequence of tile addition steps

(a1, a2, . . . , aN) where ak = (ik, jk), k = 1, 2, . . . , N , denotes a tile being frozen
at site (ik, jk). Due to the fact that the assembly process of the tile systems

8The notation ṗ(x) is used to denote the derivative of p with respect to time.
9By the definition of the kinetic trapping model [30], it is assumed that a unit amount of

tiles are supplied into state E of the system at any time point.

26

considered here proceeds uniformly from south-west to north-east, we have that
{(ik − 1, jk), (ik, jk − 1)} ⊆ {a1, a2, . . . , ak−1} for all ak = (ik, jk). We assume
that tiles elsewhere in the configuration do not affect the probability. Now we
can compute the probability of a finite-size pattern of size N assembling without
any errors, i.e. the reliability of that pattern:

Pr(correct pattern) = Pr(Ca1 ∩ Ca2 ∩ · · · ∩ CaN
)

= Pr(Ca1)Pr(Ca2 |Ca1) · · ·Pr(CaN
|Ca1 ∩ Ca2 ∩ · · · ∩ CaN−1)

=
∏
i,j

Pr(Ci,j |Ci−1,j ∩ Ci,j−1).

We have computed the probability in terms of Gmc and Gse. Given the
desired assembly rate, we want to minimise the error probability by choosing
values for Gmc and Gse appropriately. If the assembly process is allowed to
take t seconds, the needed assembly rate for an m×n pattern is approximately
r∗ =

√
m2+n2

t .

Pr(Ci,j |Ci−1,j ∩ Ci,j−1) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

i,j

r∗+rr,1
+

M2
i,j

r∗+rr,0

≈ 1
1 +M1

i,j
r∗+rr,2
r∗+rr,1

.

For small error probability and 2Gse > Gmc > Gse,

Pr(¬Ci,j |Ci−1,j ∩ Ci,j−1) ≈M1
i,j

r∗ + rr,2
r∗ + rr,1

≈M1
i,je
−(Gmc−Gse) =: M1

i,je
−4G.

From
r∗ = rf − rr,2 = k̂f (e−Gmc − e−2Gse)

we can derive
Gse = −1

2
log(e−Gmc − r∗

k̂f

).

Now we can write 4G as a function of Gmc:

4G(Gmc) = Gmc −Gse = Gmc +
1
2

log(e−Gmc − r∗

k̂f

).

We find the maximum of 4G, and thus the minimal error probability, by dif-
ferentation:

Gmc = − log(2
r∗

k̂f

).

Thus, if the assembly time is t seconds, the maximal reliability is achieved at

Gmc = − log(2
√
m2 + n2

tk̂f

), Gse = −1
2

log(
√
m2 + n2

tk̂f

).

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

R
e

lia
b

ili
ty

Pattern size

4-tile solution

1 s
30 s

3 min
15 min

1 h

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One hour assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One day assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One week assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(d)

Figure 15: (a) The reliability of the minimal tile set as a function of pattern size for the
Sierpinski triangle pattern, using several different assembly times. (b)-(d) The reliability of
solutions for the 32×32 Sierpinski triangle pattern found by the PS-H and PS-BB algorithms,
allowing assembly time of one hour, one day and one week.

7.3. Results
In this section, we present results on computing the reliability of tile sets

using the method presented in Section 7. We assume that the assembly process
takes place in room temperature (298 K). As a result, we use the value kf =
Afe

−Ef /RT ≈ 6 · 105 /M/sec for the forward reaction rate.
Figure 15(a) shows the reliability of the 4-tile solution to the Sierpinski

triangle pattern as a function of pattern size, using five distinct assembly times.
As is to be expected, the longer the assembly time, the better the reliability.

We also applied the method for computing the reliability to tile sets found
by the partition search algorithms. Our results show that the heuristics used
in the PS-H algorithm improve not only the size of the tile sets found, but also

28

the reliability of those tile sets. This can be easily understood by considering
the following: the reliability of a tile set is largely determined by the number
of tile types that have the same glue as some other tile type on either one of
their input edges. Since the PS-H algorithm prefers merging class pairs with
common glues, it reduces the number of such tile types effectively.

Figures 15(b)–15(d) present the reliability of tile sets found by the PS-H
and PS-BB algorithms for the 32×32 Sierpinski triangle pattern, with assembly
times of one hour, one day (24 hours) and one week. The runs were repeated
100 times; the mean reliability of each tile set size as well as the 10th and 90th
percentiles are shown.

As for reliability, we expect a large set of runs of the PS-BB algorithm to
produce a somewhat decent sample of all the possible tile sets for a pattern.
Based on this, large and small tile sets seem to have a high reliability while
medium-size tile sets are clearly less reliable on average. This observation re-
duces the problem of finding reliable tile sets back to the problem of finding
small tile sets. However, it is important to note that artefacts of the algorithm
may have an effect on the exact reliability of the tile sets found.

8. Conclusions

We have investigated several algorithmic approaches towards the efficient
solution of the PATS problem, i.e., the task of finding minimal tiles sets which
would self-assemble into a given k-coloured pattern starting from a bordering
seed structure.

Our first algorithm is an exhaustive branch-and-bound method (PS-BB)
which, given enough time, explores the entire search space of pattern-consistent
tile sets. Numerical experiments indicate that the PS-BB algorithm is able to
find minimal tile sets for randomly generated binary patterns of sizes up to
6× 6 tiles. However, for larger patterns, the search space becomes too large for
a complete exploration, even with the efficient pruning heuristics applied by the
algorithm.

In a second approach, we addressed the relaxed objective of generating small
but not necessarily minimal tile sets. Here our PS-H algorithm applies heuristic
rules for optimising the order in which the search space of pattern-consistent tile
sets is explored. Experimental results show that for most patterns, the PS-H
algorithm is indeed able to find significantly smaller solutions in a reasonable
amount of time than the PS-BB algorithm. Also the reliability of the tile sets
produced by the PS-H method clearly exceeds that of the tile sets produced by
the PS-BB algorithm.

In a third direction, we also considered solving the PATS problem using
logic programming techniques, specifically the Answer Set Programming (ASP)
method. For patterns having small minimal solutions, our chosen ASP solver
was mostly very successful in discovering these solutions; however the running
time of the solver seems to increase rapidly with the size of the minimum solu-
tion.

29

References

[1] J. Clausen and M. Perregaard. On the best search strategy in parallel
branch-and-bound: Best-first search versus lazy depth-first search. Ann.
Oper. Research, 90:1–17, 1999.

[2] E. Czeizler, T. Lempiäinen, and P. Orponen. A design framework for carbon
nanotube circuits affixed on DNA origami tiles. In Proc. 8th Annual Conf.
on Foundations of Nanoscience: Self-Assembled Architectures and Devices,
pages 186–187, 2011. Poster.

[3] E. Czeizler and A. Popa. Synthesizing minimal tile sets for complex patterns
in the framework of patterned DNA self-assembly. In Proc. 18th Intl. Conf.
on DNA Computing and Molecular Programming, to appear.

[4] S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M. Shih.
Self-assembly of dna into nanoscale three-dimensional shapes. Nature,
459(7245):414–418, 2009.

[5] K. Fujibayashi, R. Hariadi, S. H. Park, E. Winfree, and S. Murata. To-
ward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular
automaton pattern. Nano Letters, 8:1791–1797, 2008.

[6] K. Fujibayashi and S. Murata. Precise simulation model for DNA tile self-
assembly. IEEE Trans. Nanotechnology, 8, 2009.

[7] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126(1–2):43–62, 2001.

[8] M. Göös and P. Orponen. Synthesizing minimal tile sets for patterned DNA
self-assembly. In Proc. 16th Intl. Conf. on DNA Computing and Molecular
Programming, volume 6518 of LNCS, pages 71–82. Springer, 2011.

[9] K. N. Kim, K. Sarveswaran, L. Mark, and M. Lieberman. DNA origami as
self-assembling circuit boards. In Proc. 9th Intl. Conf. on Unconventional
Computation, volume 6079 of LNCS, pages 56–68. Springer, 2010.

[10] A. Kuzyk, K. T. Laitinen, and P. Törmä. Dna origami as a nanoscale
template for protein assembly. Nanotechnology, 20(23), 2009.

[11] T. Lempiäinen, E. Czeizler, and P. Orponen. Synthesizing small and reliable
tile sets for patterned DNA self-assembly. In Proc. 17th Intl. Conf. on DNA
Computing and Molecular Programming, volume 6937 of LNCS, pages 71–
82. Springer, 2011.

[12] J. Li, H. Pei, B. Zhu, L. Liang, M. Wei, Y. He, N. Chen, D. Li, Q. Huang,
and C. Fan.

[13] V. Lifschitz. What is answer set programming? In Proc. 23rd Natl. Conf.
on Artificial Intelligence, volume 3, pages 1594–1597. AAAI Press, 2008.

30

[14] J. Liu, Z. Cao, and Y. Lu. Functional nucleic acid sensors. Chem. Rev.,
109(5):1948–1998, 2009.

[15] W. Liu, H. Zhong, R. Wang, and N. C. Seeman. Crystalline two-
dimensional DNA-origami arrays. Angewandte Chemie International Edi-
tion, 50(1):264–267, 2011.

[16] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, 47(4):173–180, 1993.

[17] J. S. Lucia, H. T. Allawi, and P. A. Seneviratne. Improved nearest neighbor
parameters for predicting DNA duplex stability. Biochemistry, 35, 1996.

[18] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nan-
greave, S. Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree,
and H. Yan. Molecular robots guided by prescriptive landscapes. Nature,
465(7295):206–210, 2010.

[19] X. Ma and F. Lombardi. Synthesis of tile sets for DNA self-assembly.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, 27:963–967, 2008.

[20] H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. G. III, P. W. K.
Rothemund, and E. Winfree. Self-assembly of carbon nanotubes into two-
dimensional geometries using DNA origami templates. Nature Nanotech-
nology, 5:61–66, 2010.

[21] S. H. Park, H. Yan, J. H. Reif, T. H. LaBean, and G. Finkelstein. Electronic
nanostructures templated on self-assembled DNA scaffolds. Nanotechnol-
ogy, 15:S525–S527, 2004.

[22] L. Qian and E. Winfree. Scaling up digital circuit computation with dna
strand displacement cascades. Science, 332(6034):1196–1201, 2011.

[23] L. Qian, E. Winfree, and J. Bruck. Neural network computation with dna
strand displacement cascades. Nature, 475(7356):368–372, 2011.

[24] A. Rajendran, M. Endo, Y. Katsuda, K. Hidaka, and H. Sugiyama. Pro-
grammed two-dimensional self-assembly of multiple DNA origami jigsaw
pieces. ACS Nano, 5(1):665–671, 2011.

[25] P. W. K. Rothemund. Folding DNA to create nanoscale shapes and pat-
terns. Nature, 440:297–302, 2006.

[26] P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares (extended abstract). In Proc. 32nd Annual ACM Symp.
on Theory of Computing, pages 459–468. ACM, 2000.

[27] R. Schulman and E. Winfree. Programmable control of nucleation for al-
gorithmic self-assembly. SIAM Journal of Scientific Computing, 39, 2009.

31

[28] S. Seki. Combinatorial optimizations in pattern assembly. Manuscript,
submitted for publication, 2012.

[29] T. Syrjänen and I. Niemelä. The Smodels system. In Proc. 6th Intl. Conf. on
Logic Programming and Nonmonotonic Reasoning, volume 2173 of LNCS,
pages 434–438. Springer, 2001.

[30] E. Winfree. Simulations of Computing by Self-Assembly. Technical Report
CSTR 1998.22, California Institute of Technology, 1998.

[31] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-
assembly of two-dimensional DNA crystals. Nature, 394, 1998.

[32] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-
templated self-assembly of protein arrays and highly conducive nanowires.
Science, 301:1882–1884, 2003.

[33] Z. Zhang, E. M. Olsen, M. Kryger, N. V. Voigt, T. Tørring, E. Gültekin,
M. Nielsen, R. MohammadZadegan, E. S. Andersen, M. M. Nielsen,
J. Kjems, V. Birkedal, and K. V. Gothelf. A dna tile actuator with eleven
discrete states. Angew. Chem. Int. Ed., 50(17):3983–3987, 2011.

32

Supplementary information

A Design Framework for Carbon Nanotube Circuits Affixed on DNA
Origami Tiles

Recent years have witnessed a burst of experimental activity concerning al-
gorithmic self-assembly of nanostructures, motivated at least in part by the
potential of this approach as a radically new manufacturing technology. One of
the presently most reliable self-assembling, programmable nanostructure archi-
tectures is DNA origami [10]. Several authors have announced the formation of
DNA origami tiles, capable of further assembly into larger, fully addressable, 1D
and 2D scaffolds [3, 5, 8]. Such scaffolds make possible the construction of highly
complex structures on top of them [6], prospectively including nanocircuits. In
[1], the authors propose a generic framework for the design of Carbon-Nanotube
Field Effect Transistor (CNFET) circuits. The elements of these circuits are
Carbon Nanotube Field Effect Transistors and Carbon Nanotube Wires. They
are placed on top of different DNA origami tiles which self-assemble into any
desired circuit.

Single-wall carbon nanotubes (CN’s) can be fabricated either metallic (m)
or semiconducting (s). A cross-junction between an m- and s-type CN generates
a structure with field effect transistor (FET) behavior [2, 7]. In this way, both
p-type and n-type FETs are realizable (a p-type FET is ON when input is
“0”, while an n-type FET is ON when input is “1”). Moreover, experimental
implementations have been provided, affixing these structures on top of DNA
origami [4, 9].

Figure 1: The 14 tile types and the blank tile, out of which any CNFET circuit can be
assembled: a) p-type and n-type CNFETs, b) straight CNWs, c) corner CNWs, d)-e) 3- and
4-way CNW junctions, f) crossing but non-interacting CNWs, g) blank tile.

Based on the above experimental results, in [1] the authors provide a “uni-
versal” set of 14 functionalised DNA origami tiles, see Figure 1, such as, with a
proper selection of “glues” on the tiles, any desired CNFET circuit can be self-
assembled from this basis. These tile types are (the marks on the tiles indicate
the arrangements of the CNs affixed on the respective DNA origami): a) p-type
and n-type CNFETs, b) straight (horizontal or vertical) CN wires (CNWs), c)
corner CNWs, d)-e) 3- and 4-way junction CNWs, and f) crossing but non-
interacting CNWs. Additionally, when analyzing fault tolerant architectures, it

1

is convenient to introduce also a blank tile g). In order to design a particular
nanocircuit, one first prepares the transistor circuit design using the 14 basis
tiles indicated. Then, an optimal number of glues for these tiles is computed
and finally, appropriate sticky ends are designed for the DNA origami tiles. In
Figure 2 we present the designs for a CMOS Invertor, NAND-gate, and Full
Adder, respectively.

Figure 2: Examples of CNFET circuit design: Invertor gate, NAND gate, and Full Adder.

Some of the advantages of this approach are that it decouples the self-
assembly aspects of the manufacturing process from the transistor circuit design
and that it allows for a structured and clear circuit design. Moreover, it also
supports efficient high-level analysis of the purported circuits, both by computer
simulations and by analytical means. For instance, all assembly errors can at
this level be treated as tiling errors, leading to a transparent design discipline
for fault-tolerant architectures.

2

References

[1] E. Czeizler, T. Lempiäinen, and P. Orponen. A design framework for carbon
nanotube circuits affixed on DNA origami tiles. In Proc. 8th Annual Conf.
on Foundations of Nanoscience: Self-Assembled Architectures and Devices,
pages 186–187, 2011. Poster.

[2] C. Dwyer, V. Johri, M. Cheung, J. Patwardhan, A. Lebeck, and D. Sorin.
Design tools for a dna-guided self-assembling carbon nanotube technology.
Nanotechnology, 15(9), 2004.

[3] M. Endo, T. Sugita, Y. Katsuda, K. Hidaka, and H. Sugiyama.
Programmed-assembly system using DNA jigsaw pieces. Chemistry - A
European Journal, 16(18):5362–5368, 2010.

[4] A.-P. Eskelinen, A. Kuzyk, T. K. Kaltiaisenaho, M. Y. Timmermans, A. G.
Nasibulin, E. I. Kauppinen, and P. Törmä.

[5] K. N. Kim, K. Sarveswaran, L. Mark, and M. Lieberman. DNA origami as
self-assembling circuit boards. In Proc. 9th Intl. Conf. on Unconventional
Computation, volume 6079 of LNCS, pages 56–68. Springer, 2010.

[6] A. Kuzyk, K. T. Laitinen, and P. Törmä. Dna origami as a nanoscale
template for protein assembly. Nanotechnology, 20(23), 2009.

[7] Lee, D. Su, Svensson, Johannes, Lee, S. Wook, Park, Y. Woo, Camp-
bell, and E. B. Eleanor. Fabrication of crossed junctions of semiconduct-
ing and metallic carbon nanotubes: A CNT-gated CNT-FET. Journal of
Nanoscience and Nanotechnology, 6(5), 2006.

[8] W. Liu, H. Zhong, R. Wang, and N. C. Seeman. Crystalline two-
dimensional DNA-origami arrays. Angewandte Chemie International Edi-
tion, 50(1):264–267, 2011.

[9] H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. G. III, P. W. K.
Rothemund, and E. Winfree. Self-assembly of carbon nanotubes into two-
dimensional geometries using DNA origami templates. Nature Nanotech-
nology, 5:61–66, 2010.

[10] P. W. K. Rothemund. Folding DNA to create nanoscale shapes and pat-
terns. Nature, 440:297–302, 2006.

3

	PATS_to_IC
	suppl

